Pico-Dispensed Zinc Oxide Nanoparticles for Actuation of Microcantilevers: A Precise Deposition Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Measurements and Evaluation
3.1. The Resonance Parameters Determined by the Laser Doppler Vibrometry Technique
3.2. AFM Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia, R.; Perez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 2002, 47, 197–301. [Google Scholar] [CrossRef]
- Butt, H.-J.; Cappella, B.; Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 2005, 59, 1–152. [Google Scholar] [CrossRef]
- Sarkar, L.; Sushma, M.V.; Yalagala, B.P.; Rengan, A. ZnO nanoparticles embedded silk fibroin—A piezoelectric composite for nanogenerator applications. Nanotechnology 2022, 33, 265403. [Google Scholar] [CrossRef] [PubMed]
- Schirmeisen, A.; Anczykowski, B.; Fuchs, H. Dynamic Modes of Atomic Force Microscopy. In Handbook of Nanotechnology, 2nd ed.; Bhushan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 737–766. [Google Scholar] [CrossRef]
- Yadav, H.; Sinha, N.; Goel, S.; Kumar, B. Eu-doped ZnO nanoparticles for dielectric, ferroelectric and piezoelectric applications. J. Alloys Compd. 2016, 689, 333–341. [Google Scholar] [CrossRef]
- Hegde, V.N.; Manju, V.V.; Pradeep, T.M.; Hemaraju, B.C. Study on structural, morphological, elastic and electrical properties of ZnO nanoparticles for electronic device applications. J. Sci. Adv. Mater. Devices 2024, 9, 100733. [Google Scholar] [CrossRef]
- Cleveland, J.P.; Anczykowski, B.; Schmid, A.E.; Elings, V.B. Energy dissipation in tapping-mode atomic force microscopy. App. Phys. Lett. 1998, 72, 2613–2615. [Google Scholar] [CrossRef]
- Tamayo, J.; Garcia, R. Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. App. Phys. Lett. 1996, 68, 1815–1817. [Google Scholar] [CrossRef]
- Balke, N.; Jesse, S.; Yu, P.; Carmichael, B.; Okatan, B.; Kravchenko, I.I.; Kalinin, S.V.; Tselev, A. Quantification of Probe-Sample Electrostatic Forces with Dynamic Atomic Force Microscopy. Nanotechnology 2016, 27, 425707. [Google Scholar] [CrossRef] [PubMed]
- Vesudevan, R.K.; Balke, N.; Maksymovych, P.; Jesse, S.; Kalinin, S.V. Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelecricity” on the nanoscale. Appl. Phys. Rev. 2017, 4, 021302. [Google Scholar] [CrossRef]
- Zinc Oxide Nanoparticle Ink. Zinc Oxide Suspension. Available online: https://www.sigmaaldrich.com/PL/pl/product/aldrich/793361?srsltid=AfmBOopWPkYzqnZ38g5ZJ0wQUiuAfrTQ01tyqcTS_1cfsR2nYQVvq_5g (accessed on 2 February 2025).
- Kim, K.; Jang, J.; Hong, S.; Kang, H. Toward submicron inkjet–printed ZnO microdots with suppressed coffee-ring effect via controlled drying conditions for potential solar cell. J. Mater. Res. Technol. 2024, 31, 3480–3488. [Google Scholar] [CrossRef]
- Bhushan, B. (Ed.) Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Shoeb, M.; Ahmad, S.; Mashkoor, F.; Khan, M.N.; Hasan, I.; Singh, B.R.; Jeong, C. Investigating the size-dependent structural, optical, dielectric, and photocatalytic properties of benign-synthesized ZnO nanoparticles. J. Phys. Chem. Solids 2024, 184, 111707. [Google Scholar] [CrossRef]
- Dey, S.; Mohanty, D.; Divya, N.; Bakshi, V.; Mohanty, A.; Rath, D.; Das, S.; Mondal, A.; Roy, S.; Sabui, R. A critical review on zinc oxide nanoparticles: Synthesis, properties and biomedical applications. Intell. Pharm. 2025, 3, 53–70. [Google Scholar] [CrossRef]
- Güthner, P.; Dransfeld, K. Local poling of ferroelectric polymers by scanning force microscopy. App. Phys. Lett. 1992, 61, 1137–1139. [Google Scholar] [CrossRef]
- Gruverman, A.; Alexe, M.; Meier, D. Piezoresponse force microscopy and nanoferroic phenomena. Nat. Commun. 2019, 10, 1661. [Google Scholar] [CrossRef] [PubMed]
- Christman, J.A.; Woolcott, R.R., Jr.; Kingon, A.I.; Nemanicha, R.J. Piezoelectric measurements with atomic force microscopy. Appl. Phys. Lett. 1998, 73, 3851–3853. [Google Scholar] [CrossRef]
- Pearl HiFi. Theory Manual, Polytec Scanning Vibrometer, PSV Theory. Available online: https://pearl-hifi.com/06_Lit_Archive/15_Mfrs_Publications/28_Polytec/Polytec_Software_Manuals/Polytec_PSV_Software_Ver_9.1.pdf (accessed on 30 April 2025).
- EMS. Chessy, Test Specimen. Available online: https://www.emsdiasum.com/chessy-test-specimen-2 (accessed on 9 June 2025).
Probe No. | Without ZnO—NP | With ZnO—NP | ||||
---|---|---|---|---|---|---|
Brownian | Brownian | Applied Generator Stimulation | ||||
fres [kHz] | Deflection Amplitude [pm] | fres [kHz] | Deflection Amplitude [pm] | fres [kHz] | Deflection Amplitude [pm] | |
1 | 93.67188 | 0.99649 | 93.98438 | 0.81215 | 94.03125 | 1182.139 |
4 | 77.875 | 0.65546 | 77.82813 | 0.75621 | 77.89063 | 381.2466 |
5 | 100.125 | 0.48125 | 100.2188 | 0.77490 | 100.3125 | 1036.352 |
6 | 86.6875 | 0.60393 | 86.71875 | 0.67285 | 86.76563 | 828.1655 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janus, P.; Piotrowska, A.K.; Prokaryn, P.; Sierakowski, A.; Prokaryn, J.; Dobrowolski, R. Pico-Dispensed Zinc Oxide Nanoparticles for Actuation of Microcantilevers: A Precise Deposition Approach. Sensors 2025, 25, 3689. https://doi.org/10.3390/s25123689
Janus P, Piotrowska AK, Prokaryn P, Sierakowski A, Prokaryn J, Dobrowolski R. Pico-Dispensed Zinc Oxide Nanoparticles for Actuation of Microcantilevers: A Precise Deposition Approach. Sensors. 2025; 25(12):3689. https://doi.org/10.3390/s25123689
Chicago/Turabian StyleJanus, Paweł, Anna Katarzyna Piotrowska, Piotr Prokaryn, Andrzej Sierakowski, Jan Prokaryn, and Rafał Dobrowolski. 2025. "Pico-Dispensed Zinc Oxide Nanoparticles for Actuation of Microcantilevers: A Precise Deposition Approach" Sensors 25, no. 12: 3689. https://doi.org/10.3390/s25123689
APA StyleJanus, P., Piotrowska, A. K., Prokaryn, P., Sierakowski, A., Prokaryn, J., & Dobrowolski, R. (2025). Pico-Dispensed Zinc Oxide Nanoparticles for Actuation of Microcantilevers: A Precise Deposition Approach. Sensors, 25(12), 3689. https://doi.org/10.3390/s25123689