Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (175)

Search Parameters:
Keywords = texture modified food

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1442 KiB  
Article
Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications
by Tereza Novotná, Jana Pavlačková, Robert Gál, Ladislav Šiška, Miroslav Fišera and Pavel Mokrejš
Molecules 2025, 30(15), 3293; https://doi.org/10.3390/molecules30153293 - 6 Aug 2025
Abstract
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of [...] Read more.
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of this study is the enzymatic modification of red deer fat, leading to modification of its physicochemical properties, and the study of changes in phase transitions of modified fat, its structure, color, and texture. Hydrolysis was performed using sn-1,3-specific lipase at different water concentrations (10–30%) and reaction times (2–6 h). The results showed that there was a significant decrease in melting and crystallization temperatures with an increasing degree of hydrolysis, which was confirmed by differential scanning calorimetry. FTIR spectra revealed a decrease in the intensity of the ester bonds, indicating cleavage of triacylglycerols. Texture analysis of the modified fats confirmed a decrease in hardness of up to 50% and an increase in spreadability. The color parameter values remained within an acceptable range. The results show that enzymatic modification is an effective tool for targeted modification of red deer fat properties, and this expands the possibilities of its application in cosmetic matrices and food applications as functional lipids. Full article
Show Figures

Graphical abstract

40 pages, 2173 KiB  
Review
Bridging Genes and Sensory Characteristics in Legumes: Multi-Omics for Sensory Trait Improvement
by Niharika Sharma, Soumi Paul Mukhopadhyay, Dhanyakumar Onkarappa, Kalenahalli Yogendra and Vishal Ratanpaul
Agronomy 2025, 15(8), 1849; https://doi.org/10.3390/agronomy15081849 - 31 Jul 2025
Viewed by 717
Abstract
Legumes are vital sources of protein, dietary fibre and nutrients, making them crucial for global food security and sustainable agriculture. However, their widespread acceptance and consumption are often limited by undesirable sensory characteristics, such as “a beany flavour”, bitterness or variable textures. Addressing [...] Read more.
Legumes are vital sources of protein, dietary fibre and nutrients, making them crucial for global food security and sustainable agriculture. However, their widespread acceptance and consumption are often limited by undesirable sensory characteristics, such as “a beany flavour”, bitterness or variable textures. Addressing these challenges requires a comprehensive understanding of the complex molecular mechanisms governing appearance, aroma, taste, flavour, texture and palatability in legumes, aiming to enhance their sensory appeal. This review highlights the transformative power of multi-omics approaches in dissecting these intricate biological pathways and facilitating the targeted enhancement of legume sensory qualities. By integrating data from genomics, transcriptomics, proteomics and metabolomics, the genetic and biochemical networks that directly dictate sensory perception can be comprehensively unveiled. The insights gained from these integrated multi-omics studies are proving instrumental in developing strategies for sensory enhancement. They enable the identification of key biomarkers for desirable traits, facilitating more efficient marker-assisted selection (MAS) and genomic selection (GS) in breeding programs. Furthermore, a molecular understanding of sensory pathways opens avenues for precise gene editing (e.g., using CRISPR-Cas9) to modify specific genes, reduce off-flavour compounds or optimise texture. Beyond genetic improvements, multi-omics data also inform the optimisation of post-harvest handling and processing methods (e.g., germination and fermentation) to enhance desirable sensory profiles and mitigate undesirable ones. This holistic approach, spanning from the genetic blueprint to the final sensory experience, will accelerate the development of new legume cultivars and products with enhanced palatability, thereby fostering increased consumption and ultimately contributing to healthier diets and more resilient food systems worldwide. Full article
Show Figures

Figure 1

20 pages, 1065 KiB  
Review
Microbial Genome Editing with CRISPR–Cas9: Recent Advances and Emerging Applications Across Sectors
by Chhavi Dudeja, Amish Mishra, Ansha Ali, Prem Pratap Singh and Atul Kumar Jaiswal
Fermentation 2025, 11(7), 410; https://doi.org/10.3390/fermentation11070410 - 16 Jul 2025
Viewed by 1005
Abstract
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. [...] Read more.
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. The economies of fermentation-based manufacturing are changing because of its quick acceptance in both academic and industry labs. CRISPR processes have been used to modify industrially significant bacteria, including the lactic acid producers, Clostridium spp., Escherichia coli, and Corynebacterium glutamicum, in order to increase the yields of bioethanol, butanol, succinic acid, acetone, and polyhydroxyalkanoate precursors. CRISPR-mediated promoter engineering and single-step multiplex editing have improved inhibitor tolerance, raised ethanol titers, and allowed for the de novo synthesis of terpenoids, flavonoids, and recombinant vaccines in yeasts, especially Saccharomyces cerevisiae and emerging non-conventional species. While enzyme and biopharmaceutical manufacturing use CRISPR for quick strain optimization and glyco-engineering, food and beverage fermentations benefit from starter-culture customization for aroma, texture, and probiotic functionality. Off-target effects, cytotoxicity linked to Cas9, inefficient delivery in specific microorganisms, and regulatory ambiguities in commercial fermentation settings are some of the main challenges. This review provides an industry-specific summary of CRISPR–Cas9 applications in microbial fermentation and highlights technical developments, persisting challenges, and industrial advancements. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

17 pages, 4406 KiB  
Article
Development of Texture-Modified Meat and Thickened Soup Combination for Oral Dysphagia Patients with Uniform Firmness and Solid Appearance
by Sergio Hernández, Samuel Verdú, Pau Talens and Raúl Grau
Foods 2025, 14(14), 2462; https://doi.org/10.3390/foods14142462 - 14 Jul 2025
Viewed by 300
Abstract
This study aimed to improve the visual appeal of texture-modified (TM) dishes for individuals with dysphagia by developing a method to unify the texture of solid and liquid components through innovative food processing techniques. It investigated various meat-softening methods while preserving its solid [...] Read more.
This study aimed to improve the visual appeal of texture-modified (TM) dishes for individuals with dysphagia by developing a method to unify the texture of solid and liquid components through innovative food processing techniques. It investigated various meat-softening methods while preserving its solid appearance and ensuring a uniform texture when combined with a thickened soup. A grinding and reconstitution approach enabled the incorporation of pea protein (0% and 1%), olive oil (0%, 5%, or 10%), and papain (0% and 0.2%) to enhance the nutritional and sensory properties. This method successfully matched the firmness of TM meat with that of the thickened soup. Papain significantly reduced the firmness, and olive oil decreased the cohesiveness. After categorizing the TM meat and thickened soup as IDDSI level 4, four dishes at three firmness levels were developed. This study highlighted the potential of this approach to integrate solid and liquid food matrices, contributing to the advancement of TM food engineering and to the challenge of improving visual sensory acceptance and personalizing TM diets for individuals with dysphagia. Full article
Show Figures

Figure 1

14 pages, 1134 KiB  
Article
Analyzing the Caloric Variability of Bites in a Semi-Naturalistic Dietary Setting
by Mohammad Junayed Bhuyan, Luca Vedovelli, Corrado Lanera, Daniele Gasparini, Paola Berchialla, Ileana Baldi and Dario Gregori
Nutrients 2025, 17(13), 2192; https://doi.org/10.3390/nu17132192 - 30 Jun 2025
Viewed by 316
Abstract
Background: Obesity is a major public health issue in developed countries, primarily managed through dietary interventions and physical activity. Food portion sizes influence the estimation of energy intake, particularly through bites, of which characteristics remain insufficiently defined. This study investigates the variability in [...] Read more.
Background: Obesity is a major public health issue in developed countries, primarily managed through dietary interventions and physical activity. Food portion sizes influence the estimation of energy intake, particularly through bites, of which characteristics remain insufficiently defined. This study investigates the variability in bite energy content. Methods: This observational study was conducted over 14 months. Thirteen types of packaged food were provided to 30 Italian healthy volunteers (mean age 26.8 ± 8.5 years) in a semi-naturalistic dietary feeding setting. Participants’ anthropometric measurements were recorded. A total of 1850 bites were weighed and 420 bites were assessed for volume and energy content. Results: Bite volume and mass explained bite energy content at different rates. The most influential anthropometric feature was waist circumference. Gender modified the association between waist circumference and bite characteristics; males showed increased bite volume, mass, and energy content as waist circumference increased, whereas females showed little or no association. Age was inversely associated with bite volume and mass, with younger participants having larger bites. Gender significantly influenced average bite size, with females showing lower values than males. The use of a fork was associated with higher bite volume, mass, and energy compared to a spoon. Food eaten with bare hands had lower mass but higher energy content compared to food eaten with a spoon. The variability in bite energy was considerably greater per bite than per gram, reflecting the combined influence of food texture, bite size, and cutlery used. Conclusions: Bite energy variability, influenced by intrinsic factors (gender, age, waist circumference) and extrinsic factors (cutlery, food texture), significantly impacts portion size effect. Future bite counters should consider these elements for accurate dietary assessment. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

16 pages, 1824 KiB  
Article
Effects of Pregelatinization on the Physicochemical Properties of Corn Grits and the Quality of Cooked Waxy Corn Wrapped in Plant Leaves
by Yi Wang, Ruixuan Li, Yijiao Yan, Wanyi Niu, Yue Wang, Mingyi Shen, Ruifang Wang and Li Cheng
Foods 2025, 14(13), 2287; https://doi.org/10.3390/foods14132287 - 27 Jun 2025
Viewed by 227
Abstract
In this study, the effects of pregelatinization on the physicochemical properties of corn grits and the quality of cooked waxy corn wrapped in plant leaves were investigated. This investigation was conducted to address the issues of partial gelatinization and poor texture in corn [...] Read more.
In this study, the effects of pregelatinization on the physicochemical properties of corn grits and the quality of cooked waxy corn wrapped in plant leaves were investigated. This investigation was conducted to address the issues of partial gelatinization and poor texture in corn grits when applied to food processing such as cooked waxy corn wrapped in plant leaves. After the corn grits were soaked at 55 °C, they were steamed for 30 min and dried at 45 °C (steam temperature maintained at 100 °C), reaching a gelatinization degree of 48.28%. The modified grits were characterized using Rapid Visco Analyzer (RVA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) to analyze pasting properties, retrogradation behavior, crystallinity, molecular structure, and morphology. The results showed that pregelatinization significantly reduced setback viscosity (from 274.83 to 154.52 mPa·s), crystallinity (from 11.12% to 3.62%), and retrogradation tendency while improving solubility, swelling power, and water-holding capacity. When used in cooked waxy corn wrapped in plant leaves, pregelatinized grits enhanced the gelatinization degree (96.11%), texture (reduced hardness by 19.49%, increased chewiness and cohesiveness), and moisture retention during storage. The findings demonstrate that pregelatinization optimizes starch functionality, mitigates retrogradation, and improves the overall quality of traditional corn-based foods, providing a practical approach for industrial applications. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

21 pages, 2283 KiB  
Article
Thermoreversible Hydrocolloid Blends for Structurally Stable Reheated Carrot Purée in Dysphagia Management
by Narmatha Maran, Jorry Dharmawan and Kelvin K. T. Goh
Foods 2025, 14(13), 2248; https://doi.org/10.3390/foods14132248 - 25 Jun 2025
Viewed by 479
Abstract
Oropharyngeal dysphagia is a common condition among older adults and individuals with neurological disorders, necessitating the use of texture-modified foods (TMFs) to ensure safe swallowing; however, reheating often leads to syneresis and structural breakdown, compromising both functionality and patient acceptability. This study aimed [...] Read more.
Oropharyngeal dysphagia is a common condition among older adults and individuals with neurological disorders, necessitating the use of texture-modified foods (TMFs) to ensure safe swallowing; however, reheating often leads to syneresis and structural breakdown, compromising both functionality and patient acceptability. This study aimed to evaluate the efficacy of single and binary hydrocolloid systems for improving the thermal and structural stability of moulded carrot purée formulated to meet International Dysphagia Diet Standardisation Initiative (IDDSI) Level 4 standards. The main methods involved preparing purées with various hydrocolloid combinations, assessing gel strength, shape retention, and syneresis following steaming, and validating results using commercial moulds. Thermoreversible methylcellulose (Benecel™ A4M) was the most effective single-component system, while binary blends of A4M with locust bean gum (LBG)—specifically B2 (1.5% A4M + 0.5% LBG) and B3 (1.5% A4M + 1% LBG)—demonstrated superior structural integrity, with height retention of 80 ± 2% (B2) and 85 ± 2% (B3), and reduced syneresis (~22 ± 1% and ~19 ± 3%, respectively; p < 0.05), both meeting IDDSI requirements. In contrast, formulations containing agar, xanthan, or carboxymethylcellulose exhibited poorer shape fidelity, likely due to matrix-disrupting interactions. These findings indicate that A4M-LBG blends offer a practical solution for producing reheatable, visually recognisable meals for individuals with moderate-to-severe dysphagia. Full article
Show Figures

Graphical abstract

16 pages, 3351 KiB  
Review
3D-Printed Foods for Dysphagia: A Bibliometric Review
by Jinge Shao, Zhipeng Zheng, Jiamiao Hu, Natthida Sriboonvorakul and Shaoling Lin
Foods 2025, 14(12), 2058; https://doi.org/10.3390/foods14122058 - 11 Jun 2025
Cited by 1 | Viewed by 744
Abstract
Dysphagia is a medical condition affecting millions globally. Traditional modified diets designed for individuals with dysphagia often focus primarily on improved swallowability, yet they typically fall short in terms of palatability, nutritional diversity, and visual appeal, leading to reduced food intake, malnutrition and [...] Read more.
Dysphagia is a medical condition affecting millions globally. Traditional modified diets designed for individuals with dysphagia often focus primarily on improved swallowability, yet they typically fall short in terms of palatability, nutritional diversity, and visual appeal, leading to reduced food intake, malnutrition and reduced quality of life. Recent advancements in 3D-printing technology offer the potential to create texture-modified foods that not only facilitate swallowing but also preserve nutritional content and visual appeal. However, there is a noticeable gap in the comprehensive bibliometric analysis of studies on the use of 3D printing to address swallowing difficulties. To bridge this gap, this study systematically analyzes the literature on the development of 3D-printed foods tailored for individuals with dysphagia from the bibliometric perspective. The results highlight the top journals, leading countries, and prominent institutes/authors in this field. The study also examines the adoption of various 3D-printer brands, the key indicators used to assess the palatability of 3D-printed foods for dysphagia, and the common ingredients used for the development of 3D-printing ink. Overall, this review provides a comprehensive overview of current research trends in the development of 3D-printed food for dysphagia, offering valuable insights for future research in this area. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 7434 KiB  
Article
Effects of Different Dual-Modified Jujube Juicing Residue Dietary Fibers on the Properties of Egg Protein Gels Induced by Alkalinity and Heat
by Xinyu Zheng, Ling Dang, Yichan Zhang, Xinyu Liu, Hui Wang, Yajun Zheng, Xinling Song, Zhihui Wei, Jiayao Zhang and Xiaoyang Guo
Gels 2025, 11(6), 399; https://doi.org/10.3390/gels11060399 - 27 May 2025
Viewed by 368
Abstract
Egg protein gels have relatively poor water-holding capacity, hardness, and freeze–thaw properties. Jujube juicing residue dietary fiber (JJRDF) is available, but it is rarely used in the food industry because of its poor hydration properties. Versions of JJRDF modified via cellulase and xylanase [...] Read more.
Egg protein gels have relatively poor water-holding capacity, hardness, and freeze–thaw properties. Jujube juicing residue dietary fiber (JJRDF) is available, but it is rarely used in the food industry because of its poor hydration properties. Versions of JJRDF modified via cellulase and xylanase hydrolysis separately coupled with carboxymethylation (JJRDF-CXHC), phosphate crosslinking (JJRDF-CXHPC), and acetylation (JJRDF-CXHA) were prepared, and their effects on heat-induced and alkaline-induced egg protein gels (HA-EPGs) were studied. Smaller particle sizes and higher solubility, viscosity, expansion volume, and ability to retain water were observed in JJRDF-CXHC, JJRDF-CXHPC, and JJRDF-CXHA compared to JJRDF (p < 0.05). JJRDF-CXHC showed the highest viscosity (18.46 cP) and expansion volume (10.40 mL/g). Higher random coil and β-sheet contents resulted in an increase in pH, adhesiveness, hardness, and chewiness, and a decrease in the water-losing rate in freeze–thaw cycles, and gastric digestion was observed in the HA-EPGs as a consequence of adding JJRDF, JJRDF-CXHC, JJRDF-CXHPC, and JJRDF-CXHA at 3–5 g/100 g. Moreover, JJRDF-CXHC and JJRDF-CXHPC were better at improving the textural quality of the unmodified HA-EPG compared to JJRDF-CXHA and JJRDF (p < 0.05). Therefore, to improve egg protein gel quality, JJRDF modified with cellulase and xylanase hydrolysis separately coupled with carboxymethylation and crosslinking is a good choice. However, the functionalities of these modified JJRDFs should be studied. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

25 pages, 3404 KiB  
Article
Mathematical Framework for the Representation of the Travel of an Accelerometer-Based Texture Testing Device
by Harald Paulsen, Christian Peham, Johannes Peter Schramel and Margit Gföhler
Sensors 2025, 25(11), 3273; https://doi.org/10.3390/s25113273 - 22 May 2025
Viewed by 493
Abstract
Recently, an accelerometer-based device (Vienna Surface Tester (VST)) has been developed for testing the surface characteristics of floors, beddings and turf grounds. The accelerometers are placed in a sphere, which will be dropped in free fall on a test surface. By observing changes [...] Read more.
Recently, an accelerometer-based device (Vienna Surface Tester (VST)) has been developed for testing the surface characteristics of floors, beddings and turf grounds. The accelerometers are placed in a sphere, which will be dropped in free fall on a test surface. By observing changes in acceleration during impact, researchers can deduce various material characteristics. A down-sized version of this device (Surface Tester of Food Resilience (STFR)) has been proposed for texture testing of foods. Whereas the movement of the VST can be described by the laws of free fall, the STFR follows a constrained circular path due to its attachment to a rod and swivel. We refined the mathematical representation of the different phases of the STFR spherical probe’s trajectory (fall, impact and rebound), and we modified the mathematical models for the STFR probe to extend the measurement range. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 2566 KiB  
Article
Texture-Modified Soy Protein Gels Using Transglutaminase and Agar for Elderly Dysphagia Management
by Puchcharin Paleekui, Benjamard Rattanamato, Nattapong Kanha, Kanyasiri Rakariyatham, Wannaporn Klangpetch, Sukhuntha Osiriphun and Thunnop Laokuldilok
Gels 2025, 11(4), 303; https://doi.org/10.3390/gels11040303 - 20 Apr 2025
Viewed by 854
Abstract
Dysphagia, a condition characterized by difficulty swallowing, is commonly found in the elderly, increasing the risk of choking and aspiration. This study aimed to develop a texturally modified soy protein gel that meets the Universal Design Food (UDF) standard, specifically for elderly individuals [...] Read more.
Dysphagia, a condition characterized by difficulty swallowing, is commonly found in the elderly, increasing the risk of choking and aspiration. This study aimed to develop a texturally modified soy protein gel that meets the Universal Design Food (UDF) standard, specifically for elderly individuals with dysphagia. To create soft-textured foods, the gel’s texture was modified using transglutaminase at varying concentrations (0.5%, 1.0%, and 2.0%, w/v) in combination with agar. The soy protein gel prepared with 0.5% transglutaminase exhibited the lowest hardness value (2.2 × 103 N/m2) and was classified as Level 4 under the UDF standard, indicating that it requires no chewing and is easy to swallow, making it suitable for individuals with severe dysphagia. In contrast, the gel formulated with 2.0% transglutaminase and 0.5% agar had the highest hardness value (3.29 × 104 N/m2) and was classified as Level 2, meaning it can be easily mashed with the gums, making it appropriate for individuals with moderate dysphagia. Structural analyses revealed that modifying with transglutaminase altered the protein’s secondary structure by reducing the content of α-helixes and β-sheets while increasing β-turns, potentially enhancing gel network flexibility. These findings suggest that the combined use of transglutaminase and agar effectively modifies soy protein gel texture to meet the dietary needs of elderly individuals with dysphagia. This approach shows promise for the food industry by providing safer and more diverse food options for aging populations facing dysphagia. Full article
(This article belongs to the Special Issue Recent Advances in Protein Gels)
Show Figures

Graphical abstract

12 pages, 1739 KiB  
Article
Digestibility and Quality Characteristics of Noodles with Added Malic-Acid-Modified Wheat Starch
by Gyeong A Jeong, Inae Lee and Chang Joo Lee
Foods 2025, 14(8), 1348; https://doi.org/10.3390/foods14081348 - 14 Apr 2025
Viewed by 607
Abstract
Starch digestion raises blood glucose levels and is associated with cardiovascular diseases, diabetes, metabolic syndrome, and obesity. Hence, developing methods for controlling starch digestion is important. In this study, we prepared noodles from wheat flour containing malic-acid-modified starch (MAS), which contains a high [...] Read more.
Starch digestion raises blood glucose levels and is associated with cardiovascular diseases, diabetes, metabolic syndrome, and obesity. Hence, developing methods for controlling starch digestion is important. In this study, we prepared noodles from wheat flour containing malic-acid-modified starch (MAS), which contains a high proportion of thermostable resistant starch (RS). The quality and digestibility characteristics of these MAS-added noodles were evaluated to determine the optimal formulation. MAS was prepared by physicochemically modifying native wheat starch by adding 4 M malic acid and heating at 130 °C for 7 h. MAS-added noodles were produced by preparing a flour mixture in which 5–30% wheat flour was replaced with MAS. Compared to traditional wheat flour noodles, the addition of MAS resulted in inferior texture, extensibility, and cooking properties, along with higher solid losses, which negatively affect noodle quality. Nevertheless, less-rapidly digestible starch and more RS were observed at higher MAS levels. The inclusion of 10% MAS was found to afford the highest RS content while maintaining noodle quality similar to that of commercially available wheat flour; this formulation was determined to be optimal for producing MAS-added noodles. Therefore, MAS, with its enhanced thermostable RS content, is a promising low-calorie ingredient for use in the food industry. Further research into MAS and the development of MAS-based food products may promote the development of new and diverse low-calorie food options. Full article
Show Figures

Figure 1

17 pages, 5369 KiB  
Article
Analysis of the Impact of the Addition of Alphitobius diaperinus Larval Powder on the Physicochemical, Textural, and Sensorial Properties of Shortbread Cookies
by Sylwia Mierzejewska, Zdzisław Domiszewski, Joanna Piepiórka-Stepuk, Anna Bielicka, Arkadiusz Szpicer and Iwona Wojtasik-Kalinowska
Appl. Sci. 2025, 15(8), 4269; https://doi.org/10.3390/app15084269 - 12 Apr 2025
Cited by 1 | Viewed by 538
Abstract
Based on the EFSA opinion dated 4 July 2022, the safety of frozen and freeze-dried larvae of Alphitobius diaperinus for human consumption was confirmed, leading to their approval as a novel food in the European Union. Given the increasing demand for sustainable protein [...] Read more.
Based on the EFSA opinion dated 4 July 2022, the safety of frozen and freeze-dried larvae of Alphitobius diaperinus for human consumption was confirmed, leading to their approval as a novel food in the European Union. Given the increasing demand for sustainable protein sources and alternative foods, studies explored the application of A. diaperinus larval powder as an additive in shortbread cookie production. In this experiment, wheat flour was partially replaced with insect powder at varying levels (10%, 20%, 30%, and 50% w/w), while butter was substituted with margarine. The analysis covered the protein content, moisture, ash, color, textural properties, and sensorial evaluation of the baked products. The results indicated that increasing the proportion of insect powder significantly raised the protein content and reduced moisture, impacting the cookie structure and brittleness. The sensorial evaluation indicated that incorporating up to 20% insect powder produced cookies with an optimal flavor, aroma, and texture balance, assessed at the level of 4.5 points and 11.7 N, respectively. Storage studies revealed that higher insect powder levels slowed moisture loss and reduced hardness over a 14-day period, stabilizing texture. However, excessive insect powder incorporation led to reduced consumer acceptability. These findings confirm the potential of A. diaperinus powder as an innovative additive to enhance the nutritional value of traditional baked goods, while also underscoring the need to modify technological parameters during production. Full article
Show Figures

Figure 1

24 pages, 2809 KiB  
Article
Physicochemical, Functional, and Antibacterial Properties of Inulin-Type Fructans Isolated from Dandelion (Taraxacum officinale) Roots by “Green” Extraction Techniques
by Nadezhda Petkova, Ivanka Hambarliyska, Ivan Ivanov, Manol Ognyanov, Krastena Nikolova, Sevginar Ibryamova and Tsveteslava Ignatova-Ivanova
Appl. Sci. 2025, 15(8), 4091; https://doi.org/10.3390/app15084091 - 8 Apr 2025
Viewed by 1544
Abstract
The current study aims for the isolation and physicochemical characterization of inulin from defatted dandelion roots using green extraction techniques, including microwave extraction (MAE) and ultrasound-assisted extraction (UAE). The structure and degree of polymerization of inulin were elucidated by chromatographic techniques, as well [...] Read more.
The current study aims for the isolation and physicochemical characterization of inulin from defatted dandelion roots using green extraction techniques, including microwave extraction (MAE) and ultrasound-assisted extraction (UAE). The structure and degree of polymerization of inulin were elucidated by chromatographic techniques, as well as by FTIR and NMR spectroscopies. The color characteristics, water- and oil-holding capacity, solubility, swelling properties, wettability, angle of repose, flowability, and cohesiveness of dandelion inulin were evaluated. Moreover, the antioxidant and antibacterial potential of dandelion inulin were revealed. The results were compared with the conventional extraction and inulin from chicory. Dandelion inulin was evaluated as a powder substance with a degree of polymerization (DP) of 17–24. The highest yield (20%) was obtained by classical extraction; however, UAE and MAE demonstrated the highest purity. FT-IR and NMR spectra revealed that dandelion inulin is glucofructan with a molecular weight of 2.7–3.2 kDa that consists mainly of fructosyl units β-(2→1) linked to one α-D-glucose unit UAE was evaluated as the most perspective technique for the simultaneous extraction of inulin from dandelion roots, with the highest average DP 24 and high purity (82%), molecular mass, total fructose content, swelling index, and oil-holding capacity. Dandelion inulin exhibited intermediate cohesiveness, fair flowability, and moderate antimicrobial activity against Listeria monocytogenes 863 and Bacillus subtilis 6633. The physicochemical and functional properties of dandelion inulin reveal its future potential as an additive in food, cosmetic, and pharmaceutics formulations as a texture modifier, a fat replacer, and a drug carrier. Full article
(This article belongs to the Special Issue Novel Extraction Methods and Applications)
Show Figures

Figure 1

24 pages, 4225 KiB  
Article
Prediction of the Ecological Behavior of Burkholderia gladiolus in Fresh Wet Rice Noodles at Different Temperatures and Its Correlation with Quality Changes
by Mengmeng Li, Ke Xiong, Wen Jin and Yumeng Hu
Foods 2025, 14(8), 1291; https://doi.org/10.3390/foods14081291 - 8 Apr 2025
Viewed by 539
Abstract
Burkholderia gladioli pathovar cocovenenans (BGC) is a highly lethal foodborne pathogen responsible for outbreaks of food poisoning with the highest recorded mortality rates among bacterial foodborne illnesses in China. In this study, the ecological behavior of BGC and its Bongkrekic Acid (BA) production [...] Read more.
Burkholderia gladioli pathovar cocovenenans (BGC) is a highly lethal foodborne pathogen responsible for outbreaks of food poisoning with the highest recorded mortality rates among bacterial foodborne illnesses in China. In this study, the ecological behavior of BGC and its Bongkrekic Acid (BA) production dynamics in fresh wet rice noodles (FWRN) were investigated under isothermal conditions ranging from 4 °C to 37 °C. Growth kinetics were modeled using the Huang, Baranyi, and modified Gompertz primary models, with secondary models (Huang square root model and Ratkowsky square root model) describing the influence of temperature on growth parameters. Among these, the Huang–Huang model combination exhibited the best performance, with a root mean square error (RMSE) of 0.009 and bias factor (Bf) and accuracy factor (Af) values close to 1. Additionally, we examined the impact of BGC contamination on the quality attributes of FWRN, including pH, color (L*, a*, b*), hardness, and moisture content. The results indicated that BGC growth significantly increased pH and yellowing (b*) values, while changes in texture and moisture were less pronounced. A probabilistic model was further developed to predict BA production under various temperature scenarios, revealing that BA formation was most likely to occur between 24 °C and 30 °C. While this study provides valuable predictive tools for microbial risk assessment and quality control of FWRN, limitations include the exclusion of additional environmental factors such as oxygen and relative humidity, as well as the lack of direct investigation into the degradation behavior of BA. Future research will expand model parameters and include sensory evaluations and advanced microbiological analyses to enhance applicability under real-world storage and transportation conditions. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

Back to TopTop