Development of Texture-Modified Meat and Thickened Soup Combination for Oral Dysphagia Patients with Uniform Firmness and Solid Appearance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Procedure
2.2.1. Meat Treatment
Vacuum Papain Impregnation
Grinding and Enzyme Reconstitution
2.2.2. Thickened Soups
2.3. Texture Analysis
2.4. IDDSI Testing Methods
2.5. Statistical Analysis
3. Results and Discussion
3.1. Stage 1: Meat Softening
3.1.1. Vacuum Papain Impregnation
3.1.2. Grinding and Reconstitution
3.2. Stage 2: Thickened Soup
3.3. Texture Properties Comparison of TM Meat and TS
3.4. IDDSI Methods
3.5. Stage 3: Dish Texture
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022. Available online: https://population.un.org/wpp/ (accessed on 15 September 2024).
- Fernandes, J.M.; Araújo, J.F.; Vieira, J.M.; Pinheiro, A.C.; Vicente, A.A. Tackling Older Adults’ Malnutrition through the Development of Tailored Food Products. Trends Food Sci. Technol. 2021, 115, 55–73. [Google Scholar] [CrossRef]
- Εkonomou, S.; Hadnađev, M.; Gioxari, A.; Abosede, O.R.; Soe, S.; Stratakos, A.C. Advancing Dysphagia-Oriented Multi-Ingredient Meal Development: Optimising Hydrocolloid Incorporation in 3D Printed Nutritious Meals. Food Hydrocoll. 2024, 147, 109300. [Google Scholar] [CrossRef]
- Thiyagalingam, S.; Kulinski, A.; Thorsteinsdottir, B.; Shindelar, K.; Takahashi, P. Dysphagia in Older Adults. Mayo Clin. Proc. 2021, 96, 488–497. [Google Scholar] [CrossRef]
- Zarim, N.A.; Zainul Abidin, S.; Ariffin, F. Shelf Life Stability and Quality Study of Texture-Modified Chicken Rendang Using Xanthan Gum as Thickener for the Consumption of the Elderly with Dysphagia. Food Biosci. 2021, 42, 101054. [Google Scholar] [CrossRef]
- Cichero, J.A.Y. Adjustment of Food Textural Properties for Elderly Patients. J. Texture Stud. 2016, 47, 277–283. [Google Scholar] [CrossRef]
- IDDSI 2.0|Complete IDDSI Framework Detailed Definitions 2.0|2019. Available online: https://www.iddsi.org/images/Publications-Resources/DetailedDefnTestMethods/English/HR/V2DetailedDefnEnglish31july2019.pdf (accessed on 25 September 2024).
- Schmidt, H.; Komeroski, M.R.; Steemburgo, T.; de Oliveira, V.R. Influence of Thickening Agents on Rheological Properties and Sensory Attributes of Dysphagic Diet. J. Texture Stud. 2021, 52, 587–602. [Google Scholar] [CrossRef] [PubMed]
- Nishinari, K.; Takemasa, M.; Brenner, T.; Su, L.; Fang, Y.; Hirashima, M.; Yoshimura, M.; Nitta, Y.; Moritaka, H.; Tomczynska-Mleko, M.; et al. The Food Colloid Principle in the Design of Elderly Food. J. Texture Stud. 2016, 47, 284–312. [Google Scholar] [CrossRef]
- Funami, T. In Vivo and Rheological Approaches for Characterizing Food Oral Processing and Usefulness of Polysaccharides as Texture Modifiers—A Review. Food Hydrocoll. 2017, 68, 2–14. [Google Scholar] [CrossRef]
- Suebsaen, K.; Suksatit, B.; Kanha, N.; Laokuldilok, T. Instrumental Characterization of Banana Dessert Gels for the Elderly with Dysphagia. Food Biosci. 2019, 32, 100477. [Google Scholar] [CrossRef]
- Shen, D.; Zhang, M.; Bhandari, B.; Yu, D. Food Additives Manufacturing Processing for Elderly: Advancements, Issues, Prospective Solutions, and Future Direction. Food Bioprocess Technol. 2024, 17, 2998–3016. [Google Scholar] [CrossRef]
- Gallego, M.; Barat, J.M.; Grau, R.; Talens, P. Compositional, Structural Design and Nutritional Aspects of Texture-Modified Foods for the Elderly. Trends Food Sci. Technol. 2022, 119, 152–163. [Google Scholar] [CrossRef]
- Miles, A.; Liang, V.; Sekula, J.; Broadmore, S.; Owen, P.; Braakhuis, A.J. Texture-Modified Diets in Aged Care Facilities: Nutrition, Swallow Safety and Mealtime Experience. Australas. J. Ageing 2020, 39, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Zhang, M.; Mujumdar, A.S.; Li, J. Feasibility of Hydrocolloid Addition for 3D Printing of Qingtuan with Red Bean Filling as a Dysphagia Food. Food Res. Int. 2023, 165, 112469. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yin, J.; Wang, J.; Xu, X. Food for the Elderly Based on Sensory Perception: A Review. Curr. Res. Food Sci. 2022, 5, 1550–1558. [Google Scholar] [CrossRef]
- Grau, R.; Hernández, S.; Verdú, S.; Barat, J.M.; Talens, P. Studying Process Variables to Obtain Undisturbed Shaped Soft Meat for People with Poor Oral Health. Meat Sci. 2022, 194, 108960. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. Printability and textural assessment of modified-texture cooked beef pastes for dysphagia patients. Future Foods 2021, 3, 100006. [Google Scholar] [CrossRef]
- Liu, Q.; Duan, X.; Zhang, Y.; Liu, W.; Zhao, R.; Wang, Y.; Yao, J.; Hu, H. Potato Cubes for the Elderly with Dysphagia Designed through Freeze-Thaw Impregnation Technique: Effect of Enzymatic Hydrolysis. Innov. Food Sci. Emerg. Technol. 2024, 92, 103561. [Google Scholar] [CrossRef]
- Ribeiro, W.O.; Ozaki, M.M.; dos Santos, M.; Rodríguez, A.P.; Pflanzer, S.B.; Pollonio, M.A.R. Interaction between Papain and Transglutaminase Enzymes on the Textural Softening of Burgers. Meat Sci. 2021, 174, 108421. [Google Scholar] [CrossRef]
- Hernández, S.; Ribes, S.; Verdú, S.; Barat, J.M.; Talens, P.; Grau, R. Developing a Homogeneous Texture Dish by Combining Solid and Liquid Foodstuff Matrices. LWT 2022, 166, 113757. [Google Scholar] [CrossRef]
- Thakur, R.; Yadav, B.K.; Goyal, N. An Insight into Recent Advancement in Plant- and Algae-Based Functional Ingredients in 3D Food Printing Ink Formulations. Food Bioprocess Technol. 2023, 16, 1919–1942. [Google Scholar] [CrossRef]
- Gavahian, M.; Mousavi Khaneghah, A.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health Benefits of Olive Oil and Its Components: Impacts on Gut Microbiota Antioxidant Activities, and Prevention of Noncommunicable Diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- Moretto, Â.; Byruchko, R.T.; Modesto, E.C.; da Motta, A.S.; Friedrich, M.T.; Rezzadori, K. Effect of Olive Oil Replacement on Physicochemical, Technological, and Microbiological Properties of Buffalo Burger Modification. J. Food Process Preserv. 2020, 44, e14624. [Google Scholar] [CrossRef]
- Pematilleke, N.; Kaur, M.; Adhikari, B.; Torley, P.J. Instrumental Method for International Dysphagia Diet Standardisation Initiative’s (IDDSI) Standard Fork Pressure Test. J. Food Eng. 2022, 326, 111040. [Google Scholar] [CrossRef]
- Botinestean, C.; Hossain, M.; Mullen, A.M.; Kerry, J.P.; Hamill, R.M. The Influence of the Interaction of Sous-Vide Cooking Time and Papain Concentration on Tenderness and Technological Characteristics of Meat Products. Meat Sci. 2021, 177, 108491. [Google Scholar] [CrossRef]
- Brusewitz, G.H.; Yu, H. Back Extrusion Method for Determining Properties of Mustard Slurry. J. Food Eng. 1996, 27, 259–265. [Google Scholar] [CrossRef]
- Mazurkevičiūtė, A.; Matulytė, I.; Ivaškienė, M.; Žilius, M. Assessment of Physical, Mechanical, Biopharmaceutical Properties of Emulgels and Bigel Containing Ciclopirox Olamine. Polymers 2022, 14, 2783. [Google Scholar] [CrossRef]
- Dhillon, B.; Sodhi, N.S.; Kumari, S.; Kaur, A.; Sharma, S.; Khan, Z.S. Physico-Chemical, Antioxidant, Sensory and Electromyographic Analyses of Shrikhand (Flavored Strained Yoghurt) Formulated for Dysphagia Patients under IDDSI Levels 4 and 5. J. Food Meas. Charact. 2023, 17, 5535–5549. [Google Scholar] [CrossRef]
- Cichero, J.A.Y.; Lam, P.; Steele, C.M.; Hanson, B.; Chen, J.; Dantas, R.O.; Duivestein, J.; Kayashita, J.; Lecko, C.; Murray, J.; et al. Development of International Terminology and Definitions for Texture-Modified Foods and Thickened Fluids Used in Dysphagia Management: The IDDSI Framework. Dysphagia 2017, 32, 293–314. [Google Scholar] [CrossRef]
- Gagaoua, M.; Dib, A.L.; Lakhdara, N.; Lamri, M.; Botineştean, C.; Lorenzo, J.M. Artificial Meat Tenderization Using Plant Cysteine Proteases. Curr. Opin. Food Sci. 2021, 38, 177–188. [Google Scholar] [CrossRef]
- Hsiao, H.L.; Lou, J.H.; Wang, C.C.; Lai, Y.J.; Wu, S.J.; Hwu, Y.J. Effects of Tongue-Strengthening Exercise on Tongue Strength Reserve and Detraining Effects among Healthy Adults: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 6878. [Google Scholar] [CrossRef]
- Borges, A.L.d.F.; Velasco, L.C.; Ramos, H.V.L.; Imamura, R.; Roldão, P.M.A.d.C.; Petrillo, M.V.B.; Costa, C.C. Association between Dysphagia and Tongue Strength in Patients with Amyotrophic Lateral Sclerosis. Braz. J. Otorhinolaryngol. 2022, 88, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhu, Y.; Ye, T.; Nie, Y.; Jiang, S.; Lin, L.; Lu, J. Physicochemical Properties and Microstructure of Composite Surimi Gels: The Effects of Ultrasonic Treatment and Olive Oil Concentration. Ultrason. Sonochem. 2022, 88, 106065. [Google Scholar] [CrossRef]
- Ribeiro, W.O.; Ozaki, M.M.; dos Santos, M.; Rodríguez, A.P.; de Castro, R.J.S.; Sato, H.H.; Campagnol, P.C.B.; Pollonio, M.A.R. Improving the Textural and Nutritional Properties in Restructured Meat Loaf by Adding Fibers and Papain Designed for Elderly. Food Res. Int. 2023, 165, 112539. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, J.; Maes, E.; Thomas, A.; Wieliczko, R.; Grosvenor, A.; Haines, S.; Clerens, S.; Deb-Choudhury, S. Unlocking the Bioactivity of Meat Proteins: Comparison of Meat and Meat Hydrolysate via Simulated Gastrointestinal Digestion. J. Proteom. 2023, 273, 104806. [Google Scholar] [CrossRef]
- Hernández-Olivas, E.; Muñoz-Pina, S.; García-Hernández, J.; Andrés, A.; Heredia, A. Impact of Common Gastrointestinal Disorders in Elderly on in Vitro Meat Protein Digestibility and Related Properties. Food Biosci. 2022, 46, 101560. [Google Scholar] [CrossRef]
- Mitra, P.; Nepal, K.; Tavade, P. Effect of Whey and Soy Proteins Fortification on the Textural and Rheological Properties of Value-Added Yogurts. Appl. Food Res. 2022, 2, 100195. [Google Scholar] [CrossRef]
- Angioloni, A.; Collar, C. Small and Large Deformation Viscoelastic Behaviour of Selected Fibre Blends with Gelling Properties. Food Hydrocoll. 2009, 23, 742–748. [Google Scholar] [CrossRef]
- Merino, G.; Gómez, I.; Marín-Arroyo, M.R.; Beriain, M.J.; Ibañez, F.C. Methodology for Design of Suitable Dishes for Dysphagic People. Innov. Food Sci. Emerg. Technol. 2020, 64, 102383. [Google Scholar] [CrossRef]
- Lou, L.; Bilbao-Sainz, C.; Wood, D.; Rubinsky, B. Temperature Controlled Cryoprinting of Food for Dysphagia Patients. Innov. Food Sci. Emerg. Technol. 2023, 86, 103362. [Google Scholar] [CrossRef]
- Liu, Z.; Xing, X.; Mo, H.; Xu, D.; Hu, L.; Li, H.; Chitrakar, B. 3D Printed Dysphagia Diet Designed from Hypsizygus Marmoreus By-Products with Various Polysaccharides. J. Food Eng. 2023, 343, 111395. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, L.; Zhang, X.; Meng, T.; Liu, Z.; Chitrakar, B.; He, C. 3D-Printed Pea Protein–Based Dysphagia Diet Affected by Different Hydrocolloids. Food Bioprocess Technol. 2024, 17, 1492–1506. [Google Scholar] [CrossRef]
- Andersson, J.; Garrido-Bañuelos, G.; Bergdoll, M.; Vilaplana, F.; Menzel, C.; Mihnea, M.; Lopez-Sanchez, P. Comparison of Steaming and Boiling of Root Vegetables for Enhancing Carbohydrate Content and Sensory Profile. J. Food Eng. 2022, 312, 110754. [Google Scholar] [CrossRef]
- Li, M.; Ji, Q.; Cai, Z.; Zhang, S.; Shao, J.; Cai, W.; Liao, H. Polysaccharide Emulsion Gels for Dysphagia-Friendly Surimi-Based Diets: Development and Application. Food Res. Int. 2025, 217, 116774. [Google Scholar] [CrossRef] [PubMed]
- Pematilleke, N.; Kaur, M.; Adhikari, B.; Torley, P. Influence of Meat Texture on Oral Processing and Bolus Formation. J. Food Eng. 2020, 283, 110038. [Google Scholar] [CrossRef]
Components (%) | Pp0-O0-P0 | Pp0-O5-P0 | Pp0-O10-P0 | Pp1-O0-P0 | Pp1-O5-P0 | Pp1-O10-P0 | Pp0-O0-P0.2 | Pp0-O5-P0.2 | Pp0-O10-P0.2 | Pp1-O0-P0.2 | Pp1-O5-P0.2 | Pp1-O10-P0.2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Meat | 86 | 81 | 76 | 85 | 80 | 75 | 85.8 | 80.8 | 75.8 | 84.8 | 79.8 | 74.8 |
TG | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Salt | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Water | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Pea Protein | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
Olive Oil | 0 | 5 | 10 | 0 | 5 | 10 | 0 | 5 | 10 | 0 | 5 | 10 |
Papain | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, S.; Verdú, S.; Talens, P.; Grau, R. Development of Texture-Modified Meat and Thickened Soup Combination for Oral Dysphagia Patients with Uniform Firmness and Solid Appearance. Foods 2025, 14, 2462. https://doi.org/10.3390/foods14142462
Hernández S, Verdú S, Talens P, Grau R. Development of Texture-Modified Meat and Thickened Soup Combination for Oral Dysphagia Patients with Uniform Firmness and Solid Appearance. Foods. 2025; 14(14):2462. https://doi.org/10.3390/foods14142462
Chicago/Turabian StyleHernández, Sergio, Samuel Verdú, Pau Talens, and Raúl Grau. 2025. "Development of Texture-Modified Meat and Thickened Soup Combination for Oral Dysphagia Patients with Uniform Firmness and Solid Appearance" Foods 14, no. 14: 2462. https://doi.org/10.3390/foods14142462
APA StyleHernández, S., Verdú, S., Talens, P., & Grau, R. (2025). Development of Texture-Modified Meat and Thickened Soup Combination for Oral Dysphagia Patients with Uniform Firmness and Solid Appearance. Foods, 14(14), 2462. https://doi.org/10.3390/foods14142462