Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Composition of Fatty Acids in Deer Tallow
2.2. Degree of Hydrolysis and Acid Value
2.3. Vibrational Characterization of Functional Groups
2.4. Thermal Properties
2.5. Texture Properties
2.6. Color Parameters
2.7. The Relevance for Practice and the Limitations of the Study
2.7.1. Optimal Conditions for Enzymatic Modification and Utilization of Modified Fats
2.7.2. Limitations of the Study
2.7.3. Future Perspectives
3. Materials and Methods
3.1. Raw Material
3.2. Experiment Design and Statistical Analysis
3.3. Preparation and Enzymatic Modification of Red Deer Fat
3.4. Analytical Part
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AV | Acid value |
DH | Degree of hydrolysis |
DOE | Design of the experiment |
DSC | Differential scanning calorimetry |
FTIR | Fourier transform infrared spectroscopy |
IV | Iodine value |
MUFA | Monounsaturated fatty acid |
PUFA | Polyunsaturated fatty acid |
PV | Peroxide value |
SFA | Saturated fatty acid |
SV | Saponification value |
Tc | Crystallization temperature |
Tm | Melting temperature |
References
- Razmaitė, V.; Pileckas, V.; Šiukščius, A.; Juškienė, V. Fatty Acid Composition of Meat and Edible Offal from Free-Living Red Deer (Cervus elaphus). Foods 2020, 9, 923. [Google Scholar] [CrossRef]
- Demartini, E.; Vecchiato, D.; Tempesta, T.; Gaviglio, A.; Viganò, R. Consumer Preferences for Red Deer Meat: A Discrete Choice Analysis Considering Attitudes towards Wild Game Meat and Hunting. Meat Sci. 2018, 146, 168–179. [Google Scholar] [CrossRef]
- Mattiello, S. Welfare Issues of Modern Deer Farming. Ital. J. Anim. Sci. 2016, 8, 205–217. [Google Scholar] [CrossRef]
- Wiklund, E.; Manley, T.R.; Littlejohn, R.P.; Stevenson-Barry, J.M. Fatty Acid Composition and Sensory Quality of Musculus longissimus and Carcass Parameters in Red Deer (Cervus elaphus) Grazed on Natural Pasture or Fed a Commercial Feed Mixture. J. Sci. Food Agric. 2003, 83, 419–424. [Google Scholar] [CrossRef]
- Polak, T.; Rajar, A.; Gašperlin, L.; Žlender, B. Cholesterol Concentration and Fatty Acid Profile of Red Deer (Cervus elaphus) Meat. Meat Sci. 2008, 80, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Prates, J.A.M. The Role of Meat Lipids in Nutrition and Health: Balancing Benefits and Risks. Nutrients 2025, 17, 350. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F. Lawrie’s Meat Science, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2017; Available online: https://app.knovel.com/hotlink/toc/id:kpLMSE0011/lawries-meat-science/lawries-meat-science (accessed on 5 February 2025).
- Bartoň, L.; Bureš, D.; Kotrba, R.; Sales, J. Comparison of meat quality between eland (Taurotragus oryx) and cattle (Bos taurus) raised under similar conditions. Meat Sci. 2014, 96, 346–352. [Google Scholar] [CrossRef]
- Triumf, E.C.; Purchas, R.W.; Mielnik, M.; Maehre, H.K.; Elvevoll, E.; Slinde, E.; Egelandsdal, B. Composition and Some Quality Characteristics of the Longissimus lumborum Muscle of Reindeer in Norway Compared to Farmed New Zealand Red Deer. Meat Sci. 2012, 90, 122–129. [Google Scholar] [CrossRef]
- Phillip, L.E.; Oresanya, T.F.; St. Jacques, J. Fatty acid profile, carcass traits and growth rate of red deer fed diets varying in the ratio of concentrate: Dried and pelleted roughage, and raised for venison production. Small Rumin. Res. 2007, 71, 215–221. [Google Scholar] [CrossRef]
- Adenuga, B.M.; Biltes, R.; Villa, C.; Costa, J.; Spychaj, A.; Montowska, M.; Mafra, I. Unravelling red deer (Cervus elaphus) meat adulteration in gourmet foods by quantitative real-time PCR. Food Control 2025, 168, 110872. [Google Scholar] [CrossRef]
- Atanassova, V.; Apelt, J.; Reich, F.; Klein, G. Microbiological quality of freshly shot game in Germany. Meat Sci. 2008, 78, 414–419. [Google Scholar] [CrossRef]
- Shahidi, F. Bailey’s Industrial Oil and Fat Products, Volumes 1–6, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; Available online: https://app.knovel.com/hotlink/toc/id:kpBIOFPVE1/baileys-industrial-oil/baileys-industrial-oil (accessed on 8 February 2025).
- Salgado, C.A.; dos Santos, C.I.A.; Vanetti, M.C.D. Microbial Lipases: Propitious Biocatalysts for the Food Industry. Food Biosci. 2022, 45, 101509. [Google Scholar] [CrossRef]
- Angulo, M.; Márquez, M.C. A Green Technology Approach Using Enzymatic Hydrolysis to Valorize Meat Waste as a Way to Achieve a Circular Economy. Appl. Sci. 2023, 13, 8763. [Google Scholar] [CrossRef]
- Talbot, G. Reducing Saturated Fats in Foods; Woodhead Publishing: Cambridge, UK, 2011; Available online: https://app.knovel.com/hotlink/toc/id:kpRSFF0003/reducing-saturated-fats/reducing-saturated-fats (accessed on 10 February 2025).
- Truong, T.L.; Bhandari, C.; Prakash, B. ; Sangeeta. Dairy Fat Products and Functionality—Fundamental Science and Technology; Springer Nature: Cham, Switzerland, 2020; Available online: https://app.knovel.com/hotlink/toc/id:kpDFPFFST6/dairy-fat-products-functionality/dairy-fat-products-functionality (accessed on 10 February 2025).
- Marangoni, A.; Wright, A. Physical Properties of Fats and Oils. In Handbook of Functional Lipids; Akoh, C., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 135–162. Available online: https://www.taylorfrancis.com/reader/download/ad8bce1a-9f93-413d-8bda-325afa5b6a59/chapter/pdf?context=ubx. (accessed on 1 January 2005).
- Shahidi, F. (Ed.) Bailey’s Industrial Oil and Fat Products; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Bornscheuer, U.T. Enzymes in Lipid Modification. Annu. Rev. Food Sci. Technol. 2018, 9, 85–103. [Google Scholar] [CrossRef]
- Bustos-Baena, A.-S.; Quintana-Castro, R.; Sánchez-Otero, M.G.; Espinosa-Luna, G.; Mendoza-López, M.R.; Peña-Montes, C.; Oliart-Ros, R.M. Enantioselectivity Enhancement of a Geobacillus thermoleovorans CCR11 Lipase by Rational Design. Catalysts 2025, 15, 20168. [Google Scholar] [CrossRef]
- Filho, D.G.; Silva, A.G.; Guidini, C.Z. Lipases: Sources, Immobilization Methods, and Industrial Applications. Appl. Microbiol. Biotechnol. 2019, 103, 7399–7423. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.; Holmberg, K.; Watzke, H.; Leser, M.E.; Miller, R. Lipases at Interfaces: A Review. Adv. Colloid Interface Sci. 2009, 147–148, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Kontkanen, H.; Rokka, S.; Kemppinen, A.; Miettinen, H.; Hellström, J.; Kruus, K.; Marnila, P.; Alatossava, T.; Korhonen, H. Enzymatic and physical modification of milk fat: A review. Int. Dairy J. 2011, 21, 3–13. [Google Scholar] [CrossRef]
- Hasan, M.Y.; Saari, N.; Ismail, A.; Ghazali, H.M. Enzymatic Modification to Produce Health-Promoting Lipids from Fish Oils: Recent Trends. J. Funct. Foods 2020, 71, 104025. [Google Scholar]
- Zhou, J.; Lee, Y.-Y.; Mao, Y.; Wang, Y.; Zhang, Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods 2022, 11, 2400. [Google Scholar] [CrossRef]
- Castejón, N.; Señoráns, F.J. Enzymatic Modification to Produce Health-Promoting Lipids from Fish Oil, Algae and Other New Omega-3 Sources: A Review. New Biotechnol. 2020, 57, 45–54. [Google Scholar] [CrossRef]
- Mitsou, E.; Theocharí, I.; Gad, E.; Vassiliadi, E.; Karpenisioti, E.; Koulis, G.; Martakos, I.; Pissaridi, K.; Thomaidis, N.S.; Xenakis, A.; et al. Enzymatic Modification of Triglycerides in Conventional and Surfactant-Free microemulsions and in Olive Oil. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129170. [Google Scholar] [CrossRef]
- Meng, Z.; Geng, W.; Wang, X.; Liu, Y. Fat Crystal Migration and Aggregation and Polymorphism Evolution during the Formation of Granular Crystals in Beef Tallow and Palm Oil. J. Agric. Food Chem. 2013, 61, 12676–12682. [Google Scholar] [CrossRef]
- Arita-Merino, N.; van Valenberg, H.; Gilbert, E.P.; Scholten, E. Quantitative Phase Analysis of Complex Fats during Crystallization. Cryst. Growth Des. 2020, 20, 5193–5202. [Google Scholar] [CrossRef]
- Macridachis, J.; Bayés-García, L.; Calvet, T. Polymorphic Crystallization and Transformation Pathways of 1,2-Dipalmitoyl-3-Oleoyl-rac-Glycerol (PPO) during a Liquid–Solid–Liquid Journey. J. Therm. Anal. Calorim. 2025, 150, 187–199. [Google Scholar] [CrossRef]
- Smith, K.W.; Bhaggan, K.; Talbot, G.; van Malssen, K.F. Crystallization of Fats: Influence of Minor Components and Additives. J. Am. Oil Chem. Soc. 2011, 88, 1085–1101. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, Y.-F.; Jin, Q.-Z.; Huang, J.-H.; Song, Z.-H.; Wang, F.-Y.; Wang, X.-G. Characterization of Graininess Formed in All Beef Tallow-Based Shortening. J. Agric. Food Chem. 2010, 58, 11463–11470. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, D.; He, X.; Li, H.; Li, X.; Liao, Z.; Wang, Z. Study on Crystallization Kinetics of Dry Fractionation Products of Beef Tallow. Int. J. Food Eng. 2021, 17, 945–958. [Google Scholar] [CrossRef]
- Feiner, G. The Protein and Fat Content of Meat. In Meat Products Handbook: Practical Science and Technology; CRC Press: Boca Raton, FL, USA, 2006; pp. 3–32. [Google Scholar]
- Guillén, M.D.; Cabo, N. Infrared Spectroscopy in the Study of Edible Oils and Fats. J. Sci. Food Agric. 1997, 75, 1–11. [Google Scholar] [CrossRef]
- Rohman, A. Application of FTIR spectroscopy and chemometrics for authentication of meat and meat products: A review. J. Adv. Vet. Anim. Res. 2019, 6, 9–17. [Google Scholar] [CrossRef]
- Yang, H.; Irudayaraj, J.; Paradkar, M.M. Discriminant Analysis of Edible Oils and Fats by FTIR, FT-NIR and FT-Raman Spectroscopy. Food Chem. 2005, 93, 25–32. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M.O. Analysis of Agriculture and Food Products by Near Infrared Reflectance Spectroscopy; NIRSystems Inc.: Silver Spring, MD, USA, 1995. [Google Scholar]
- Rohman, A.; Ghazali, M.A.B.; Windarsih, A.; Irnawati, I.; Riyanto, S.; Yusof, F.M.; Mustafa, S. Comprehensive Review on Application of FTIR Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in Food Products. Molecules 2020, 25, 5485. [Google Scholar] [CrossRef] [PubMed]
- Guaratini, T.; Gianeti, M.D.; Campos, P.M.B.G.M. Stability of cosmetic formulations containing esters of Vitamins E and A: Chemical and physical aspects. Int. J. Pharm. 2006, 327, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Badruddoza, A.Z.M.; Yeoh, T.; Shah, J.C.; Walsh, T. Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. J. Pharm. Sci. 2023, 112, 1772–1793. [Google Scholar] [CrossRef]
- Ly, B.C.K.; Dyer, E.B.; Feig, J.L.; Chien, A.L.; Del Bino, S. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Investig. Dermatol. 2020, 140, 3–12.e1. [Google Scholar] [CrossRef]
- Brudzyńska, P.; Kurzawa, M.; Sionkowska, A.; Grisel, M. Antioxidant Activity of Plant-Derived Colorants for Potential Cosmetic Application. Cosmetics 2022, 9, 81. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, J.; Du, Y.; Cheng, J.; Wang, Y.; Zhang, Z. Texture and Volatile Profiles of Beef Tallow Substitute Produced by a Pilot-Scale Continuous Enzymatic Interesterification. Food Chem. 2023, 429, 136980. [Google Scholar] [CrossRef]
- Kowalska, M.; Woźniak, M.; Zbikowska, A.; Ivanišová, E.; Molik, A. Quality of Emulsions Containing Fat Blends Modified by Enzymatic Catalysis. Catalysts 2021, 11, 453. [Google Scholar] [CrossRef]
- Starčević, M.; Glamočlija, N.; Baltić, B.; Glišić, M.; Laudanović, M.; Krstić, M.; Bošković Cabrol, M. Nutritional Value of Wild-Harvested Game Meat of Fallow Deer (Dama dama), Red Deer (Cervus elaphus), and Roe Deer (Capreolus capreolus). Acta Vet. 2025, 75, 63–81. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Maggiolino, A.; Gallego, L.; Pateiro, M.; Serrano, M.P.; Domínguez, R.; García, A.; Landete-Castillejos, T.; De Palo, P. Effect of age on nutritional properties of Iberian wild red deer meat. J. Sci. Food Agric. 2019, 99, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Dodds, E.D.; McCoy, M.R.; Rea, L.D.; Kennish, J.M. Gas Chromatographic Quantification of Fatty Acid Methyl Esters: Flame Ionization Detection vs. Electron Impact Mass Spectrometry. Lipids 2005, 40, 419–428. [Google Scholar] [CrossRef]
- Amores, G.; Virto, M. Total and Free Fatty Acids Analysis in Milk and Dairy Fat. Separations 2019, 6, 14. [Google Scholar] [CrossRef]
- Teng, D.; Le, R.; Yuan, F.; Yang, J.; He, L.; Gao, Y. Optimization of enzymatic hydrolysis of chicken fat in emulsion by response surface methodology. J. Am. Oil Chem. Soc. 2009, 86, 485–494. [Google Scholar] [CrossRef]
- Alahmad, K.; Noman, A.; Xia, W.; Jiang, Q.; Xu, Y. Influence of the Enzymatic Hydrolysis Using Flavourzyme Enzyme on Functional, Secondary Structure, and Antioxidant Characteristics of Protein Hydrolysates Produced from Bighead Carp (Hypophthalmichthys nobilis). Molecules 2023, 28, 519. [Google Scholar] [CrossRef]
- Kapral-Piotrowska, J.; Strawa, J.W.; Jakimiuk, K.; Wiater, A.; Tomczyk, M.; Gruszecki, W.I.; Pawlikowska-Pawlęga, B. Investigation of the membrane localization and interaction of selected flavonoids by NMR and FTIR spectroscopy. Int. J. Mol. Sci. 2023, 24, 15275. [Google Scholar] [CrossRef] [PubMed]
- Sato, E.T.; Machado, N.; Araújo, D.R.; Paulino, L.C.; Martinho, H. Fourier transform infrared absorption (FTIR) on dry stratum corneum, corneocyte-lipid interfaces: Experimental and vibrational spectroscopy calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 249, 119218. [Google Scholar] [CrossRef] [PubMed]
- Monnier, G.; Frahm, E.; Luo, B.; Missal, K. Developing FTIR Microspectroscopy for the analysis of animal-tissue residues on stone tools. J. Archaeol. Method Theory 2018, 25, 1–44. [Google Scholar] [CrossRef]
- Novotná, T.; Mokrejš, P.; Pavlačková, J.; Gál, R. Study of Processing Conditions during Enzymatic Hydrolysis of Deer By-Product Tallow for Targeted Changes at the Molecular Level and Properties of Modified Fats. Int. J. Mol. Sci. 2024, 25, 4002. [Google Scholar] [CrossRef]
- Salimon, J.; Abdullah, B.M.; Salih, N. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil. Chem. Cent. J. 2011, 5, 67. [Google Scholar] [CrossRef]
- Pruchnik, H.; Włoch, A.; Gładkowski, W.; Grudniewska, A.; Chojnacka, A.; Krzemiński, M.; Rudzińska, M. Effect of Distigmasterol-Modified Acylglycerols on the Fluidity and Phase Transition of Lipid Model Membranes. Membranes 2022, 12, 11054. [Google Scholar] [CrossRef]
- Nusantoro, B.P.; Xanthina, M.; Kadivar, S.; Yanty, N.A.M.; Dewettinck, K. Enzymatic Interesterification of Lauric Fat Blends Formulated by Grouping Triacylglycerol Melting Points. J. Am. Oil Chem. Soc. 2016, 93, 1051–1062. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; del Mar Perez, M. Color Difference Thresholds in Dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef]
- ISO 1442:2023; Meat and Meat Products—Determination of Moisture Content—Reference Method. ISO: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/82664.html (accessed on 15 January 2025).
- ISO 5983-1:2005; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 1: Kjeldahl Method. ISO: Geneva, Switzerland, 2005. Available online: https://www.iso.org/standard/39145.html (accessed on 15 January 2025).
- ISO 1443:1973; Meat and Meat Products—Determination of Total Fat Content. ISO: Geneva, Switzerland, 1973.
- ISO 6884:2008; Animal and Vegetable Fats and Oils—Determination of Ash. ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/51415.html (accessed on 15 January 2025).
- ISO 660:2020; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/75594.html (accessed on 15 January 2025).
- ISO 3657:2023; Animal and Vegetable Fats and Oils—Determination of Saponification Value. ISO: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/85171.html (accessed on 15 January 2025).
- ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/71268.html (accessed on 17 January 2025).
- ISO 3961:2018; Animal and Vegetable Fats and Oils—Determination of Iodine Value. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/71868.html (accessed on 17 January 2025).
- Grömping, U. R Package DoE.base for Factorial Experiments. J. Stat. Softw. 2018, 85, 1–41. [Google Scholar] [CrossRef]
- Antony, J. Design of Experiments for Engineers and Scientists, 2nd ed.; Elsevier: London, UK, 2014; pp. 33–85. [Google Scholar]
- Ma, X.; Zhan, P.; Tian, H.; Wei, Z.; Wang, P. Effects of Different Enzymatic Hydrolyses of Mutton Tallow on the Aroma Characteristics of the Maillard Reaction of Xylose–Cysteine Based on GC-MS, E-Nose, and Statistical Analysis. Eur. J. Lipid Sci. Technol. 2020, 122, 1900212. [Google Scholar] [CrossRef]
- Ye, Y.; Ye, S.; Wanyan, Z.; Ping, H.; Xu, Z.; He, S.; Cao, X.; Chen, X.; Hu, W.; Wei, Z. Producing Beef Flavors in Hydrolyzed Soybean Meal-Based Maillard Reaction Products Participated with Beef Tallow Hydrolysates. Food Chem. 2022, 378, 132119. [Google Scholar] [CrossRef] [PubMed]
- ISO 12966-1:2014; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. ISO: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/52294.html (accessed on 20 May 2025).
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/72142.html (accessed on 20 May 2025).
- ISO 12966-3:2016; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 3: Preparation of Methyl Esters Using Sodium Methoxide. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/70249.html (accessed on 20 May 2025).
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/63503.html (accessed on 20 May 2025).
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society; AOCS: Champaign, IL, USA, 1998. [Google Scholar]
- Gao, Y.; Mao, J.; Meng, Z. Tracing Distribution and Interface Behavior of Water Droplets in W/O Emulsions with Fat Crystals. Food Res. Int. 2023, 163, 112215. [Google Scholar] [CrossRef]
- ISO 6321:2021; Animal and Vegetable Fats and Oils—Determination of Melting Point in Open Capillary Tubes (Slip Point). ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/81472.html (accessed on 2 March 2025).
- Glibowski, P.; Zarzycki, P.; Krzepkowska, M. The Rheological and Instrumental Textural Properties of Selected Table Fats. Int. J. Food Prop. 2008, 11, 678–686. [Google Scholar] [CrossRef]
- Chudy, S.; Bilska, A.; Kowalski, R.; Teichert, J. Color of milk and milk products in CIE L*a*b* space. Med. Weter. 2020, 76, 77–81. [Google Scholar] [CrossRef]
Fatty Acid | Amount [%] | Fatty Acid | Amount [%] | Fatty Acid | Amount [%] |
---|---|---|---|---|---|
C10:0 | 0.245 ± 0.036 | C15:1 | 6.362 ± 0.001 | C18:2 (n6) | 21.133 ± 0.057 |
C12:0 | 1.305 ± 0.039 | C16:0 | 35.551 ± 0.042 | C18:3 (n3) | 0.416 ± 0.041 |
C14:0 | 7.122 ± 0.011 | C16:1 | 0.349 ± 0.040 | ||
Unknown | 0.410 ± 0.008 | C17:0 | 0.993 ± 0.003 | Σ SFA | 66.64 |
C14:1 | 0.956 ± 0.002 | C18:0 | 20.898 ± 0.045 | Σ MUFA | 11.05 |
C15:0 | 0.528 ± 0.002 | C18:1 | 3.734 ± 0.024 | Σ PUFA | 21.55 |
Exp. No. | Factor A [%] | Factor B [h] | Acid Value [mg/g] | Degree of Hydrolysis [%] |
---|---|---|---|---|
1 | 10 | 2 | 84.29 ± 1.25 | 35.79 |
2 | 10 | 4 | 71.66 ± 2.41 | 30.43 |
3 | 10 | 6 | 81.98 ± 0.77 | 34.82 |
4 | 20 | 2 | 93.85 ± 0.95 | 39.85 |
5 | 20 | 4 | 109.23 ± 1.08 | 46.39 |
6 | 20 | 6 | 79.76 ± 0.22 | 33.87 |
7 | 30 | 2 | 79.74 ± 0.88 | 33.86 |
8 | 30 | 4 | 97.68 ± 0.14 | 41.48 |
9 | 30 | 6 | 115.54 ± 1.38 | 49.07 |
10 * | 20 | 4 | 3.41 ± 0.34 | 1.45 |
Pure red deer fat | – | – | 2.04 ± 0.09 | – |
Degree of Freedom | Sum of Squares | Mean Squares | p-Value | |
---|---|---|---|---|
Regression equation | DH = 27.85 + 0.389 A + 0.69 B | |||
Regression | 2 | 102.40 | 51.20 | 0.305 |
Factor A: amount of water [%] | 1 | 91.03 | 91.03 | 0.159 |
Factor B: time [h] | 1 | 11.37 | 11.37 | 0.590 |
Error | 6 | 211.16 | 35.19 | |
Total | 8 | 313.56 |
Reference Value [cm−1] | 700–900 | 1000–1200 | 1700–1750 | 2830–2850 | 2900–2950 |
---|---|---|---|---|---|
Molecular action | =C-H (cis) | C-O stretch | C=O stretch | C-H methylene stretch symmetric | C-H methylene stretch asymmetric |
Wavenumber [cm−1] | 721 | 1173 | 1739 | 2850 | 2916 |
Pure red deer fat | 0.088 | 0.234 | 0.245 | 0.224 | 0.289 |
1 | 0.075 | 0.110 | 0.104 | 0.154 | 0.192 |
2 | 0.079 | 0.119 | 0.117 | 0.162 | 0.203 |
3 | 0.073 | 0.108 | 0.108 | 0.159 | 0.199 |
4 | 0.076 | 0.102 | 0.098 | 0.158 | 0.198 |
5 | 0.071 | 0.094 | 0.091 | 0.153 | 0.191 |
6 | 0.078 | 0.114 | 0.115 | 0.163 | 0.207 |
7 | 0.101 | 0.122 | 0.118 | 0.183 | 0.230 |
8 | 0.071 | 0.104 | 0.099 | 0.175 | 0.225 |
9 | 0.056 | 0.080 | 0.086 | 0.149 | 0.192 |
10 * | 0.090 | 0.232 | 0.243 | 0.221 | 0.286 |
Exp. No. | Melting Point Capillary [°C] | DSC—Melting [°C] | Melting Enthalpy [mJ] | DSC—Crystallization [°C] | Crystallization Enthalpy [mJ] |
---|---|---|---|---|---|
1 | 36.98 ± 0.31 | 37.01 ± 0.07 | −200.9 ± 1.8 | 33.36 ± 0.26 | 52.7 ± 1.4 |
2 | 35.10 ± 0.28 | 36.53 ± 0.17 | −174.9 ± 1.0 | 34.29 ± 0.11 | 58.0 ± 1.5 |
3 | 36.03 ± 0.19 | 36.42 ± 0.07 | −172.7 ± 1.8 | 32.82 ± 0.01 | 60.9 ± 0.8 |
4 | 37.23 ± 0.08 | 36.75 ± 0.07 | −175.7 ± 0.5 | 33.11 ± 0.23 | 44.8 ± 0.4 |
5 | 36.48 ± 0.19 | 35.54 ± 0.02 | −213.8 ± 1.5 | 31.64 ± 0.08 | 53.7 ± 0.3 |
6 | 34.45 ± 0.09 | 34.53 ± 0.11 | −177.9 ± 0.9 | 30.77 ± 0.02 | 73.0 ± 0.3 |
7 | 36.90 ± 0.16 | 35.04 ± 0.14 | −192.0 ± 0.1 | 30.53 ± 0.02 | 49.0 ± 0.5 |
8 | 38.00 ± 0.25 | 39.77 ± 0.09 | −248.1 ± 0.7 | 32.01 ± 0.06 | 54.9 ± 0.2 |
9 | 37.13 ± 0.22 | 36.31 ± 0.08 | −246.8 ± 0.3 | 32.22 ± 0.03 | 30.4 ± 0.3 |
10 * | 44.63 ± 0.18 | 45.07 ± 0.10 | −290.6 ± 1.4 | 29.87 ± 0.02 | 89.7 ± 0.8 |
Pure red deer tallow | 44.68 ± 0.33 | 44.52 ± 0.11 | −288.1 ± 0.7 | 28.84 ± 0.24 | 84.2 ± 0.5 |
Degree of Freedom | Sum of Squares | Mean Squares | p-Value | |
---|---|---|---|---|
Regression equation | Crystallization = 35.29 − 0.0900 A − 0.250 B | |||
Regression | 2 | 6.360 | 3.1800 | 0.096 |
Factor A: amount of water [%] | 1 | 4.860 | 4.8600 | 0.059 |
Factor B: time [h] | 1 | 1.500 | 1.5000 | 0.243 |
Error | 6 | 5.369 | 0.8948 | |
Total | 8 | 11.729 | ||
Regression equation | Melting point = 36.77 + 0.0083 A − 0.117 B | |||
Regression | 2 | 0.3683 | 0.18417 | 0.945 |
Factor A: amount of water [%] | 1 | 0.0417 | 0.04167 | 0.913 |
Factor B: time [h] | 1 | 0.3267 | 0.32667 | 0.761 |
Error | 6 | 19.3117 | 3.21861 | |
Total | 8 | 19.6800 |
Exp. No. | Hardness [N] | Spreadability [N·m] | Stickiness [N] | Adhesiveness [N·m] |
---|---|---|---|---|
1 | 35.350 ± 2.159 | 27.111 ± 4.575 | 0.585 ± 0.195 | 0.014 ± 0.008 |
2 | 38.149 ± 2.336 | 30.903 ± 1.826 | 0.804 ± 0.237 | 0.020 ± 0.007 |
3 | 43.120 ± 3.611 | 33.900 ± 1.190 | 0.860 ± 0.228 | 0.024 ± 0.006 |
4 | 52.847 ± 3.394 | 40.967 ± 3.525 | 0.935 ± 0.074 | 0.044 ± 0.020 |
5 | 33.376 ± 5.446 | 25.931 ± 5.992 | 1.781 ± 0.674 | 0.101 ± 0.093 |
6 | 28.186 ± 5.401 | 20.740 ± 3.046 | 0.921 ± 0.479 | 0.022 ± 0.008 |
7 | 37.845 ± 3.215 | 30.046 ± 1.558 | 1.025 ± 0.506 | 0.027 ± 0.009 |
8 | 32.564 ± 1.238 | 25.191 ± 0.702 | 2.684 ± 1.097 | 0.249 ± 0.222 |
9 | 25.829 ± 1.284 | 18.129 ± 0.637 | 4.642 ± 0.986 | 0.154 ± 0.037 |
10 * | 23.691 ± 2.070 | 18.452 ± 2.376 | 1.510 ± 0.291 | 0.052 ± 0.039 |
Pure red deer fat | 21.384 ± 2.886 | 16.304 ± 2.353 | 1.604 ± 0.470 | 0.074 ± 0.062 |
Degree of Freedom | Sum of Squares | Mean Squares | p-Value | |
---|---|---|---|---|
Regression equation | Hardness = 52.78 − 0.338 A − 2.41 B | |||
Regression | 2 | 207.98 | 103.99 | 0.220 |
Factor A: amount of water [%] | 1 | 68.68 | 68.68 | 0.297 |
Factor B: time [h] | 1 | 139.30 | 139.30 | 0.155 |
Error | 6 | 316.43 | 52.74 | |
Total | 8 | 524.41 | ||
Regression equation | Spreadability = 42.74 − 0.309 A − 2.11 B | |||
Regression | 2 | 164.48 | 82.24 | 0.181 |
Factor A: amount of water [%] | 1 | 57.29 | 57.29 | 0.252 |
Factor B: time [h] | 1 | 107.19 | 107.19 | 0.134 |
Error | 6 | 214.17 | 35.70 | |
Total | 8 | 378.65 | ||
Regression equation | Stickiness = −1.72 + 0.1000 A + 0.325 B | |||
Regression | 2 | 8.535 | 4.2675 | 0.054 |
Factor A: amount of water [%] | 1 | 6.000 | 6.0000 | 0.039 * |
Factor B: time [h] | 1 | 2.535 | 2.5350 | 0.137 |
Error | 6 | 5.181 | 0.8634 | |
Total | 8 | 13.716 | ||
Regression equation | Adhesiveness = −0.0922 + 0.00633 A+ 0.0092 B | |||
Regression | 2 | 0.026083 | 0.013042 | 0.133 |
Factor A: amount of water [%] | 1 | 0.024067 | 0.024067 | 0.061 |
Factor B: time [h] | 1 | 0.002017 | 0.002017 | 0.530 |
Error | 6 | 0.027206 | 0.004534 | |
Total | 8 | 0.053289 |
Exp. No. | L* | a* | b* | ∆E* |
---|---|---|---|---|
1 | 90.13 ± 0.29 | –3.91 ± 0.03 | 13.02 ± 0.12 | 2.90 |
2 | 87.17 ± 0.93 | –2.65 ± 0.05 | 13.94 ± 0.35 | 5.55 |
3 | 88.80 ± 0.15 | –3.58 ± 0.02 | 9.11 ± 0.10 | 2.85 |
4 | 88.43 ± 0.17 | –3.51 ± 0.06 | 12.52 ± 0.19 | 3.66 |
5 | 89.07 ± 0.60 | –3.76 ± 0.07 | 10.67 ± 0.34 | 2.00 |
6 | 86.47 ± 0.50 | –2.82 ± 0.10 | 14.20 ± 0.60 | 5.40 |
7 | 85.52 ± 0.27 | –0.88 ± 0.10 | 15.42 ± 0.24 | 7.61 |
8 | 89.07 ± 0.67 | –4.16 ± 0.07 | 13.41 ± 0.69 | 3.28 |
9 | 89.98 ± 0.94 | –3.89 ± 0.20 | 12.33 ± 0.63 | 2.21 |
10 * | 89.17 ± 0.97 | –3.19 ± 0.14 | 7.33 ± 0.17 | 3.43 |
Pure red deer fat | 91.56 ± 0.24 | –3.70 ± 0.08 | 11.38 ± 0.16 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novotná, T.; Pavlačková, J.; Gál, R.; Šiška, L.; Fišera, M.; Mokrejš, P. Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications. Molecules 2025, 30, 3293. https://doi.org/10.3390/molecules30153293
Novotná T, Pavlačková J, Gál R, Šiška L, Fišera M, Mokrejš P. Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications. Molecules. 2025; 30(15):3293. https://doi.org/10.3390/molecules30153293
Chicago/Turabian StyleNovotná, Tereza, Jana Pavlačková, Robert Gál, Ladislav Šiška, Miroslav Fišera, and Pavel Mokrejš. 2025. "Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications" Molecules 30, no. 15: 3293. https://doi.org/10.3390/molecules30153293
APA StyleNovotná, T., Pavlačková, J., Gál, R., Šiška, L., Fišera, M., & Mokrejš, P. (2025). Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications. Molecules, 30(15), 3293. https://doi.org/10.3390/molecules30153293