Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,619)

Search Parameters:
Keywords = tension load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11036 KiB  
Article
Fatigue Performance Analysis of Weathering Steel Bridge Decks Under Residual Stress Conditions
by Wenye Tian, Ran Li, Tao Lan, Ruixiang Gao, Maobei Li and Qinyuan Liu
Materials 2025, 18(17), 3943; https://doi.org/10.3390/ma18173943 - 22 Aug 2025
Abstract
The growing use of weathering steel in bridge engineering has highlighted the increasing impact of fatigue damage caused by the combined effects of welding residual stress and vehicular loading. This study investigates the fatigue performance of Q500qENH weathering steel bridge decks by proposing [...] Read more.
The growing use of weathering steel in bridge engineering has highlighted the increasing impact of fatigue damage caused by the combined effects of welding residual stress and vehicular loading. This study investigates the fatigue performance of Q500qENH weathering steel bridge decks by proposing a coupled analysis method for residual stress and fatigue crack growth, utilizing collaborative simulations with Abaqus 2023 and Franc3D 7.0. An interaction model integrating welding-induced residual stress fields and dynamic vehicular loads is developed to systematically examine crack propagation patterns in critical regions, including the weld toes of the top plate and the weld seams of the U-ribs. The results indicate that the crack propagation rate at the top plate weld toe exhibits the most rapid progression, reaching the critical dimension (two-thirds of plate thickness) at 6.98 million cycles, establishing this location as the most vulnerable failure point. Residual stresses significantly amplify the stress amplitude under tension–compression cyclic loading, with life degradation effects showing 48.9% greater severity compared to pure tensile stress conditions. Furthermore, parametric analysis demonstrates that increasing the top plate thickness to 16 mm effectively retards crack propagation, while wheel load pressures exceeding 1.0 MPa induce nonlinear acceleration of life deterioration. Based on these findings, engineering countermeasures including welding defect control, optimized top plate thickness (≥16 mm), and wheel load pressure limitation (≤1.0 MPa) are proposed, providing theoretical support for fatigue-resistant design and maintenance of weathering steel bridge decks. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 9267 KiB  
Article
Tendon Profile Layout Impact on the Shear Capacity of Unbonded Post-Tensioned Prestressed Concrete Bridge I-Girders
by Swar I. Hasib, Assim M. Lateef and Omar Q. Aziz
Infrastructures 2025, 10(9), 222; https://doi.org/10.3390/infrastructures10090222 - 22 Aug 2025
Viewed by 232
Abstract
The main objective of this research is to investigate the impact of the tendon profile layout on the shear strength of unbonded post-tensioned prestressed concrete bridge I-girders. This study involves an experimental investigation where ten unbonded post-tensioned bridge girders are cast and subjected [...] Read more.
The main objective of this research is to investigate the impact of the tendon profile layout on the shear strength of unbonded post-tensioned prestressed concrete bridge I-girders. This study involves an experimental investigation where ten unbonded post-tensioned bridge girders are cast and subjected to four-point loads. The focus of the investigation is on the effect of different tendon profile layouts, including trapezoidal, parabolic, and harped shapes. The experimental results reveal that the shear behavior of the specimens progresses through three distinct stages: the elastic stage, the elastic–plastic stage, and the plastic stage, with all specimens ultimately failing due to shear. The results show that tendon profiles with higher eccentricity at the end of the beams (80 mm above the neutral axis) had the highest ultimate load capacity for each tendon profile shape, coupled with the largest deflection. Conversely, profiles with lower eccentricity (80 mm below the neutral axis) demonstrated the lower ultimate load capacity for each tendon profile shape and minimal deflection. Among the various tendon profile layouts that were tested, the specimen with the harped tendon profile (GF-1 HA) showed the highest ultimate load capacity, with an increasing rate of 17.52% in ultimate load and a 45.55% increase in ultimate deflection compared to the control beam (GF-1 ST) with a straight tendon profile. On the other hand, the harped tendon profile specimen (GF-1 HA) exhibited the lowest deflection among the various tendon profile shapes with an increasing rate of 5.7% in ultimate load deflection in comparison with the control beam (GF-1 ST) with a straight tendon profile. These improvements in stiffness, load capacity, and deflection are attributed to enhanced resistance, particularly at the supports. Consequently, the optimized tendon layouts offer an increase in the overall structural efficiency, leading to potential cost savings in bridge girder production. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

23 pages, 1642 KiB  
Article
Neuromuscular and Psychological Performance Monitoring During One Season in Spanish Marine Corps
by Beltrán Cáceres-Diego, Pedro E. Alcaraz and Cristian Marín-Pagán
J. Funct. Morphol. Kinesiol. 2025, 10(3), 324; https://doi.org/10.3390/jfmk10030324 - 21 Aug 2025
Viewed by 100
Abstract
Background: Training planning in military environments is complex due to diverse operational demands and constant exposure to stressors. When combined with high training volumes and insufficient recovery, this can result in physical and mental overload. Regular assessments are crucial to monitor the condition [...] Read more.
Background: Training planning in military environments is complex due to diverse operational demands and constant exposure to stressors. When combined with high training volumes and insufficient recovery, this can result in physical and mental overload. Regular assessments are crucial to monitor the condition of personnel and adjust training accordingly, though more research is needed to effectively track performance in real operational settings. Objectives: This study aims to monitor neuromuscular and psychological performance in relation to training load in a military school, addressing the research gap in tracking performance in operational settings. Methods: Overall, 27 marines (age: 27.9 ± 4.8 years; height: 178.1 ± 6.3 cm; weight: 79.1 ± 7.8 kg) were monitored over a 13-week academic-military training period to assess neuromuscular performance and psychological fatigue. Results: Laboratory tests included the countermovement jump (p = 0.002), isometric mid-thigh pull (p = 0.001), and handgrip strength for both dominant (p = 0.947) and non-dominant hands (p = 0.665). Field tests involved maximum pull-ups (p = 0.015), push-ups (p = 0.001), and the medicine ball throw (p = 0.334). Psychological evaluation via the POMS questionnaire showed the highest negative mood scores in Tension–Anxiety, Depression–Melancholia, and Fatigue–Inertia, while Vigor–Activity was the highest positive state. RESTQ-Sport results indicated total recovery was 68.9% greater than total stress. Conclusions: Despite improvements in some field tests, no significant neuromuscular gains were observed, likely due to excessive training loads, limited recovery, and sustained stress. Full article
(This article belongs to the Section Athletic Training and Human Performance)
Show Figures

Figure A1

23 pages, 17970 KiB  
Article
Strain Monitoring and Numerical Simulation Analysis of Nuclear Containment Structure During Containment Tests
by Xunqiang Yin, Weilong Yang, Junkai Zhang, Min Zhao and Jianbo Li
Sensors 2025, 25(16), 5197; https://doi.org/10.3390/s25165197 - 21 Aug 2025
Viewed by 175
Abstract
Strain monitoring during the service life of a nuclear containment structure is an effective means to evaluate whether the structure is operating safely. Due to the failure of embedded strain sensors, surface-mounted strain sensors should be installed on the outer wall of the [...] Read more.
Strain monitoring during the service life of a nuclear containment structure is an effective means to evaluate whether the structure is operating safely. Due to the failure of embedded strain sensors, surface-mounted strain sensors should be installed on the outer wall of the structure. However, whether the data from these substitute sensors can reasonably reflect the internal deformation behavior requires further investigation. To ensure the feasibility of the added strain sensors, a refined 3D model of a Chinese Pressurized Reactor (CPR1000) nuclear containment structure was developed in ANSYS 19.1 to study the internal and external deformation laws during a containment test (CTT). Solid reinforcement and cooling methods were employed to simulate prestressed cables and pre-tension application. The influence of ordinary steel bars in concrete was modeled using the smeared model, while interactions between the steel liner and concrete were simulated through coupled nodes. The model’s validity was verified against embedded strain sensor data recorded during a CTT. Furthermore, concrete and prestressed material parameters were refined through a sensitivity analysis. Finally, the variation law between the internal and external deformation of the containment structure was investigated under typical CTT loading conditions. Strain values in the wall thickness direction exhibited an essentially linear relationship. Near the equipment hatch, however, the strain distribution pattern was significantly influenced by the spatial arrangement of prestressed cables. Refined FEM and sensor systems are vital containment monitoring tools. Critically, surface-mounted strain sensors offer a feasible approach for inferring internal stress states and deformation behavior. This study provides theoretical support and a technical foundation for the safe assessment and maintenance of nuclear containment structures during operational service. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 3298 KiB  
Article
Synthesis of Niacin from 3-Cyanopyridine with Recombinant Escherichia coli Carrying afnitA Nitrilase in a Deep Eutectic Solvent System
by Jingyi Zhou, Bo Fan, Wenyan Fan and Yucai He
Catalysts 2025, 15(8), 794; https://doi.org/10.3390/catal15080794 - 20 Aug 2025
Viewed by 216
Abstract
Niacin is a compound with a wide range of applications in pharmaceuticals, healthcare, food nutrition, animal breeding, cosmetics, etc. A recombinant Escherichia coli carrying the afnitA nitrilase gene was created to transform 3-cyanopyridine into niacin in this work. After analyzing the viscosity, surface [...] Read more.
Niacin is a compound with a wide range of applications in pharmaceuticals, healthcare, food nutrition, animal breeding, cosmetics, etc. A recombinant Escherichia coli carrying the afnitA nitrilase gene was created to transform 3-cyanopyridine into niacin in this work. After analyzing the viscosity, surface tension, and Kamlet-Taft (K-T) parameters (π*, α, and β values) of certain deep eutectic solvents (DESs), Betaine:Acetic Acid (Betaine:AA) (1:2, mol/mol) was chosen as the bioreaction medium. Using response surface methodology (RSM), systematic biocatalytic optimization was performed. The optimum medium pH, cell loading, temperature, and DES (Betaine:AA) (1:2, mol/mol) dose were determined to be 7.75, 195 g/L, 44.24 °C, and 18.04 wt%. Under the optimized conditions, whole-cell catalysis facilitated the conversion of 3-cyanopyridine to niacin, achieving a high yield of 98.6% within 40 min. These results demonstrated that recombinant E. coli carrying the afnitA nitrilase gene may have practical value as a biocatalyst for the production of niacin, with promising prospects for future applications. Full article
Show Figures

Graphical abstract

23 pages, 2990 KiB  
Article
Self-Healing Asphalt Mixtures Meso-Modelling: Impact of Capsule Content on Stiffness and Tensile Strength
by Gustavo Câmara, Nuno Monteiro Azevedo and Rui Micaelo
Sustainability 2025, 17(16), 7502; https://doi.org/10.3390/su17167502 - 19 Aug 2025
Viewed by 235
Abstract
Capsule-based self-healing technologies offer a promising solution to extend pavement service life without requiring external activation. The effect of the capsule content on the mechanical behaviour of self-healing asphalt mixtures still needs to be understood. This study presents a numerical evaluation of the [...] Read more.
Capsule-based self-healing technologies offer a promising solution to extend pavement service life without requiring external activation. The effect of the capsule content on the mechanical behaviour of self-healing asphalt mixtures still needs to be understood. This study presents a numerical evaluation of the isolated effect of incorporating capsules containing encapsulated rejuvenators, at different volume contents, on the stiffness and strength of asphalt mixtures through a three-dimensional discrete-based programme (VirtualPM3DLab), which has been shown to predict well the experimental behaviour of asphalt mixtures. Uniaxial tension–compression cyclic and monotonic tensile tests on notched specimens are carried out for three capsule contents commonly adopted in experimental investigations (0.30, 0.75, and 1.25 wt.%). The results show that the effect on the stiffness modulus progressively increases as the capsule content grows in the asphalt mixture, with a reduction ranging from 4.3% to 12.3%. At the same time, the phase angle is marginally affected. The capsule continuum equivalent Young’s modulus has minimum influence on the overall rheological response, suggesting that the most critical parameter affecting asphalt mixture stiffness is the capsule content. Finally, while the peak tensile strength shows a maximum reduction of 12.4% at the highest capsule content, the stress–strain behaviour and damage evolution of the specimens remain largely unaffected. Most damaged contacts, which mainly include aggregate–mastic and mastic–mastic contacts, are highly localised around the notch tips. Contacts involving capsules remained intact during early and intermediate loading stages and only fractured during the final damage stage, suggesting a delayed activation consistent with the design of healing systems. The findings suggest that capsules within the studied contents may have a moderate impact on the mechanical properties of asphalt mixtures, especially for high-volume contents. For this reason, contents higher than 0.75 wt.% should be applied with caution. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

21 pages, 7376 KiB  
Article
Small-Rib-Height Perfobond Strip Connectors (SRHPBLs) in Steel–UHPC Composite Beams: Static Behavior Under Combined Tension–Shear Loads
by Feiyang Ma, Ruyu Shen, Bingxiong Xian, Guodong Wang, Shu Fang and Haibo Jiang
Buildings 2025, 15(16), 2892; https://doi.org/10.3390/buildings15162892 - 15 Aug 2025
Viewed by 362
Abstract
Steel–ultra-high-performance concrete (UHPC) composite beams with small-rib-height perfobond strip connectors (SRHPBLs) exhibited advantages of light weight and high bearing capacity, demonstrating the potential for applications of UHPC in bridge engineering. During service stages, the composite beams were usually under combined tension–shear loads, rather [...] Read more.
Steel–ultra-high-performance concrete (UHPC) composite beams with small-rib-height perfobond strip connectors (SRHPBLs) exhibited advantages of light weight and high bearing capacity, demonstrating the potential for applications of UHPC in bridge engineering. During service stages, the composite beams were usually under combined tension–shear loads, rather than pure shear loads. Nevertheless, there were research gaps in the static behavior of SRHPBLs embedded in UHPC under combined tension–shear loads, which limited their applications in practice. To address this issue, systematic experimental and theoretical analyses were conducted in the present study, considering the test variables of tension–shear ratio, row number, and strip number. It was demonstrated that the tension–shear ratio had less effect on ultimate shear strength, initial shear stiffness, and ultimate slip of SRHPBLs. When the tension–shear ratio was increased from 0 to 0.42, the shear capacity, initial shear stiffness, and slip at peak load of SRHPBLs decreased by 24.31%,19.02%, and 22.00%, respectively. However, increasing the row number and strip number significantly improved the shear performance of SRHPBLs. Compared to the single-row specimens, the shear capacity and initial shear stiffness of the three-row specimens increased by an average of 92.82% and 48.77%, respectively. The shear capacity and initial shear stiffness of the twin-strip specimens increased by an average of 103.84% and 87.80%, respectively, compared to the single-strip specimens. Finally, more accurate models were proposed to predict the shear–tension relationship and ultimate shear capacity of SRHPBLs embedded in UHPC under combined tension–shear loads. Full article
(This article belongs to the Special Issue UHPC Materials: Structural and Mechanical Analysis in Buildings)
Show Figures

Figure 1

13 pages, 3855 KiB  
Article
Capillary Flow Profile Analysis on Paper-Based Microfluidic Chips for Classifying Astringency Intensity
by Daesik Son, Junseung Bae, Chanwoo Park, Jihoon Song and Soo Chung
Sensors 2025, 25(16), 5068; https://doi.org/10.3390/s25165068 - 14 Aug 2025
Viewed by 353
Abstract
Astringency, a complex oral sensation resulting from interactions between mucin and polyphenols, remains difficult to quantify in portable field settings. Therefore, quantifying the aggregation through interactions can enable the classification of the astringency intensity, and assessing the capillary action driven by the surface [...] Read more.
Astringency, a complex oral sensation resulting from interactions between mucin and polyphenols, remains difficult to quantify in portable field settings. Therefore, quantifying the aggregation through interactions can enable the classification of the astringency intensity, and assessing the capillary action driven by the surface tension offers an effective approach for this purpose. This study successfully replicates tannic acid (TA)–mucin aggregation on a paper-based microfluidic chip and utilizes machine learning (ML) to analyze the resulting capillary flow dynamics. Aggregates formed by mixing mucin with TA solutions at three concentrations showed that higher TA levels led to greater aggregation, consequently reducing the capillary flow rates. The flow dynamics were consistently recorded using a smartphone mounted within a custom 3D-printed frame equipped with a motorized sample loading system, ensuring standardized experimental conditions. Among eight trained ML models, the support vector machine (SVM) demonstrated the highest classification accuracy at 95.2% in distinguishing the astringency intensity levels. Furthermore, fitting the flow data to a theoretical capillary flow equation allowed for the extraction of a single coefficient as an input feature, which achieved comparable classification performance, validating the simplified feature extraction strategy. This method was also feasible even with only a portion of the initial data. This approach is simple and cost-effective and can potentially be developed into a portable system, making it useful for field analysis of various liquid samples. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

13 pages, 324 KiB  
Article
Investigation of the Durability Issue in the Bending of a Thin-Walled Rod with Multimodular Properties
by Mehman Hasanov, Subhan Namazov, Khagani Abdullayev and Sahib Piriev
J. Compos. Sci. 2025, 9(8), 437; https://doi.org/10.3390/jcs9080437 - 14 Aug 2025
Viewed by 255
Abstract
This article investigates the problem of bending failure in a rectilinear thin-walled rod consisting of a multimodular material exhibiting different elastic properties in tension and compression, with applications to the structural design of space satellites, unmanned aerial vehicles, aeronautical systems, and nano- and [...] Read more.
This article investigates the problem of bending failure in a rectilinear thin-walled rod consisting of a multimodular material exhibiting different elastic properties in tension and compression, with applications to the structural design of space satellites, unmanned aerial vehicles, aeronautical systems, and nano- and micro-class satellites. Nonlinear differential equations have been formulated to describe the propagation of the failure front under transverse loading. Formulas for determining the incubation period of the failure process have been derived, and the problem has been solved. Based on the developed model, new analytical expressions have been obtained for the displacement of the neutral axis, the stiffness of the rod, the distribution of maximum stresses, and the motion of the failure front. The influence of key parameters—such as the singularity coefficient of the damage nucleus and the ratio of the elastic moduli—on the service life and failure dynamics of the rod has been analyzed. Using the obtained results, the effect of the multimodular properties on the long-term strength of thin-walled rods under pure bending has been thoroughly studied. The analysis of the constructed curves shows that an increase in the “fading of memory” (memory-loss) parameter, which characterizes the material’s ability to quickly “forget” previous loadings and return to equilibrium, can, in certain cases, lead to a longer service life. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

19 pages, 3924 KiB  
Article
Seismic Performance of Steel Structures with Base-Hinged Columns Under Rigidly and Flexibly Braced Systems
by Chenwei Shi, Chuntao Zhang, Renbing An and Yongxiang Cai
Buildings 2025, 15(16), 2881; https://doi.org/10.3390/buildings15162881 - 14 Aug 2025
Viewed by 232
Abstract
Steel structures with base-hinged columns are one of the typical forms adopted for rural housing in villages and towns due to their superior seismic resistance, energy efficiency, and environmental benefits. The lateral bracing system plays a crucial role in the ability of steel [...] Read more.
Steel structures with base-hinged columns are one of the typical forms adopted for rural housing in villages and towns due to their superior seismic resistance, energy efficiency, and environmental benefits. The lateral bracing system plays a crucial role in the ability of steel frames with base-hinged columns to resist horizontal forces. This study investigates the impact of rigid and flexible bracing on the seismic performance of such structures, emphasizing that enhanced ductility—particularly in flexibly braced frames—is essential for seismic resilience in earthquake-prone areas. Two full-scale steel frame models, one with rigid bracing and the other with flexible bracing, were fabricated based on typical rural housing designs and subjected to low-cycle reversed loading tests. The results indicate that the rigidly braced frame undergoes brittle failure, characterized by fractures and buckling at bracing intersections. In contrast, the flexibly braced frame exhibits ductile failure, identified by the bending deformation of tension rods. Despite the flexibly braced frame reaching a peak-load bearing capacity that is only 69.1% (positive direction) and 76.0% (negative direction) of the rigidly braced frame, it achieves ultimate displacements 2.7 times (positive direction) and 2.5 times (negative direction) greater. Additionally, the flexibly braced frame exhibits a stable energy dissipation capacity, with cumulative energy dissipation 1.49 times that of the rigidly braced frame. Numerical simulations were conducted to develop finite element models for both rigidly and flexibly braced frames. The resulting failure characteristics and bearing capacities of the frames were obtained, providing further validation of the experimental results. These findings provide data-supported evidence for promoting steel structures with base-hinged columns in rural housing applications. Full article
Show Figures

Figure 1

21 pages, 6270 KiB  
Article
Development of Formulas Predicting Bending Moments of Elastic–Plastic and Bi-Modular-Layered Particleboards
by Yan Wang, Samet Demirel, Wengang Hu, Franklin Quin, Jilei Zhang, Shunyao Sun and Xiaohong Yu
Forests 2025, 16(8), 1315; https://doi.org/10.3390/f16081315 - 12 Aug 2025
Viewed by 194
Abstract
Four mechanical models were proposed to derive formulas predicting the bending moment capacities of layered particleboard under simply supported center-loading. Experimental validation confirmed these models are effective tools for describing the bending moment development process, including proportional limit, yield, and ultimate points. With [...] Read more.
Four mechanical models were proposed to derive formulas predicting the bending moment capacities of layered particleboard under simply supported center-loading. Experimental validation confirmed these models are effective tools for describing the bending moment development process, including proportional limit, yield, and ultimate points. With predicted and experimental ratios ranging from 0.88 to 1.04, Model 4 can reasonably predict the ultimate bending moment capacity of elastic–plastic and bi-modular-layered particleboard materials. Photo-elastic testing revealed neutral axis shifting toward the compressive side, resulting from the face layer’s significantly higher mean modulus of elasticity in compression than in tension. Additionally, the core material above the centerline of PB thickness contributed to tensile resistance. The proposed mechanical models require inputs such as the tensile and compressive strengths and thickness of each layer, accounting for the asymmetric strength profile and neutral axis shifting. The main conclusion was that the bending moment resistance of the particleboard depends on the combined effect of tensile and compressive strengths of all layers. A 3D plot visualized the PB’s mechanical design space, displaying feasible tensile–compressive strength combinations of particleboard layers. This enables determination of optimal strength properties for each layer. For M2 grade particleboard, the most cost-effective design occurred when the face layer reached a 5.38 MPa tensile strength, with the compressive strength ranging between 13.00 and 18.59 MPa. Full article
Show Figures

Figure 1

16 pages, 6498 KiB  
Article
Near-Nozzle Atomization Characteristics in Air-Assisted Spraying: Integrated VOF-DPM Modeling and Experimental Validation
by Shiming Chen, Yu Zhang, Zhaojie Wu, Gang Fang, Yan Chen and Jimiao Duan
Coatings 2025, 15(8), 939; https://doi.org/10.3390/coatings15080939 - 11 Aug 2025
Viewed by 329
Abstract
Near-nozzle atomization characteristics in air-assisted spraying were investigated through a novel 3D transient model integrating Volume-of-Fluid and Large Eddy Simulation (VOF-DPM) methods, with experimental validation of droplet distributions (Malvern analyzer) and coating thickness profiles. Key findings reveal that (1) the spray field stabilizes [...] Read more.
Near-nozzle atomization characteristics in air-assisted spraying were investigated through a novel 3D transient model integrating Volume-of-Fluid and Large Eddy Simulation (VOF-DPM) methods, with experimental validation of droplet distributions (Malvern analyzer) and coating thickness profiles. Key findings reveal that (1) the spray field stabilizes within 30 mm downstream, achieving 80% atomization efficiency (droplets ≤ 100 μm) at 27.5 mm axial distance; (2) radial momentum originates dually from fan-shaped airflow (max 595 m/s) and transverse motion induced by central atomizing air entrainment—a previously unreported mechanism; (3) paint loading delays flow stabilization to 2.5 ms (vs. 0.7 ms for gas-only flow) while reducing peak axial velocity by 18%–22% due to gas–liquid momentum exchange; (4) auxiliary and fan airflows synergistically constrain dispersion, forming elliptical sprays with characteristic cone angles of 61.7° (short axis) and 99.1° (long axis). Significantly, surface tension plays a dual role in inhibiting droplet atomization while promoting ligament pinch-off at 8.1 mm breakup length. These results provide the first quantitative characterization of gas–liquid interactions in near-nozzle regions, enabling precise parameter control for enhanced coating uniformity on complex surfaces. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

22 pages, 2215 KiB  
Article
Energy Implications of Urban Shrinkage in China: Pathways of Population Dilution, Industrial Restructuring, and Consumption Inertia
by Xiu Yi, Hong Yi, Yaru Liu and Ming Wang
Sustainability 2025, 17(16), 7248; https://doi.org/10.3390/su17167248 - 11 Aug 2025
Viewed by 322
Abstract
The structural responsiveness of urban energy systems has emerged as a central challenge in the governance of shrinking cities. Urban shrinkage entails more than a redistribution of resources—it reflects deep tensions embedded in population spatial configuration, functional redundancy, and institutional inertia. To investigate [...] Read more.
The structural responsiveness of urban energy systems has emerged as a central challenge in the governance of shrinking cities. Urban shrinkage entails more than a redistribution of resources—it reflects deep tensions embedded in population spatial configuration, functional redundancy, and institutional inertia. To investigate the evolutionary trajectory and driving mechanisms of urban energy consumption (UEC) under the context of urban shrinkage, this study focuses on China, a country undergoing rapid internal regional transformation. Drawing on panel data from 281 cities between 2008 and 2021, the study integrates two-way fixed effects (TWFE) models, mediation analysis, and spatial econometric models to ensure the scientific rigor and robustness of the quantitative analysis. Contrary to the intuitive assumption that declining population leads to reduced energy loads, the results reveal a non-linear and asymmetric trajectory wherein per capita energy consumption increases alongside continued demographic decline. Mechanism decomposition further shows that declines in population density and the share of secondary industry suppress UEC through spatial dispersal and the retreat of energy-intensive sectors, respectively. In contrast, fiscal contraction and institutional path dependency collectively elevate the share of traditional energy consumption, reinforcing the structural inertia of UEC. This study illuminates the non-linear dynamics of energy system evolution under urban shrinkage and argues for a shift away from linear and target-driven governance paradigms toward governance frameworks that emphasize structural adaptation, distributive equity, and systemic resilience—thereby offering a theoretical and empirical foundation for multi-objective sustainable urban transitions. Full article
Show Figures

Figure 1

17 pages, 2744 KiB  
Article
Experimental Crack Width Quantification in Reinforced Concrete Using Ultrasound and Coda Wave Interferometry
by Noah Sträter, Felix Clauß, Mark Alexander Ahrens and Peter Mark
Materials 2025, 18(15), 3684; https://doi.org/10.3390/ma18153684 - 6 Aug 2025
Viewed by 366
Abstract
For the first time, comprehensive investigations into the tensile load-bearing behavior and crack formation of reinforced concrete based on ultrasound are presented. Uniaxial tensile tests are performed on reinforced concrete tension members equipped with embedded ultrasonic transducers. Key mechanical parameters across all ranges [...] Read more.
For the first time, comprehensive investigations into the tensile load-bearing behavior and crack formation of reinforced concrete based on ultrasound are presented. Uniaxial tensile tests are performed on reinforced concrete tension members equipped with embedded ultrasonic transducers. Key mechanical parameters across all ranges of tensile behavior are continuously quantified by recording ultrasonic signals and evaluated with coda wave interferometry. The investigations include member configurations of different lengths to cover different numbers of cracks. For reference, crack patterns and crack widths are analyzed using digital image correlation, while the strain in the reinforcement is monitored with distributed fiber optic sensors. For the first time, a direct proportional relationship between the relative velocity change in ultrasonic signals and crack widths is established in the ranges of crack formation and stabilized cracking. In the non-cracked state, linear correlations are found between the velocity change and the average strain, as well as the length of the specimens. The experimental results significantly enhance the general understanding of the phenomena related to ultrasonic signals in flexural reinforced concrete members, particularly concerning cracking in the tensile zone. Consequently, this study contributes to the broader objective of employing coda wave interferometry to evaluate the condition of infrastructure. Full article
Show Figures

Figure 1

21 pages, 2145 KiB  
Article
Assessment of Experimental Data and Analytical Method of Helical Pile Capacity Under Tension and Compressive Loading in Dense Sand
by Ali Asgari, Mohammad Ali Arjomand, Mohsen Bagheri, Mehdi Ebadi-Jamkhaneh and Yashar Mostafaei
Buildings 2025, 15(15), 2683; https://doi.org/10.3390/buildings15152683 - 30 Jul 2025
Cited by 1 | Viewed by 506
Abstract
This study presents the results of axial tension (uplift) and compression tests evaluating the capacity of helical piles installed in Shahriyar dense sand using the UTM apparatus. Thirteen pile load experiments involving single-, double-, or triple-helix piles with shaft diameters of 13 mm [...] Read more.
This study presents the results of axial tension (uplift) and compression tests evaluating the capacity of helical piles installed in Shahriyar dense sand using the UTM apparatus. Thirteen pile load experiments involving single-, double-, or triple-helix piles with shaft diameters of 13 mm were performed, including six compression tests and seven tension tests with different pitches (Dh =13, 20, and 25 mm). The tested helical piles with a helix diameter of 51 mm were considered, and the interhelix spacing approximately ranged between two and four times the helix diameter. Through laboratory testing techniques, the Shahriyar dense sand properties were identified. Alongside theoretical analyses of helical piles, the tensile and compressive pile load tests outcomes in dense sand with a relative density of 70% are presented. It was found that the maximum capacities of the compressive and tensile helical piles were up to six and eleven times that of the shaft capacity, respectively. With an increasing number of helices, the settlement reduced, and the bearing capacity increased. Consequently, helical piles can be manufactured in smaller sizes compared to steel piles. Overall, the compressive capacities of helical piles were higher than the tensile capacities under similar conditions. Single-helices piles with a pitch of 20 mm and double-helices piles with a pitch of 13 mm were more effective than others. Therefore, placing helices at the shallower depths and using smaller pitches result in better performance. In this study, when compared to values from the L1–L2 method, the theoretical method slightly underestimates the ultimate compression capacity and both overestimates and underestimates the uplift capacity for single- and double-helical piles, respectively, due to the individual bearing mode and cylindrical shear mode. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop