Energy Implications of Urban Shrinkage in China: Pathways of Population Dilution, Industrial Restructuring, and Consumption Inertia
Abstract
1. Introduction
2. Literature Review and Research Hypotheses
2.1. Theoretical Conceptions and Measurement of Urban Shrinkage
2.2. Integrating Urban Shrinkage into the Green Development Agenda
2.3. Research Hypotheses
3. Materials and Methods
3.1. Study Area
3.2. Research Design
3.3. Methodology
3.3.1. Linear Econometric Model
3.3.2. Spatial Econometric Model
3.4. Variable Selection and Data
3.4.1. Core Variables
3.4.2. Mediating Variables
3.4.3. Control Variables
3.4.4. Data Collection and Processing
4. Results and Analysis
4.1. Spatiotemporal Patterns of UEC and Urban Shrinkage
4.2. Driving Impacts of Urban Shrinkage on UEC
4.3. Mechanisms Underlying the Link Between Urban Shrinkage and UEC
4.4. Robustness Checks
5. Discussion
5.1. Structural Paradox Between Urban Shrinkage and Energy Transition
5.2. Policy Implications and Strategic Shifts
5.3. Limitations and Future Directions
6. Conclusions
- (1)
- The spatiotemporal pattern of urban shrinkage and UEC shows a typical asymmetric response of population decline and increased energy burden. UEC shows a generally slow upward trend, with acceleration before 2012 and after 2016, highly coupled with the stage of urban shrinkage. Spatially, high UEC areas gradually concentrate in shrinking cities in the central and western regions and Northeastern China, exhibiting a high degree of spatial co-occurrence.
- (2)
- The decline in population density becomes a structural pathway for UEC reduction, challenging the traditional assumption that high density equals high efficiency. While high density tends to improve energy efficiency in expanding cities, in shrinking cities, population evacuation leads to spatial functional degradation and service demand convergence, which reduces the energy load carried at the individual scale and thus compresses per capita energy consumption. This pathway indicates that density is not a one-dimensional energy-saving variable but rather a bidirectional mechanism factor constrained by the urban life cycle context.
- (3)
- The decline in the share of secondary industries has a significant energy-saving effect, essentially forming a structural channel through industrial exit. The trend of industrial hollowing out and de-industrialization during urban shrinkage reduces the proportion of energy-intensive manufacturing, thereby weakening the basis for UEC enhancement. However, this process also implies employment structure shocks and fiscal contraction risks, suggesting that industrial transformation should proceed in tandem with energy reduction.
- (4)
- The rise in the share of traditional energy consumption constitutes a key channel for UEC reinforcement, reflecting institutional energy lock-in trends. Under the dual pressure of fiscal constraints and technological stagnation, shrinking cities tend to rely on existing fossil energy infrastructure, forming path dependency on energy structures, which further increases UEC. This pathway reveals the institutional risks of high-carbon inertia, indicating that energy reduction is not just a technical process but also a matter of institutional reconstruction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.N.; Niu, Y.J.; Li, M.; Yu, Q.Y.; Chen, W. Spatial structure and carbon emission of urban agglomerations: Spatiotemporal characteristics and driving forces. Sustain. Cities Soc. 2022, 78, 103600. [Google Scholar] [CrossRef]
- Dik, A.; Sun, H.; Calautit, J.K.; Kutlu, C.; Boukhanouf, R.; Omer, S. Sustainable urban energy dynamics: Integrating renewable energy and electric vehicles in a European context. Energy Convers. Manag. 2025, 340, 119972. [Google Scholar] [CrossRef]
- UN. Cities and Pollution. Available online: https://www.un.org/en/climatechange/climate-solutions/cities-pollution (accessed on 30 July 2025).
- Zhao, W.M.; Gao, Y.J.; Tang, M.N.; Ma, A.H. Promoting or inhibiting? The impact of urban-rural integration on the green transformation of arable land utilization: Evidence from China’s major grain-producing regions. Ecol. Indic. 2025, 176, 113617. [Google Scholar] [CrossRef]
- Xu, N. How population aging promotes carbon emission reduction in Chinese cities: The chain mediating role of industrial upgrading and energy conservation. J. Environ. Manag. 2024, 354, 120434. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tian, C.S. Environmental regulation, manufacturing and producer services industrial co-agglomeration, and energy efficiency—Evidence from 282 Cities in China. Sustain. Energy Technol. Assess. 2025, 77, 104312. [Google Scholar] [CrossRef]
- Nong, K.S.; Sun, W.H.; Shen, L.; Sun, D.Q.; Lin, J.A. Future pathways for green hydrogen: Analyzing the nexus of renewable energy consumption and hydrogen development in Chinese cities. Renew. Energy 2024, 237, 121507. [Google Scholar] [CrossRef]
- Yu, T.S.; Li, L.; Li, T. Impact of shrinking cities on carbon emission efficiency in China. Sustainability 2025, 17, 3664. [Google Scholar] [CrossRef]
- Wang, H.C.; Xu, K.B. How city shrinkage affect public service provision for disadvantaged groups? Evidence from China. World Dev. 2025, 186, 106823. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.Q.; Zheng, C.G. The distribution characteristics and driving mechanism of vacant land in Chengdu, China: A perspective of urban shrinkage and expansion. Land Use Policy 2023, 132, 106812. [Google Scholar] [CrossRef]
- Zhao, X.C.; Nie, X.D. The impact of urban shrinkage on carbon emission intensity and its spatial spillover effects. Land 2025, 14, 975. [Google Scholar] [CrossRef]
- Mykhnenko, V. Smart shrinkage solutions? The future of present-day urban regeneration on the inner peripheries of Europe. Appl. Geogr. 2023, 157, 103018. [Google Scholar] [CrossRef]
- Chen, X.; Lang, W.; Yuan, Y.; Yan, G.H.; Hou, X. Conceptualizing the nexus between spatiotemporal shrinkage patterns of natural cities and driving mechanisms: Insights into urban shrinkage in Northeast China. Cities 2024, 152, 105179. [Google Scholar] [CrossRef]
- Yang, X.Y.; Liu, J.H.; Li, M.X. Transportation energy consumption decreases despite urban sprawl: Evidence from Chinese household survey. Cities 2024, 146, 104738. [Google Scholar] [CrossRef]
- Haase, A.; Rink, D.; Grossmann, K.; Bernt, M.; Mykhnenko, V. Conceptualizing urban shrinkage. Environ. Plan. A 2024, 46, 1519–1534. [Google Scholar] [CrossRef]
- Häußermann, H.; Siebel, W. Die schrumpfende Stadt und die Stadtsoziologie. Soziologische Stadtforsch. 1988, 29, 78–94. [Google Scholar]
- Mykhnenko, V.; Turok, I. East European cities—Patterns of growth and decline, 1960–2005. Int. Plan. Stud. 2008, 13, 311–342. [Google Scholar] [CrossRef]
- Ren, J.; Li, Y.; Zhang, J.Y.; Xu, H.; Hao, C.X. Does urban shrinkage equate to a decline in development levels?—Urban development measurement and influencing factors analysis. Environ. Impact Assess. Rev. 2024, 105, 107401. [Google Scholar] [CrossRef]
- Yang, W.Y.; Xu, Q.; Zhai, M.Y.; Chen, C.X.; Yi, S.G. Are different TOD circles oriented towards sustainability amidst urban shrinkage? Evidence from urban areas to suburbs in the Tokyo metropolitan area. J. Environ. Manag. 2024, 372, 123274. [Google Scholar] [CrossRef]
- Birch, K.; Mykhnenko, V. Varieties of neoliberalism? Restructuring in large industrially-dependent regions across Western and Eastern Europe. J. Econ. Geogr. 2009, 9, 355–380. [Google Scholar] [CrossRef]
- Lauf, S.; Haase, D.; Kleinschmit, B. The effects of growth, shrinkage, population aging and preference shifts on urban development—A spatial scenario analysis of Berlin, Germany. Land Use Policy 2016, 52, 240–254. [Google Scholar] [CrossRef]
- Yang, Y.X.; Zhang, J.; Tong, Y.; Liu, W.; Ma, Z.P. High-speed rail in shrinking cities: A weapon for downturn or a catalyst for change. Cities 2024, 155, 105483. [Google Scholar] [CrossRef]
- Luo, Y.; Fang, S.M.; Wu, H.; Zhou, X.W.; He, Z.; Gao, L.L. Spatial and temporal evolution of habitat quality and its shrinkage effect in shrinking cities: Evidence from Northeast China. Ecol. Indic. 2024, 161, 111919. [Google Scholar] [CrossRef]
- Zhang, L.S.; Qu, Y.B.; Cheng, K.M. Unveiling the urban form-environment relationship: Assessing the impact of urban shrinkage on carbon productivity in China. Urban Clim. 2025, 62, 102512. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.C.; Lin, K.F. The consequence of urban shrinkage: Investigation on the local fiscal revenue. Reg. Sci. Policy Prac. 2025, 17, 100188. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Woosnam, K.M.; Seomun, G. How studentification reshapes social vulnerability in urban Korea: Impressions based on regeneration and shrinkage. Habitat Int. 2024, 148, 103070. [Google Scholar] [CrossRef]
- Jin, W.L.; Wang, S.; Zhao, W.J. Urban-rural carbon emission differences in China’s urbanization: Spatial effects and influencing factors. Environ. Pollut. 2025, 366, 125423. [Google Scholar] [CrossRef]
- Xiao, H.J.; Duan, Z.Y.; Zhou, Y.; Zhang, N.; Shan, Y.L.; Lin, X.Y.; Liu, G.S. CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta. Appl. Energy 2019, 251, 113384. [Google Scholar] [CrossRef]
- Schwarz, K.; Berland, A.; Herrmann, D.L. Green, but not just? Rethinking environmental justice indicators in shrinking cities. Sustain. Cities Soc. 2018, 41, 816–821. [Google Scholar] [CrossRef]
- Augusto, B.; Coelho, S.; Rafael, S.; Coelho, M.C.; Ferreira, J. How does urban morphology impact cities air quality? A modelling study. Sci. Total Environ. 2025, 973, 179138. [Google Scholar] [CrossRef]
- Lauf, S.; Haase, D.; Kleinschmit, B. Linkages between ecosystem services provisioning, urban growth and shrinkage—A modeling approach assessing ecosystem service trade-offs. Ecol. Indic. 2014, 42, 73–94. [Google Scholar] [CrossRef]
- Erlwein, S.; Meister, J.; Wamsler, C.; Pauleit, S. Governance of densification and climate change adaptation: How can conflicting demands for housing and greening in cities be reconciled? Land Use Policy 2023, 128, 106593. [Google Scholar] [CrossRef]
- Shang, H.; Jiang, L.; Di, Y.H. Spatial connection strength and endogenous and exogenous interactive driving factors of carbon efficiency in China’s metropolitan areas with higher energy consumption. Energy 2024, 311, 133350. [Google Scholar] [CrossRef]
- Bozoklu, S.; Yilanci, V.; Gorus, M.S. Persistence in per capita energy consumption: A fractional integration approach with a Fourier function. Energy Econ. 2020, 91, 104926. [Google Scholar] [CrossRef]
- Romero-Ávila, D.; Omay, T. Convergence of per capita energy consumption around the world: New evidence from nonlinear panel unit root tests. Energy Econ. 2022, 111, 106062. [Google Scholar] [CrossRef]
- Yang, G.L.; Zhang, G.X.; Cao, D.Q.; Gao, X.L.; Wang, X.J.; Yang, S.W.; Jiang, P.S.; Zha, D.L.; Shan, Y.L. A comprehensive city-level final energy consumption dataset including renewable energy for China, 2005–2021. Sci. Data 2024, 11, 738. [Google Scholar] [CrossRef]
- BP. Statistical Review of World Energy. Available online: https://www.energyinst.org/statistical-review/resources-and-data-downloads (accessed on 31 July 2025).
- China Emission Accounts and Datasets. Available online: https://ceads.net/data/city/ (accessed on 31 July 2025).
- Cardinale, R.; Cardinale, I.; Zupic, I. The EU’s vulnerability to gas price and supply shocks: The role of mismatches between policy beliefs and changing international gas markets. Energy Econ. 2024, 131, 107383. [Google Scholar] [CrossRef]
- Voumik, L.C.; Rahman, M.H.; Rahman, M.M.; Ridwan, M.; Akter, S.; Raihan, A. Toward a sustainable future: Examining the interconnectedness among Foreign Direct Investment (FDI), urbanization, trade openness, economic growth, and energy usage in Australia. Reg. Sustain. 2023, 4, 405–415. [Google Scholar] [CrossRef]
- Pinar, M. Convergence in energy self-sufficiency: The role of renewable energy, fossil fuel rents, energy efficiency and gross domestic product per capita. Energy 2025, 326, 136285. [Google Scholar] [CrossRef]
- Sen, K.K.; Hosan, S.; Karmaker, S.C.; Chapman, A.J.; Saha, B.B. Environmental taxes and renewable energy consumption nexus: Role of environmental governance and technological innovation. Sustain. Futures 2025, 9, 100825. [Google Scholar] [CrossRef]
- Dong, X.Y.; Wang, C.; Zhang, F.; Zhang, H.W.; Xia, C.Q. China’s low-carbon policy intensity dataset from national- to prefecture-level over 2007–2022. Sci. Data 2024, 11, 213. [Google Scholar] [CrossRef] [PubMed]
- Yilanci, V.; Pata, U.K. Are shocks to ecological balance permanent or temporary? Evidence from LM unit root tests. J. Clean. Prod. 2020, 276, 124294. [Google Scholar] [CrossRef]
- Corakci, A.; Omay, T. Is there convergence in renewable energy deployment? Evidence from a new panel unit root test with smooth and sharp structural breaks. Renew. Energy 2023, 205, 648–662. [Google Scholar] [CrossRef]
- Janc, K.; Mazur, M.; Mazurek, D.; Jurkowski, W.; Wójcik, M. Hidden gateways to digital space—The spatial distribution of Wi-Fi networks in the context of demographic structure in rural areas. Appl. Geogr. 2025, 180, 103660. [Google Scholar] [CrossRef]
- Puntoon, W.; Tarkhamtham, P.; Tansuchat, R. The impacts of economic growth, industrial production, and energy consumption on CO2 emissions: A case study of leading CO2 emitting countries. Energy Rep. 2022, 8, 414–419. [Google Scholar] [CrossRef]
- Jiang, G.H.; Chen, F.Z.; Gu, M.Y. Supply chain digitization and energy resilience: Evidence from China. Energy Econ. 2025, 144, 108420. [Google Scholar] [CrossRef]
- Spinoni, M.; Porpora, M.G.; Muzii, L.; Grano, C. Pain severity and depressive symptoms in endometriosis patients: Mediation of negative body awareness and interoceptive self-regulation. J. Pain 2024, 25, 104640. [Google Scholar] [CrossRef]
- Wang, R.Y.; Cleland, C.L.; Weir, R.; McManus, S.; Martire, A.; Grekousis, G.; Bryan, D.; Hunter, R.F. Rethinking the association between green space and crime using spatial quantile regression modelling: Do vegetation type, crime type, and crime rates matter? Urban For. Urban Gree. 2024, 101, 128523. [Google Scholar] [CrossRef]
- Adorno, B.V.; Pereira, R.H.M.; Amaral, S. Combining spatial clustering and spatial regression models to understand distributional inequities in access to urban green spaces. Landsc. Urban Plan. 2025, 256, 105297. [Google Scholar] [CrossRef]
- Huang, D.L.; Xu, G.T.; Li, C.J.; Yang, S. Effects of high-tech industrial agglomeration and innovation on regional economic development in China: Evidence from spatial-temporal analysis and Spatial Durbin Model. Econ. Anal. Policy 2025, 86, 692–712. [Google Scholar] [CrossRef]
- Li, G.M.; Zhou, H.W.J.; Kang, J.; Shen, N.J.; Zhong, H.; Xu, S. Optimising urban office block morphologies with photovoltaic system integration: An energy-environment-economic evaluation under climate change scenarios. Energy Build. 2025, 330, 115318. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, Y.; Xing, J.; Zhou, C.Y. Urban planning priorities analysis based on urban heat risk supply-demand mismatch: A case study of Hangzhou, China. Sustain. Cities Soc. 2025, 130, 106502. [Google Scholar] [CrossRef]
- Eitan, A.; Hekkert, M.P. Locked in transition? Towards a conceptualization of path-dependence lock-ins in the renewable energy landscape. Energy Res. Soc. Sci. 2023, 130, 103316. [Google Scholar] [CrossRef]
- Wu, Z.P.; Tan, Y.D.; Fang, K.; Wu, X.; Ge, Y.; Chang, J. Scaling laws of energy metabolism in modern cities: Insights from biological metabolism. Energy Build. 2025, 332, 115421. [Google Scholar] [CrossRef]
- Yuan, D.L.; Hwang, J. Can smart city development alleviate urban shrinkage in the traditional urban development process? Cities 2025, 160, 105847. [Google Scholar] [CrossRef]
- Cotton, M.; Cooper, C.; Milner, J.; Towers, L. Hydrogen innovation and just transitions: Exploring sociotechnical configurations of energy futures in a post-industrial community. Energy Res. Soc. Sci. 2025, 127, 104181. [Google Scholar] [CrossRef]
- Cui, Q.; Zhang, Y.; Ma, H.; Zhang, K.; Peng, J.; Chen, Z.; Lin, P.; Lin, Z. How about electric vehicle? Sensing owners’ experiences and attitudes through online short video. Transp. Policy 2025, 167, 1–15. [Google Scholar] [CrossRef]
- Feng, H.; Guo, M.; Yu, L.; Huang, J.; Li, Q.; Xu, Z. Research on the spatiotemporal evolution characteristics of China’s charging stations. Sci. Total Environ. 2024, 955, 177239. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, N.; Wang, S.; Wen, M.; Chen, Z. Will carbon trading reduce spatial inequality? A spatial analysis of 200 cities in China. J. Environ. Manag. 2023, 325, 116402. [Google Scholar] [CrossRef]
Variable | Calculation | Symbol |
---|---|---|
Economic endowment | Ratio of regional GDP to resident population | EE |
Low-carbon policy | Quantified score of low-carbon policy intensity | LP |
Technological innovation | Share of scientific expenditure in regional GDP | TI |
Urbanization level | Proportion of urban population in total population | UL |
Foreign trade | Share of foreign direct investment in regional GDP | FT |
Variable | Unit | Mean | Max | Min | SD | Kurtosis |
---|---|---|---|---|---|---|
PEC | tons/person | 2.596 | 40.942 | 0.392 | 2.692 | 85.905 |
USI | — | −0.295 | 30.869 | −93.225 | 3.359 | 216.122 |
EE | CNY ten thousand | 4.941 | 22.495 | 0.360 | 3.177 | 6.732 |
LP | — | 65.528 | 195.250 | 0.000 | 44.055 | 2.570 |
TI | % | 0.260 | 6.310 | 0.013 | 0.263 | 94.393 |
UL | % | 54.157 | 100.000 | 13.140 | 15.995 | 2.991 |
FT | % | 1.642 | 13.164 | 0.000 | 1.702 | 6.778 |
PD | persons/km2 | 5.742 | 9.089 | 1.653 | 0.979 | 4.258 |
SSI | % | 46.530 | 90.972 | 11.317 | 11.145 | 3.605 |
STE | % | 93.318 | 99.952 | 73.567 | 5.441 | 3.104 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
USI | 0.0223 *** | 0.0129 *** | 0.0119 *** | 0.0105 *** | 0.0212 *** | 0.0167 *** |
(0.0037) | (0.0034) | (0.0034) | (0.0033) | (0.0037) | (0.0037) | |
EE | 0.1658 *** | 0.1109 *** | 0.1301 *** | 0.0942 *** | ||
(0.0084) | (0.0110) | (0.0056) | (0.0071) | |||
LP | 0.0007 *** | 0.0024 *** | 0.0008 *** | 0.0012 *** | ||
(0.0002) | (0.0007) | (0.0002) | (0.0004) | |||
TI | −0.3052 *** | −0.3330 *** | −0.4653 *** | −0.4984 *** | ||
(0.0609) | (0.0604) | (0.0578) | (0.0571) | |||
UL | 0.0049 ** | −0.0059 ** | 0.0108 *** | 0.0047 *** | ||
(0.0019) | (0.0025) | (0.0012) | (0.0015) | |||
FT | 0.0003 | 0.0085 | −0.0024 | −0.0001 | ||
(0.0110) | (0.0110) | (0.0072) | (0.0072) | |||
constant | 2.6025 *** | 2.0318 *** | 1.5493 *** | 1.9800 *** | 1.3356 *** | 1.5769 *** |
(0.0109) | (0.0373) | (0.0965) | (0.1248) | (0.0609) | (0.0783) | |
City-FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year-FE | No | Yes | No | Yes | No | Yes |
Winsorization | No | No | No | No | Yes | Yes |
Obs. | 3892 | 3892 | 3892 | 3892 | 3892 | 3892 |
R2 | 0.0101 | 0.1791 | 0.1847 | 0.2086 | 0.3085 | 0.3388 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Y = PD | Y = PEC | Y = SSI | Y = PEC | Y = STE | Y = PEC | |
USI | −0.0045 *** | 0.0120 *** | −0.0584 *** | 0.0123 *** | 0.0163 ** | 0.0094 *** |
(0.0004) | (0.0034) | (0.0218) | (0.0033) | (0.0073) | (0.0033) | |
PD | 0.3350 ** | |||||
(0.1569) | ||||||
SSI | 0.0313 *** | |||||
(0.0025) | ||||||
STE | 0.0670 *** | |||||
(0.0075) | ||||||
constant | 5.6841 *** | 0.0757 | 43.8502 *** | 0.6079 *** | 92.9970 *** | −4.2529 *** |
(0.0133) | (0.9008) | (0.8172) | (0.1640) | (0.2747) | (0.7079) | |
control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Obs. | 3892 | 3892 | 3892 | 3892 | 3892 | 3892 |
R2 | 0.1508 | 0.2096 | 0.6130 | 0.2418 | 0.7420 | 0.2258 |
Matrix | Test | Statistic | p Value |
---|---|---|---|
Geographical inverse distance | Moran’s I | 161.265 | 0.000 |
LM-spatial error | 3197.436 | 0.000 | |
robust LM-spatial error | 3742.457 | 0.000 | |
LM-spatial lag | 40.981 | 0.000 | |
robust LM-spatial lag | 586.002 | 0.000 | |
Economic–geographical nested | Moran’s I | 194.098 | 0.000 |
LM-spatial error | 4759.524 | 0.000 | |
robust LM-spatial error | 5375.588 | 0.000 | |
LM-spatial lag | 40.843 | 0.000 | |
robust LM-spatial lag | 656.907 | 0.000 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
SEM | SLM | SDM | SEM | SLM | SDM | |
USI | 0.0087 *** | 0.0094 *** | 0.0071 ** | 0.0061 ** | 0.0075 ** | 0.0074 ** |
(0.0031) | (0.0031) | (0.0030) | (0.0028) | (0.0029) | (0.0030) | |
control variables | Yes | Yes | Yes | Yes | Yes | Yes |
γ | 2.3143 *** | 5.1878 *** | ||||
(0.0031) | (0.0731) | |||||
μ | 2.0813 *** | 2.2004 *** | 5.2859 *** | 2.1291 *** | ||
(0.1164) | (0.0875) | (0.0692) | (0.0548) | |||
Matrix | Geographical inverse distance | Economic–geographical nested | ||||
Obs. | 3892 | 3892 | 3892 | 3892 | 3892 | 3892 |
R2 | 0.1334 | 0.0983 | 0.0892 | 0.1231 | 0.0178 | 0.0651 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, X.; Yi, H.; Liu, Y.; Wang, M. Energy Implications of Urban Shrinkage in China: Pathways of Population Dilution, Industrial Restructuring, and Consumption Inertia. Sustainability 2025, 17, 7248. https://doi.org/10.3390/su17167248
Yi X, Yi H, Liu Y, Wang M. Energy Implications of Urban Shrinkage in China: Pathways of Population Dilution, Industrial Restructuring, and Consumption Inertia. Sustainability. 2025; 17(16):7248. https://doi.org/10.3390/su17167248
Chicago/Turabian StyleYi, Xiu, Hong Yi, Yaru Liu, and Ming Wang. 2025. "Energy Implications of Urban Shrinkage in China: Pathways of Population Dilution, Industrial Restructuring, and Consumption Inertia" Sustainability 17, no. 16: 7248. https://doi.org/10.3390/su17167248
APA StyleYi, X., Yi, H., Liu, Y., & Wang, M. (2025). Energy Implications of Urban Shrinkage in China: Pathways of Population Dilution, Industrial Restructuring, and Consumption Inertia. Sustainability, 17(16), 7248. https://doi.org/10.3390/su17167248