Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (435)

Search Parameters:
Keywords = temporary water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4701 KB  
Article
Physiological and Biochemical Aspects in Physalis angulata L. Accessions Cultivated Under Water Deficit
by Robson de Jesus Santos, Marilza Neves do Nascimento, Romeu da Silva Leite, Gabriela Torres-Silva, Uasley Caldas De Oliveira, Aritana Alves da Silva, Maryelle Vanilla de Abreu Cerqueira and Gabrielly dos Santos Lima Oliveira
Horticulturae 2026, 12(2), 172; https://doi.org/10.3390/horticulturae12020172 - 30 Jan 2026
Viewed by 247
Abstract
Drought is the primary stress factor in semiarid environments. Consequently, selecting plant genetic resources capable of tolerating temporary periods of water scarcity, such as Physalis angulata, becomes essential. This study aimed to identify P. angulata accessions with potential for use under water [...] Read more.
Drought is the primary stress factor in semiarid environments. Consequently, selecting plant genetic resources capable of tolerating temporary periods of water scarcity, such as Physalis angulata, becomes essential. This study aimed to identify P. angulata accessions with potential for use under water deficit conditions by evaluating plant water status and physiological and biochemical responses. Five accessions, including two from Bahia (BA1 and BA2), Pará-PA, Rio de Janeiro-RJ, and Piauí-PI, were grown under well-watered and water deficit conditions. Relative water content, gas exchange parameters, and organic solute accumulation were assessed. All accessions exhibited changes in plant water status and reductions in CO2 assimilation, stomatal conductance, and leaf transpiration under water deficit. The accumulation of compatible solutes varied among accessions, with notable contrasts between Bahia accession 2 and Pará accession, particularly for total soluble sugars and reducing sugars. These findings highlight the complexity of the species and the distinct mechanisms underlying its response to limited water availability. Overall, gas exchange was the trait most sensitive to water restriction, followed by alterations in biochemical attributes. Therefore, the Physalis angulata accessions from Bahia accession 2 and Pará accession show potential for use under water-deficit conditions and could provide valuable insights, particularly through transcriptome analysis. Full article
Show Figures

Figure 1

19 pages, 1582 KB  
Article
Sticking Efficiency of Microplastic Particles in Terrestrial Environments Determined with Atomic Force Microscopy
by Robert M. Wheeler and Steven K. Lower
Microplastics 2026, 5(1), 6; https://doi.org/10.3390/microplastics5010006 - 9 Jan 2026
Viewed by 213
Abstract
Subsurface deposition determines whether soils, aquifers, or ocean sediment represent a sink or temporary reservoir for microplastics. Deposition is generally studied by applying the Smoluchowski–Levich equation to determine a particle’s sticking efficiency, which relates the number of particles filtered by sediment to the [...] Read more.
Subsurface deposition determines whether soils, aquifers, or ocean sediment represent a sink or temporary reservoir for microplastics. Deposition is generally studied by applying the Smoluchowski–Levich equation to determine a particle’s sticking efficiency, which relates the number of particles filtered by sediment to the probability of attachment occurring from an interaction between particles and sediment. Sticking efficiency is typically measured using column experiments or estimated from theory using the Interaction Force Boundary Layer (IFBL) model. However, there is generally a large discrepancy (orders of magnitude) between the values predicted from IFBL theory and the experimental column measurements. One way to bridge this gap is to directly measure a microparticle’s interaction forces using Atomic Force Microscopy (AFM). Herein, an AFM method is presented to measure sticking efficiency for a model polystyrene microparticle (2 μm) on a model geomaterial surface (glass or quartz) in environmentally relevant, synthetic freshwaters of varying ionic strength (de-ionized water, soft water, hard water). These data, collected over nanometer length scales, are compared to sticking efficiencies determined through traditional approaches. Force measurement results show that AFM can detect extremely low sticking efficiencies, surpassing the sensitivity of column studies. These data also demonstrate that the 75th to 95th percentile, rather than the mean or median force values, provides a better approximation to values measured in model column experiments or field settings. This variability of the methods provides insight into the fundamental mechanics of microplastic deposition and suggests AFM is isolating the physicochemical interactions, while column experiments also include physical interactions like straining. Advantages of AFM over traditional column/field experiments include high throughput, small volumes, and speed of data collection. For example, at a ramp rate of 1 Hz, 60 sticking efficiency measurements could be made in only a minute. Compared to column or field experiments, the AFM requires much less liquid (μL volume) making it effortless to examine the impact of solution chemistry (temperature, pH, ionic strength, valency of dissolved ions, presence of organics, etc.). Potential limitations of this AFM approach are presented alongside possible solutions (e.g., baseline correction, numerical integration). If these challenges are successfully addressed, then AFM would provide a completely new approach to help elucidate which subsurface minerals represent a sink or temporary storage site for microparticles on their journey from terrestrial to oceanic environments. Full article
(This article belongs to the Special Issue Microplastics in Freshwater Ecosystems)
Show Figures

Figure 1

11 pages, 1017 KB  
Proceeding Paper
Modelling of Open Circuit Cooling Systems Chemical Emissions to River Water via Blowdown Water and Their Impact on the Quality of Effluents Discharged
by Pavlo Kuznietsov, Olha Biedunkova, Alla Pryshchepa and Oleg Mandryk
Eng. Proc. 2025, 117(1), 22; https://doi.org/10.3390/engproc2025117022 - 8 Jan 2026
Viewed by 215
Abstract
Introduction: Open-circuit cooling systems (OCCSs), integral to many industrial processes, often release blowdown water containing elevated concentrations of treatment chemicals. These discharges, if uncontrolled, pose substantial risks to aquatic ecosystems and human health. This study addresses the environmental implications of chemical emissions from [...] Read more.
Introduction: Open-circuit cooling systems (OCCSs), integral to many industrial processes, often release blowdown water containing elevated concentrations of treatment chemicals. These discharges, if uncontrolled, pose substantial risks to aquatic ecosystems and human health. This study addresses the environmental implications of chemical emissions from OCCS blowdown through the development of a predictive model designed to estimate contaminant concentrations in receiving water bodies. Methods: The research employs a computational model based on mass-balance equations to simulate the dynamics of chemical emissions from blowdown water. It incorporates key operational variables, including flow rates, degradation rates, and evaporation characteristics. The model evaluates two chemical dosing strategies, continuous and fractional, and their resultant pollutant dispersal patterns in river systems. Validation was performed using empirical data from sulfuric acid (H2SO4) applications at a nuclear power plant between 2015 and 2022. Results: The model demonstrated strong agreement with observed sulfate ion concentrations in the receiving water body, confirming its predictive reliability. Continuous dosing resulted in stable levels of pollutants, while fractional dosing caused temporary peaks that did not exceed regulatory limits. Conclusion: The modeling of blowdown water reveals important implications for river water quality and suggests that current wastewater management practices may be insufficient, benefiting from the integration of predictive modeling for blowdown discharges in industrial settings. Full article
Show Figures

Figure 1

14 pages, 3332 KB  
Article
Effects of Cl and Acetic Acid Contents on the Corrosion Behavior of Al in SWAAT Environment
by On-Yu Ha, JunMo Sung, YeWon Han, JinMan Park and SeKwon Oh
Metals 2026, 16(1), 22; https://doi.org/10.3390/met16010022 - 26 Dec 2025
Viewed by 389
Abstract
This study quantitatively investigates the corrosion behavior of aluminum (Al1070) under salt water acetic acid test (SWAAT) conditions, focusing on the effects of chloride ions (Cl) and acetic acid (CH3COOH) concentration on the pitting corrosion. Potentiodynamic polarization tests showed [...] Read more.
This study quantitatively investigates the corrosion behavior of aluminum (Al1070) under salt water acetic acid test (SWAAT) conditions, focusing on the effects of chloride ions (Cl) and acetic acid (CH3COOH) concentration on the pitting corrosion. Potentiodynamic polarization tests showed that increasing Cl concentration caused a negative shift in corrosion potential (Ecorr) and an increase in corrosion current density (icorr), indicating accelerated passive film breakdown and enhanced pitting susceptibility. Immersion tests and SEM analysis revealed intensified surface discoloration, oxide formation, and crack propagation at higher Cl levels, confirming localized dissolution. The effect of acetic acid was evaluated for concentrations ranging from 0 to 2000 µL L−1. Higher acetic acid levels lowered solution pH and slightly increased Ecorr and elevated icorr while reducing ΔE(Epit − Ecorr), indicating increased localized corrosion susceptibility. SEM and 3D XCT analyses showed increased pit density, corrosion loss, and pitting showed temporary pit coalescence at intermediate concentrations. Mechanistically, the acidic SWAAT environment (pH 2.8–3.0) positions aluminum in the active corrosion region. Cl destabilizes the passive oxide layer, initiating pitting, while acetic acid promotes metal dissolution via hydrogen evolution reactions. Their combined action exerts a specific effect, accelerating localized corrosion through chemical oxide layer degradation. These results provide quantitative insights into aluminum corrosion under SWAAT conditions. They could inform the design of corrosion resistant materials and reliability assessments in industrial applications. Full article
Show Figures

Figure 1

23 pages, 6043 KB  
Article
Modified Polycaprolactone Films for Temporary Protection in Saline Conditions: A Preliminary Assessment
by Am Pris John, Sergio Santoro, Efrem Curcio, Pietro Argurio, Francesco Chidichimo, Salvatore Straface, Silvestro Antonio Ruffolo and Mauro Francesco La Russa
Polymers 2026, 18(1), 60; https://doi.org/10.3390/polym18010060 - 25 Dec 2025
Viewed by 610
Abstract
Saline archaeological artifacts are highly susceptible to deterioration caused by salt crystallization and moisture–material interactions, particularly in coastal archaeological contexts affected by saline water intrusion. This persistent challenge necessitates the development of temporary, low-impact protective materials capable of limiting saline ingress. The present [...] Read more.
Saline archaeological artifacts are highly susceptible to deterioration caused by salt crystallization and moisture–material interactions, particularly in coastal archaeological contexts affected by saline water intrusion. This persistent challenge necessitates the development of temporary, low-impact protective materials capable of limiting saline ingress. The present study reports on a preliminary assessment of modified polycaprolactone (PCL) films containing graphene oxide (GO) at 0.1%, 0.25%, and 0.5% to evaluate their potential as temporary barrier layers under saline stress conditions. Free-standing PCL/GO films were fabricated via solvent casting and exposed to natural Ionian seawater in a controlled laboratory incubation environment at 15 °C for up to 90 days, simulating early-stage saline exposure while controlling environmental variability and physical stress. Film behavior was evaluated through complementary surface, structural, mechanical, and permeability analyses. The findings indicate that GO content significantly influences surface wettability, microstructural evolution, and water transport properties. Low GO content (0.1%) enhanced barrier performance while maintaining structural integrity and controlled hydrolytic softening. In contrast, higher GO contents (0.25–0.5%) resulted in increased hydrophilicity, accelerated surface erosion, and greater mechanical degradation due to enhanced water uptake. Observed mass loss is attributed to early-stage hydrolysis rather than long-term biodegradation. This investigation is a material-level screening and does not represent a direct validation for conservation application. With superior stability and enhanced barrier properties, the optimized PCL/GO 0.1% film suggests significant potential for the protection of saline-affected archaeological materials. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Figure 1

23 pages, 10616 KB  
Article
Analysis of Sealing Characteristics of Hydraulic Clamping Flange Connection Mechanism
by Xiaofeng Liu, Qingchao Bu, Sitong Luan, Xuelian Cao, Yu Zhang, Chaoyi Mu, Junzhe Lin and Yafei Shi
Processes 2026, 14(1), 72; https://doi.org/10.3390/pr14010072 - 24 Dec 2025
Viewed by 466
Abstract
A novel hydraulically actuated uniform clamping flange connection mechanism is proposed to address the long-standing challenges in high-pressure natural gas flowmeter calibration, including cumbersome bolt-by-bolt assembly/disassembly, high leakage risk, and severe non-uniform gasket contact pressure associated with conventional multi-bolt flanges. Unlike traditional discrete [...] Read more.
A novel hydraulically actuated uniform clamping flange connection mechanism is proposed to address the long-standing challenges in high-pressure natural gas flowmeter calibration, including cumbersome bolt-by-bolt assembly/disassembly, high leakage risk, and severe non-uniform gasket contact pressure associated with conventional multi-bolt flanges. Unlike traditional discrete bolt loading, the proposed mechanism generates a continuous and actively adjustable circumferential clamping force via an integrated hydraulic annular piston, ensuring excellent sealing uniformity and rapid installation within minutes. A high-fidelity transient finite element model of the hydraulic clamping flange assembly is established, incorporating the nonlinear compression/rebound behavior of flexible graphite–stainless steel spiral-wound gaskets and one-way fluid–structure interaction under water hammer loading. Parametric studies reveal that reducing the effective clamping area to below 80% of the original design significantly intensifies stress concentration and compromises sealing integrity, while clamping force below 80% or above 120% of the nominal value leads to leakage or component overstress, respectively. Under steady 10 MPa pressurization, the flange exhibits a maximum stress of 150.57 MPa, a minimum gasket contact stress exceeding 30 MPa, and a rotation angle below 1°, demonstrating robust sealing performance. During a severe water hammer event induced by rapid valve closure, the peak flange stress remains acceptable at 140.41 MPa, while the minimum gasket contact stress stays above the critical sealing threshold (38.051 MPa). However, repeated water hammer cycles increase the risk of long-term gasket fatigue. This study introduces, for the first time, a hydraulic uniform-clamping flange solution that dramatically improves sealing reliability, installation efficiency, and operational safety in high-pressure flowmeter calibration and similar temporary high-integrity piping connections, providing crucial technical guidance for field applications. Full article
(This article belongs to the Topic Clean and Low Carbon Energy, 2nd Edition)
Show Figures

Figure 1

19 pages, 2921 KB  
Article
A Study of the Reservoir Protection Mechanism of Fuzzy-Ball Workover Fluid for Temporary Plugging in Low-Pressure Oil Well Workover Operations
by Fanghui Zhu, Lihui Zheng, Yibo Li, Mengdi Zhang, Shuai Li, Hongwei Shi, Jingyi Yang, Xiaowei Huang and Xiujuan Tao
Processes 2026, 14(1), 59; https://doi.org/10.3390/pr14010059 - 23 Dec 2025
Viewed by 302
Abstract
This study addresses the challenges of low-pressure oil well workover operations, namely, severe loss of water-based workover fluid, significant reservoir damage from conventional temporary plugging agents, and slow production recovery, by focusing on the yet-mechanistically unclear “fuzzy-ball workover fluid.” Laboratory experiments combined with [...] Read more.
This study addresses the challenges of low-pressure oil well workover operations, namely, severe loss of water-based workover fluid, significant reservoir damage from conventional temporary plugging agents, and slow production recovery, by focusing on the yet-mechanistically unclear “fuzzy-ball workover fluid.” Laboratory experiments combined with field data were used to evaluate its plugging performance and reservoir-protective mechanisms. In sand-filled tubes (diameter 25 mm, length 20–100 cm) sealed with the fuzzy-ball fluid, the formation’s bearing capacity increased by 3.25–18.59 MPa, showing a positive correlation with the plugging radius. Compatibility tests demonstrated that mixtures of crude oil and workover fluid (1:1) or crude oil, workover fluid, and water (1:1:1) held at 60 °C for 80 h exhibited only minor apparent viscosity reductions of 4 mPa·s and 2 mPa·s, respectively, indicating good stability. After successful plugging, a 1% ammonium persulfate solution was injected for 2 h to break the gel; permeability recovery rates reached 112–127%, confirming low reservoir damage and effective gel-break de-blocking. Field data from five wells (formation pressure coefficients 0.49–0.64) showed per-well fluid consumption of 33–83 m3 and post-workover liquid production index recoveries of 5.90–53.30%. Multivariate regression established mathematical relationships among bearing capacity, production index recovery, and fourteen geological engineering parameters, identifying the plugging radius as a key factor. Larger radii enhance both temporary plugging strength and production recovery without harming the reservoir, and they promote production by expanding the cleaning zone. In summary, the fuzzy-ball workover fluid achieves an integrated “high-efficiency plugging–low-damage gel-break–synergistic cleaning” mechanism, resolving the trade-off between temporary-plugging strength and production recovery in low-pressure wells and offering an innovative, environmentally friendly solution for the sustainable and efficient exploitation of oil–gas resources. Full article
(This article belongs to the Special Issue New Technology of Unconventional Reservoir Stimulation and Protection)
Show Figures

Figure 1

22 pages, 9688 KB  
Article
Effects of Changes in Environmental Factors on CO2 Partial Pressure in Mountainous River Systems
by Lisha Zhou, Zihan Wu, Hongwei Wang, Yong Li, Xiaobo Yang and Boya Su
Water 2026, 18(1), 12; https://doi.org/10.3390/w18010012 - 19 Dec 2025
Viewed by 477
Abstract
This study uses high-frequency monitoring across a river–barrier lake–reservoir continuum in the upper Minjiang River, southwestern China, to quantify the spatiotemporal dynamics and drivers of aquatic CO2 partial pressure (pCO2) and to identify the dominant controls under contrasting lotic and [...] Read more.
This study uses high-frequency monitoring across a river–barrier lake–reservoir continuum in the upper Minjiang River, southwestern China, to quantify the spatiotemporal dynamics and drivers of aquatic CO2 partial pressure (pCO2) and to identify the dominant controls under contrasting lotic and lentic conditions. River reaches were CO2-supersaturated throughout the year, with higher pCO2 in the wet season (mean 521 ppm) than in the dry season (421 ppm), indicating persistent CO2 evasion to the atmosphere. In contrast, the downstream canyon-type reservoir showed a pronounced seasonal reversal. During the wet season, surface-water pCO2 averaged 395 ppm, about 24% lower than that of the river and below atmospheric levels (~419 ppm); more than 55% of observations were undersaturated, with minima as low as 141–185 ppm, indicating temporary CO2-sink behavior. In the dry season, mean pCO2 increased to 563 ppm, exceeding both riverine and atmospheric levels and returning the reservoir to a CO2 source. The reservoir pCO2 variability was governed by the interaction of hydrology and metabolism: rising water levels and longer residence times likely enhanced CO2 accumulation from the decomposition of inundated organic matter, while warm temperatures, high light and monsoon-driven nutrient inputs promoted phytoplankton growth that removed dissolved CO2 and elevated dissolved oxygen, producing temporary sink behavior. In the river, short residence time and strong turbulence limited in-stream biological regulation, and pCO2 variability was mainly driven by catchment-scale carbon inputs along the elevation gradient. Overall, our results demonstrate that dam construction and impoundment can substantially modify carbon cycling in high-mountain rivers. Under specific conditions (warm water, sufficient nutrients, high algal biomass), lentic environments may strengthen photosynthetic CO2 uptake and temporarily transform typical riverine CO2 sources into sinks, with important implications for carbon-budget assessments and reservoir management in mountainous basins. Full article
(This article belongs to the Special Issue Research on the Carbon and Water Cycle in Aquatic Ecosystems)
Show Figures

Figure 1

24 pages, 35687 KB  
Article
End-to-End Modelling as a Non-Invasive Tool for Sustainable Risk Management After the Rupture of the Landslide Dam Along River Courses
by Massimo Mangifesta, Claudia Zito, Mirko Francioni, Luigi Guerriero, Diego Di Martire, Domenico Calcaterra, Corrado Cencetti, Antonio Pasculli, Francisco J. Mendez and Nicola Sciarra
Sustainability 2025, 17(24), 11195; https://doi.org/10.3390/su172411195 - 14 Dec 2025
Viewed by 363
Abstract
Debris flows represent a significant geohydrological hazard, impacting the surrounding environment and threatening human settlements by altering ecological equilibria. The formation of temporary, often unstable, natural dams that obstruct normal river flow and create secondary flood risks poses a complex and prolonged threat [...] Read more.
Debris flows represent a significant geohydrological hazard, impacting the surrounding environment and threatening human settlements by altering ecological equilibria. The formation of temporary, often unstable, natural dams that obstruct normal river flow and create secondary flood risks poses a complex and prolonged threat to the sustainable management of water resources. Non-invasive risk assessment and analysis tools are therefore essential for addressing this challenge effectively. In this context, this study uses an end-to-end numerical modelling approach validated on an actual river obstructed in past by a debris flow. The simulation focused on sustainable risk management after the landslide dam rupture. This computational methodology is a non-invasive technology that provides a fundamental alternative to costly and environmentally invasive field techniques for assessing the risk of complex river systems. Two separate numerical simulations were carried out using the HEC-RAS code. The first simulation used the integrated sediment transport module to quantify the dynamics of solid material deposition and dilution. The second simulation modelled secondary flooding scenarios using the dam break simulation module. The aim of integrating these non-invasive simulations is to analyse the interaction between the river and debris accumulation, understand the river’s natural regeneration capacity and determine the hydraulic response to sudden dam failure. These results are essential for geohydrological risk assessment and mitigation, thereby improving the effectiveness of prevention measures and systemic resilience against landslides. Full article
Show Figures

Figure 1

25 pages, 4852 KB  
Review
Research on Intelligent Development and Processing Technology of Crab Industry
by Zhi Qu, Changfeng Tian, Xuan Che, Zhijing Xu, Jun Chen and Xiyu He
Fishes 2025, 10(12), 639; https://doi.org/10.3390/fishes10120639 - 10 Dec 2025
Viewed by 972
Abstract
As an important component of the global fishery economy, the crab breeding and processing industry faces the dual challenges of sustainable development and technological upgrading. This paper first systematically analyzes the regional distribution and core biological characteristics of major global economic crab species, [...] Read more.
As an important component of the global fishery economy, the crab breeding and processing industry faces the dual challenges of sustainable development and technological upgrading. This paper first systematically analyzes the regional distribution and core biological characteristics of major global economic crab species, laying a foundation for the targeted design of processing technologies and equipment. Secondly, based on advances in crab processing technology, the industry is categorized into two systems: live crab processing and dead crab processing. Live crab processing has formed a full-chain technological system of “fishing–temporary rearing–depuration–grading–packaging”. Dead crab processing focuses on high-value utilization: high-pressure processing enhances the quality of crab meat; liquid nitrogen quick-freezing combined with modified atmosphere packaging extends shelf life; and biological fermentation and enzymatic hydrolysis facilitate the green extraction of chitin from crab shells. In terms of intelligent equipment application, sensor technology enables full coverage of aquaculture water quality monitoring, precise classification during processing, and vitality monitoring during transportation. Automation technology reduces labor costs, while fuzzy logic algorithms ensure the process stability of crab meat products. The integration of the Internet of Things (IoT) and big data analytics, combined with blockchain technology, enables full-link traceability of the “breeding–processing–transportation” chain. In the future, cross-domain technological integration and multi-equipment collaboration will be the key to promoting the sustainable development of the industry. Additionally, with the support of big data and artificial intelligence, precision management of breeding, processing, logistics, and other links will realize a more efficient and environmentally friendly crab industry model. Full article
Show Figures

Figure 1

31 pages, 705 KB  
Review
Microbial Biofertilizers for Salinity Stress Mitigation in Hydroponic Systems
by Prabhaharan Renganathan, Lira A. Gaysina and Edgar Omar Rueda-Puente
Curr. Issues Mol. Biol. 2025, 47(12), 1029; https://doi.org/10.3390/cimb47121029 - 10 Dec 2025
Viewed by 827
Abstract
Salinity accumulation is a critical abiotic constraint in hydroponic agriculture, particularly in recirculating systems, where limited leaching and nutrient cycling intensify ionic accumulation and increase the conductivity of nutrient solutions. Hydroponic crops are sensitive to osmotic and ionic stress, which leads to reduced [...] Read more.
Salinity accumulation is a critical abiotic constraint in hydroponic agriculture, particularly in recirculating systems, where limited leaching and nutrient cycling intensify ionic accumulation and increase the conductivity of nutrient solutions. Hydroponic crops are sensitive to osmotic and ionic stress, which leads to reduced water uptake, disrupted nutrient homeostasis, and yield loss. Traditional mitigation strategies, such as nutrient dilution, flushing, and water blending, provide temporary relief while increasing operational costs, nutrient discharge, and water consumption. Microbial biofertilizers, including plant growth-promoting bacteria, fungi, and microalgae, offer a sustainable approach for enhancing salinity resilience. These microorganisms influence root zone processes through mechanisms such as ion transport regulation, exopolysaccharide-mediated Na+ immobilization, osmolyte accumulation, antioxidant enhancement, phytohormonal modulation, and siderophore-mediated micronutrient mobilization. This review (i) summarizes the physiological, microbial, and system-level drivers of salinity stress in hydroponics, (ii) synthesizes evidence for microbial inoculation in saline solutions, and (iii) identifies research gaps related to formulation stability, disinfection compatibility, and commercial-scale validation. We address advances in hydroponic microbiology, emphasizing optimized delivery systems, including encapsulated formulations, consortium-based inoculation, and system-specific strategies to support microbial colonization in soilless environments. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

33 pages, 4694 KB  
Review
Hydrogels as Reversible Adhesives: A Review on Sustainable Design Strategies and Future Prospects
by Monica Tonelli and Massimo Bonini
Colloids Interfaces 2025, 9(6), 84; https://doi.org/10.3390/colloids9060084 - 8 Dec 2025
Cited by 1 | Viewed by 1525
Abstract
Reversible adhesives enable temporary yet robust bonding between surfaces, allowing controlled detachment without structural or interfacial damage. This capability is gaining increasing recognition as a crucial requirement for sustainable technologies, where repairability, reusability, and minimal waste are key objectives. Among the diverse strategies [...] Read more.
Reversible adhesives enable temporary yet robust bonding between surfaces, allowing controlled detachment without structural or interfacial damage. This capability is gaining increasing recognition as a crucial requirement for sustainable technologies, where repairability, reusability, and minimal waste are key objectives. Among the diverse strategies explored for reversible adhesion (including supramolecular assemblies, bioinspired dry adhesives, and stimuli-responsive polymers), hydrogel-based systems have emerged as particularly versatile candidates due to their tunable mechanics, elasticity, and intrinsic biocompatibility. Recent studies highlight the use of renewable or biodegradable polymers to develop sustainable, water-rich hydrogel networks with controllable adhesive properties, minimizing environmental impact while maintaining performance. Despite these advances, significant challenges still hinder full implementation: biopolymer-based systems such as chitosan or starch often exhibit strong but poorly controllable adhesion, compromising reversibility and reusability. This review provides a comprehensive overview of strategies for developing hydrogel-based reversible adhesives, focusing on sustainable material selection, molecular design principles, and the underlying mechanisms of bonding and debonding. Furthermore, characterization methodologies, from conventional mechanical testing to surface-sensitive and dynamic techniques, are discussed in detail to establish structure–property–function relationships. Finally, emerging directions and application opportunities are outlined, offering a framework for the rational design of next-generation, sustainable adhesive systems. Full article
(This article belongs to the Section Application of Colloids and Interfacial Aspects)
Show Figures

Graphical abstract

16 pages, 5421 KB  
Article
Episodic Ponds as Overlooked Temporary Habitats: The Case of Lago Montagna in Sicily
by Dario Salemi, Rosi De Luca, Vincenzo Ilardi, Teresa Napolitano and Angelo Troia
Diversity 2025, 17(12), 843; https://doi.org/10.3390/d17120843 - 6 Dec 2025
Viewed by 2074
Abstract
In Sicily, many natural water bodies were reclaimed over the last two centuries for malaria control and agricultural expansion, causing widespread habitat loss. Some of these former ponds (still locally called “lakes”) reappear occasionally after extreme rainfall, temporarily restoring aquatic habitats but remaining [...] Read more.
In Sicily, many natural water bodies were reclaimed over the last two centuries for malaria control and agricultural expansion, causing widespread habitat loss. Some of these former ponds (still locally called “lakes”) reappear occasionally after extreme rainfall, temporarily restoring aquatic habitats but remaining poorly documented. We confirm the occurrence of such episodic ponds in central Sicily (Sommatino–Riesi) and present one of these ponds (Lago Montagna) as a case study. Combining satellite observations with field surveys conducted during a spring 2025 inundation, we document repeated episodes of flooding and a remarkable aquatic flora, including charophytes and other taxa of conservation interest. Episodic inundation events, therefore, act as transient refugia and stepping stones for regional biodiversity within an otherwise dry landscape. Because these systems commonly escape routine monitoring and legal protection, we argue they should be explicitly recognized in regional conservation planning and long-term monitoring programs. Moreover, the integrated remote-sensing approach used here allows the detection of overlooked temporary wetland ecosystems and provides fine-scale hydrological insights often missed by sparse weather station networks or satellite-derived rainfall data. Full article
(This article belongs to the Special Issue Restoring and Conserving Biodiversity: A Global Perspective)
Show Figures

Graphical abstract

16 pages, 2381 KB  
Article
Effects of Forest Thinning on Water Yield and Runoff Components in Headwater Catchments of Japanese Cypress Plantation
by Ibtisam Mohd Ghaus, Nobuaki Tanaka, Takanori Sato, Moein Farahnak, Yuya Otani, Anand Nainar, Mie Gomyo and Koichiro Kuraji
Water 2025, 17(24), 3461; https://doi.org/10.3390/w17243461 - 5 Dec 2025
Viewed by 643
Abstract
Forests play a key role in sustaining global water cycles by regulating precipitation partitioning, which in turn influences both water yield and ecosystem stability. Thinning is a silvicultural tool used to improve forest plantation productivity, but it is increasingly recognized as a means [...] Read more.
Forests play a key role in sustaining global water cycles by regulating precipitation partitioning, which in turn influences both water yield and ecosystem stability. Thinning is a silvicultural tool used to improve forest plantation productivity, but it is increasingly recognized as a means for water resource management. This study investigated hydrological changes following 40% thinning of tree density with contour-aligned log placement in paired headwater catchments of a Japanese cypress forest. Annual runoff in the treated catchment was 108.7 mm above the pre-thinning baseline in the thinning year (2020), followed by smaller increases of 99.7 mm, 43.7 mm, and 0.4 mm in 2021 to 2023, after which annual yields effectively returned to pre-thinning levels. Despite these temporary increases, peak discharge and storm quickflow metrics remained within the pre-thinning range. Flow duration curve analysis revealed a sustained enhancement of low-flow discharge and baseflow throughout the post-thinning period, indicating improved low-flow resilience without increased stormflow risk. These findings demonstrate that moderate thinning combined with contour felled logs can enhance water availability in plantation forests while maintaining flood protection. They also highlight the need for long-term, multi-site studies to test the persistence and generality of these low-flow benefits under varying forest and climate conditions. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 4033 KB  
Article
Vulnerability Assessment of Karst Spring Failure and Water Quality Changes Induced by Earthquakes
by Ivo Andrić, Ognjen Bonacci and Toni Kekez
Water 2025, 17(23), 3442; https://doi.org/10.3390/w17233442 - 4 Dec 2025
Viewed by 621
Abstract
Earthquakes are among the most catastrophic natural disasters, primarily due to their immediate potential to cause loss of human life. However, their impact extends beyond the initial seismic event, particularly in karst systems, where groundwater resources are highly sensitive to geodynamic disturbances. The [...] Read more.
Earthquakes are among the most catastrophic natural disasters, primarily due to their immediate potential to cause loss of human life. However, their impact extends beyond the initial seismic event, particularly in karst systems, where groundwater resources are highly sensitive to geodynamic disturbances. The abundance of karst springs within these terrains makes them critical water sources for many communities, yet earthquakes can significantly disrupt their discharge patterns and degrade water quality. This study examines the vulnerability of karst springs to seismic activity, focusing on two case studies that illustrate distinct earthquake-induced hydrogeological effects. The first case investigates the temporary failure of the Opačac Spring near Imotski, Croatia, following the Mw 3.7 earthquake on 7 September 2018. This spring experienced a complete cessation of discharge for four days, as recorded by continuous hydrograph monitoring, before recovering due to the release of accumulated groundwater behind a temporarily blocked conduit. The second case explores the impact of seismic activity on water quality, focusing on the sensitive freshwater lens of the karstic Island of Vis in response to the Mw 6.1 earthquake on 22 April 2022, near Stolac, Bosnia and Herzegovina. Despite the epicenter being over 150 km away, water quality monitoring revealed notable changes, emphasizing the influence of seismic disturbances on fragile groundwater systems in carbonate island environments. Using a multidisciplinary approach, integrating seismic data analysis with hydrological and hydrogeological observations, this study investigates the mechanisms through which earthquakes alter karst water systems. A proposed vulnerability assessment framework is introduced, aiming to correlate earthquake intensity, proximity, and hydrogeological response to better predict karst spring failure and water quality degradation. This model provides valuable insights for disaster preparedness, water resource management, and risk mitigation strategies in karst terrains, highlighting the necessity of incorporating karst hydrogeology into regional earthquake response planning. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

Back to TopTop