Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,562)

Search Parameters:
Keywords = temperature measuring points

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1222 KB  
Article
Soil Respiration Variability Due to Litter and Micro-Environment During the Cold-Temperature Season in a Temperate Monsoon Deciduous Forest
by Jaeseok Lee
Forests 2025, 16(10), 1608; https://doi.org/10.3390/f16101608 - 20 Oct 2025
Abstract
In cool temperate regions, soil respiration (Rs) data collected during the cold season is limited due to freezing and snow. This leads to a lack of understanding of Rs characteristics during the cold season and for ecosystems with long winters, it can significantly [...] Read more.
In cool temperate regions, soil respiration (Rs) data collected during the cold season is limited due to freezing and snow. This leads to a lack of understanding of Rs characteristics during the cold season and for ecosystems with long winters, it can significantly impact the annual carbon flux estimation. In this study, Rs data were collected from temperate deciduous forests to understand the characteristics of Rs values in the cold temperature season. To reflect spatial variation in Rs, five points were selected with different levels of litter layer development, ranging from Chamber 1 (almost no litter) to Chamber 5 (thick litter). Rs, air temperature (Ta) and rainfall, soil temperature (Ts) and soil moisture content (SMC) were collected every 30 min at each measurement point. As the litter layer developed, Ts tended to increase, but SMC tended to decrease, revealing that the degree of litter layer development had a clear effect on Ts and SMC. Rs showed a relatively high exponential correlation with Ts. However, the Rs−SMC functional relationship exhibited no correlation. Therefore, while the Ts-Rs functional equation can be used in the Rs calculator during the cold season, the SMC-Rs function would be suitable for use. Also, these deferent litter layers, TS, and SMC affected the Rs. The total Rs during the measurement period was various from 0.60 t C ha−1 for a thin litter layer to 1.88 t C ha−1 for a thick layer. This range of values may be appropriate for estimating Rs during the cold season in temperate regions. Also, the average across all plots was 6.05, ranging from 4.93 in no litter to 8.23 in thick litter layer. Full article
Show Figures

Figure 1

23 pages, 4024 KB  
Article
Wind–Temperature Load Combination Coefficients for Long-Span Hybrid Cable-Stayed Suspension Bridge with Considerations of Load Correlation and Geometry Nonlinearity
by Yuzhe Wu, Xiaoyi Zhou, Yuchen Miao and Wen Xiong
Appl. Sci. 2025, 15(20), 11202; https://doi.org/10.3390/app152011202 (registering DOI) - 19 Oct 2025
Abstract
This study focuses on quantifying wind–temperature load combination coefficients for long-span hybrid cable-stayed suspension bridges (HCSSBs) to overcome limitations of traditional methods in ignoring load correlation and geometry nonlinearity. A probabilistic framework is proposed to use site-specific load data to determine load combination [...] Read more.
This study focuses on quantifying wind–temperature load combination coefficients for long-span hybrid cable-stayed suspension bridges (HCSSBs) to overcome limitations of traditional methods in ignoring load correlation and geometry nonlinearity. A probabilistic framework is proposed to use site-specific load data to determine load combination coefficients, focusing on load correlation and geometric nonlinearity while assuming that stress reflects load effects and that 100-year samples are statistically representative. Long-sequence meteorological data, including wind and temperature measurements, were used to construct marginal and bivariate joint distributions, which characterize the randomness and correlation of wind and temperature loads. Load samples covering the design reference period were generated and validated via convergence tests. Four load scenarios (individual temperature, individual wind, linear superposition, and nonlinear coupling) were designed, and key control points are screened using indicators reflecting the comprehensive load effect EII-, combined load proportion ζ, and nonlinear influence η. Based on stress responses of key control points, load combination coefficients were derived with probability modeling. A case study for a bridge with span length of 2300 m shows that the load combination coefficients for the main girder are 0.60 (east wind) and 0.59 (west wind), while they are 0.51 (east wind) and 0.58 (west wind) for the main tower. These results demonstrate that the proposed method enables the provision of rational load combination coefficients. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

29 pages, 5701 KB  
Article
Temperature and Pressure Observations by Tommaso Temanza from 1751 to 1769 in Venice, Italy
by Dario Camuffo, Antonio della Valle and Francesca Becherini
Climate 2025, 13(10), 217; https://doi.org/10.3390/cli13100217 - 18 Oct 2025
Abstract
The study aims to recover, interpret, and analyze the daily meteorological observations made in Venice by Tommaso Temanza from 1751 to 1769. These records are relevant because they provide direct information about the climate of the Little Ice Age. Temanza used a barometer, [...] Read more.
The study aims to recover, interpret, and analyze the daily meteorological observations made in Venice by Tommaso Temanza from 1751 to 1769. These records are relevant because they provide direct information about the climate of the Little Ice Age. Temanza used a barometer, an air thermometer of Amontons’ type, and an additional mercury thermometer, i.e., Réaumur’s thermometer. These early instruments are presented and discussed in this study. The barometer readings needed standard corrections, which were unknown at that time. The scale of the air thermometer was arbitrary, and temperatures were measured in inches of mercury. For the Amontons thermometer, Temanza missed the calibration points and used a particular scale with the zero-point in the middle of the range. He gave two contradictory explanations for this choice, both of which are discussed in this paper. In the 18th century, the use of a singular value to represent the average temperature, called “Temperate”, was promoted by Michieli du Crest in Geneva and Toaldo in Padua. This work reconstructs the unknown scale, using contemporary observations by Giovanni Poleni and Giuseppe Toaldo in Padua (30 km west of Venice) and snowfall reported in the weather notes to determine the temperature point at 0 °C. A discussion is made about the calibration, validation, and conversion of readings from the original to modern units of pressure and temperature, i.e., hPa and °C, respectively. The recovered record of Venice is presented in comparison with Padua, Bologna, and Milan. The paper provides and analyzes the new dataset, and improves knowledge about the climate, history of science, instruments, and observations made in the mid-18th century. Full article
Show Figures

Figure 1

21 pages, 4149 KB  
Article
Air Pollution Monitoring and Modeling: A Comparative Study of PM, NO2, and SO2 with Meteorological Correlations
by Elżbieta Wójcik-Gront and Dariusz Gozdowski
Atmosphere 2025, 16(10), 1199; https://doi.org/10.3390/atmos16101199 - 17 Oct 2025
Viewed by 198
Abstract
Monitoring air pollution remains a significant challenge for both environmental policy and public health, particularly in parts of Eastern Europe where industrial structures are undergoing transition. In this paper, we examine long-term air quality trends in Poland between 1990 and 2023, drawing on [...] Read more.
Monitoring air pollution remains a significant challenge for both environmental policy and public health, particularly in parts of Eastern Europe where industrial structures are undergoing transition. In this paper, we examine long-term air quality trends in Poland between 1990 and 2023, drawing on multiple sources: satellite observations (from 2019 to 2025), ground-based stations, and official national emission inventories. The analysis focused on sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (PM10, PM2.5). Data were obtained from the Sentinel-5P TROPOMI sensor, processed through Google Earth Engine, and monitored by the Chief Inspectorate of Environmental Protection (GIOŚ, Warsaw, Poland) and the National Inventory Report (NIR, Warsaw, Poland), compiled by KOBiZE (The National Centre for Emissions Management, Warsaw, Poland). The results show a decline in emissions. SO2, for instance, dropped from about 2700 kilotons in 1990 to under 400 kilotons in 2023. Ground-based measurements matched well with inventory data (correlations around 0.75–0.85), but the agreement was noticeably weaker when satellite estimates were compared with surface monitoring. In addition to analyzing emission trends, this study examined the relationship between pollution levels and meteorological conditions across major Polish cities from 2019 to mid-2024. Pearson’s correlation analysis revealed strong negative correlations between temperature and pollutant concentrations, especially for SO2, reflecting the seasonal nature of pollution peaks during colder months. Wind speed exhibited ambiguous relationships, with daily data indicating a dilution effect (negative correlations), whereas monthly averages revealed positive associations, likely due to seasonal confounding. Higher humidity was consistently linked to higher pollution levels, and precipitation showed weak negative correlations, likely influenced by seasonal weather patterns rather than direct atmospheric processes. These findings suggest that combining different monitoring methods, despite their quirks and mismatches, provides a fuller picture of atmospheric pollution. They also point to a practical challenge. Further improvements will depend less on sweeping industrial reform and more on shifting everyday practices, like how homes are heated and how people move around cities. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

18 pages, 4208 KB  
Article
Investigation of Single-Pass Laser Remelted Joint of Mo-5Re Alloy: Microstructure, Residual Stress and Angular Distortion
by Yifeng Wang, Danmin Peng, Xi Qiu, Mingwei Su, Shuwei Hu, Wenjie Li and Dean Deng
Metals 2025, 15(10), 1145; https://doi.org/10.3390/met15101145 - 15 Oct 2025
Viewed by 140
Abstract
Molybdenum-rhenium (Mo-Re) alloys, especially those with low Re content, have great potential in fabricating nuclear components. However, the extremely high melting point and high brittleness of Mo-Re alloys make them difficult to weld. In this study, laser welding was used to prepare single-pass [...] Read more.
Molybdenum-rhenium (Mo-Re) alloys, especially those with low Re content, have great potential in fabricating nuclear components. However, the extremely high melting point and high brittleness of Mo-Re alloys make them difficult to weld. In this study, laser welding was used to prepare single-pass remelted joint of Mo-5Re alloy with welding parameters of laser power 2800 W, welding speed 2 m·min−1 and argon gas flow rate 20 L·min−1. The microstructure of the remelted joint was investigated by the optical microscopy and the scanning electron microscopy. The microhardness distribution of the joint was analyzed. In addition, the temperature field, residual stress, and angular distortion of the joint were investigated by both numerical and experimental methods. The results show that columnar grains grew from the fusion boundary toward the center of the weld pool, and equiaxed grains formed in the central region of the fusion zone (FZ). In the heat-affected zone (HAZ), the grains transformed from initial elongated into equiaxed grains. The electron backscatter diffraction (EBSD) results revealed that high-angle grain boundaries (HAGBs) dominated in FZ. Oxide/carbide particles at grain boundaries and inside the grains can be inferred from contrast results. The average microhardness of FZ was 170 ± 5 (standard deviation) HV, which was approximately 80 HV lower than that of the base metal (250 ± 2 HV). Softening phenomenon was also observed in HAZ. The calculated weld pool shape showed high consistency with the experimental observation. The peak temperature (296 °C) of the simulated thermal cycling curve was ~8% higher than the measured value (275 °C). The residual stress calculation results indicated that FZ and its vicinity exhibited high levels of longitudinal tensile residual stresses. The simulated peak longitudinal residual stress (509 MPa) was ~30% higher than the measured value (393 MPa). Furthermore, both the simulation and experimental results demonstrated that the single-pass remelted joint of Mo-5Re alloy produced only minor angular distortion. The obtained results are very useful in understanding the basic phenomena and problems in laser welding of Mo alloys with low Re content. Full article
(This article belongs to the Special Issue Properties and Residual Stresses of Welded Alloys)
Show Figures

Figure 1

6 pages, 2001 KB  
Proceeding Paper
On the Architecture of a Low-Cost Meteorological Station Based on the Internet of Things (IoT): Preliminary Results
by Diego Abraham Jasso-Reyes, Carlos Iván Cabrera-Perdomo and Raúl Alberto Reyes-Villagrana
Environ. Earth Sci. Proc. 2025, 34(1), 14; https://doi.org/10.3390/eesp2025034014 - 15 Oct 2025
Viewed by 139
Abstract
This study presents the development, construction, and implementation of a portable meteorological station. An ESP8266 microcontroller was used as the control system. Temperature, humidity, and atmospheric pressure were measured. The UV index, thermal sensation, dew point, altitude above sea level, and air density [...] Read more.
This study presents the development, construction, and implementation of a portable meteorological station. An ESP8266 microcontroller was used as the control system. Temperature, humidity, and atmospheric pressure were measured. The UV index, thermal sensation, dew point, altitude above sea level, and air density were measured indirectly. An interface was created to retrieve the data in real time via the internet. The information can also be stored on a micro-SD memory device. The first results were collected over a period of 29 days. The data is sampled every 10 s. The data was compared with that of a commercial meteorological station and yielded similar results. The design of the meteorological station will be further improved by adding new measurement variables and installing a few portable stations in different regions of the state. Full article
Show Figures

Figure 1

20 pages, 7865 KB  
Article
Study on Development of Hydrogen Peroxide Generation Reactor with Pin-to-Water Atmospheric Discharges
by Sung-Young Yoon, Eun Jeong Hong, Junghyun Lim, Seungil Park, Sangheum Eom, Seong Bong Kim and Seungmin Ryu
Plasma 2025, 8(4), 41; https://doi.org/10.3390/plasma8040041 - 14 Oct 2025
Viewed by 184
Abstract
We present an experimentally validated, engineering-oriented framework for the design and operation of pin-to-water (PTW) atmospheric discharges to produce hydrogen peroxide (H2O2) on demand. Motivated by industrial needs for safe, point-of-use oxidant supply, we combine time-resolved diagnostics (FTIR, OES), [...] Read more.
We present an experimentally validated, engineering-oriented framework for the design and operation of pin-to-water (PTW) atmospheric discharges to produce hydrogen peroxide (H2O2) on demand. Motivated by industrial needs for safe, point-of-use oxidant supply, we combine time-resolved diagnostics (FTIR, OES), liquid-phase analysis (ion chromatography, pH, conductivity), and coupled plasma-chemistry/fluid simulations to link plasma state to aqueous H2O2 yield. Under the tested conditions (14.3 kHz, 0.2 kW; electrode to quartz wall distance 12–14 mm; coolant setpoints 0–40 °C), H2O2 concentration follows a reproducible non-monotonic trajectory: rapid accumulation during the early treatment (typical peak at ~15–25 min), followed by decline with continued operation. The decline coincides with a robust vibrational-temperature (Tvib) threshold near ~4900 K measured from N2 emission, and with concurrent NOX accumulation and bulk acidification. Global chemistry modeling and Fluent flow fields reproduce the observed trend and show that both vibrational excitation (kinetics) and convective transport (mass/heat transfer) determine the productive time window. Based on these results, we formulate practical design rules—electrode gap (power density), discharge current control, thermal/flow management, water quality, and OES-based Tvib monitoring with an automated stop rule—that maximize H2O2 yield while avoiding NOX-dominated suppression. The study provides a clear path for transforming mechanistic plasma insights into deployable, industrial H2O2 generator designs. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

12 pages, 1479 KB  
Article
Structure-Guided In-Use Stability Assessment of Monoclonal Antibody Tislelizumab
by David Andre Rudd and Ghizal Siddiqui
Pharmaceuticals 2025, 18(10), 1539; https://doi.org/10.3390/ph18101539 - 13 Oct 2025
Viewed by 332
Abstract
Background/Objectives: Monoclonal antibody (mAb) stability is critical not only during manufacturing but also at the point of clinical administration. For therapies like tislelizumab (Tevimbra), a programmed death-1 (PD-1) targeting IgG mAb, delays in dosing often result in prepared infusions being discarded, contributing [...] Read more.
Background/Objectives: Monoclonal antibody (mAb) stability is critical not only during manufacturing but also at the point of clinical administration. For therapies like tislelizumab (Tevimbra), a programmed death-1 (PD-1) targeting IgG mAb, delays in dosing often result in prepared infusions being discarded, contributing to substantial drug waste despite being engineered for improved stability. Methods: To evaluate the physicochemical in-use stability of tislelizumab in a ready-to-administer format, we mapped degradation pathways, including post-translational modifications (PTMs); peptide alterations; pH and solution characteristics—under 12-month storage (ultra-long), under 1-month storage (0, 7, 14, 21, 28 and 31 days), and under exposure-related forced degradation conditions including room temperature, elevated temperature, pH (acidic/basic), oxidation and UV exposure. Structural analysis was contextualised to the known PD-1 binding site, making stability assessment relevant to tislelizumab’s mechanism-of-action in blocking PD-1. To assess solution stability, a validated size-exclusion chromatography (SEC) assay was applied to all conditions. Results: Aggregation was identified as the primary degradation pathway during ultra-long-term storage. SEC and chemical assessment revealed no measurable changes in protein quantity, aggregation, peptide integrity, or PTM profile over 31 days at 2–8 °C in polyolefin intravenous bags (1.6 mg/mL). Conclusions: These results support the structural and physicochemical stability of tislelizumab under refrigerated conditions. Full article
(This article belongs to the Topic Optimization of Drug Utilization and Medication Adherence)
Show Figures

Graphical abstract

19 pages, 4201 KB  
Article
Implementation of an SS-Compensated LC-Thermistor Topology for Passive Wireless Temperature Sensing
by Seyit Ahmet Sis and Yeliz Dikerler Kozar
Sensors 2025, 25(20), 6316; https://doi.org/10.3390/s25206316 - 13 Oct 2025
Viewed by 308
Abstract
This paper presents a passive wireless temperature sensor based on an SS-compensated LC-thermistor topology. The system consists of two magnetically coupled LC tanks—each composed of a coil and a series capacitor—forming a series–series (SS) compensation network. The secondary side includes a negative temperature [...] Read more.
This paper presents a passive wireless temperature sensor based on an SS-compensated LC-thermistor topology. The system consists of two magnetically coupled LC tanks—each composed of a coil and a series capacitor—forming a series–series (SS) compensation network. The secondary side includes a negative temperature coefficient (NTC) thermistor connected in series with its coil and capacitor, acting as a temperature-dependent load. Magnetically coupled resonant systems exhibit different coupling regimes: weak, critical, and strong. When operating in the strongly coupled regime, the original resonance splits into two distinct frequencies—a phenomenon known as bifurcation. At these split resonance frequencies, the load impedance on the secondary side is reflected as pure resistance at the primary side. In the SS topology, this reflected resistance is equal to the thermistor resistance, enabling precise wireless sensing. The advantage of the SS-compensated configuration lies in its ability to map changes in the thermistor’s resistance directly to the input impedance seen by the reader circuit. As a result, the sensor can wirelessly monitor temperature variations by simply tracking the input impedance at split resonance points. We experimentally validate this property on a benchtop prototype using a one-port VNA measurement, demonstrating that the input resistance at both split frequencies closely matches the expected thermistor resistance, with the observed agreement influenced by the parasitic effects of RF components within the tested temperature range. We also demonstrate that using the average readout provides first-order immunity to small capacitor drift, yielding stable readings. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 3822 KB  
Article
Ecological Suitability Assessment of Larimichthys crocea in Coastal Waters of the East China Sea and Yellow Sea Based on MaxEnt Modeling
by Shuwen Yu, Wei Meng, Hongliang Zhang, Hui Ge, Lei Wu, Yao Qu, Qiuhong Zhang and Yongdong Zhou
J. Mar. Sci. Eng. 2025, 13(10), 1945; https://doi.org/10.3390/jmse13101945 - 11 Oct 2025
Viewed by 253
Abstract
The Larimichthys crocea represents a critically important economic marine species in China’s East Yellow Sea. However, its populations have experienced significant decline due to overexploitation. Despite implemented conservation measures—including stock enhancement, spawning ground protection, and seasonal fishing moratoria—the recovery of yellow croaker resources [...] Read more.
The Larimichthys crocea represents a critically important economic marine species in China’s East Yellow Sea. However, its populations have experienced significant decline due to overexploitation. Despite implemented conservation measures—including stock enhancement, spawning ground protection, and seasonal fishing moratoria—the recovery of yellow croaker resources remains markedly slow. To address this, our study employed the Maximum Entropy (MaxEnt) model to evaluate and characterize the habitat selection patterns of Larimichthys crocea, thereby providing a theoretical foundation for scientifically informed stock enhancement and resource recovery strategies. Species occurrence data were compiled from field surveys conducted during April and November (2019–2023), supplemented with records from the GBIF database and peer-reviewed literature. Concurrent environmental variables, including primary productivity, current velocity, depth, temperature, salinity, silicate, nitrate, phosphate, and pH, were obtained from the Copernicus and NOAA databases. After rigorous screening, 136 distribution points (April) and 369 points (November) were retained for analysis. The model performance was robust, with an AUC (Area Under the Curve) value of 0.935 for April (2019–2023) and 0.905 for November (2019–2023), indicating excellent predictive accuracy (AUC > 0.9). April (2019–2023): Nitrate, salinity, phosphate, and silicate were identified as the primary environmental factors influencing habitat suitability. November (2019–2023): Silicate, salinity, nitrate, and primary productivity emerged as the dominant drivers. Spatially, Larimichthys crocea exhibited high-density distributions in offshore regions of Zhejiang and Jiangsu, particularly near the Yangtze River estuary. Populations were also associated with island-reef systems, forming continuous distributions along Zhejiang’s offshore waters. In Jiangsu, aggregations were concentrated between Nantong and Yancheng. This study delineates habitat suitability zones for Larimichthys crocea, offering a scientific basis for optimizing stock enhancement programs, designing targeted conservation measures, and establishing marine protected areas. Our findings enable policymakers to develop sustainable fisheries management strategies, ensuring the long-term viability of this ecologically and economically vital species. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

20 pages, 1370 KB  
Article
Optimising a Functional Beverage from Quinoa and Cherimoya Mixtures Fermented with Water Kefir Grains
by Abigail E. Palacios-Castillo, Tatiana N. Campoverde-Quilca, Jimmy Núñez-Pérez, Jhomaira L. Burbano-García, Holger M. Pineda-Flores, Rosario C. Espín-Valladares, Santiago Zárate-Baca and José-Manuel Pais-Chanfrau
Foods 2025, 14(20), 3464; https://doi.org/10.3390/foods14203464 - 10 Oct 2025
Viewed by 380
Abstract
Functional beverages enhance the nutritional value of their ingredients by increasing the levels of bioactive components, such as probiotics. To achieve consumer acceptance, functional beverages must be both palatable and nutritious. This study investigates the fermentation of quinoa and cherimoya at two temperatures [...] Read more.
Functional beverages enhance the nutritional value of their ingredients by increasing the levels of bioactive components, such as probiotics. To achieve consumer acceptance, functional beverages must be both palatable and nutritious. This study investigates the fermentation of quinoa and cherimoya at two temperatures (25 °C and 32 °C) using water kefir grains. The aim was to create a fermented mix that is both balanced and appealing to consumers. The response variables measured were the concentrations of lactic acid bacteria (LAB) and yeasts (CFU mL−1), as well as the overall liking (OL). Ten semi-trained panellists evaluated them using a seven-point hedonic scale. All three developed models for LAB and yeast growth, and OL exhibited R2 values exceeding 0.8, indicating a strong model fit and simultaneous optimisation considering the three key responses. At a temperature of 25 °C, the mass fractions of the mixes containing quinoa puree (QP) and cherimoya juice (CJ) were 0.13 and 0.87, respectively. Under optimal conditions, the LAB and yeast increased by 4.2 and 4.4 log units, respectively. Moreover, a significant 62% increase in protein levels and a notable 82% decrease in ascorbic acid were observed after 48 h of fermentation, likely caused by the Maillard reaction. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Figure 1

12 pages, 9251 KB  
Article
Stability Studies of Clonazepam 2.5 mg/mL Oral Solution and 1 mg/mL Parenteral Solution in Pre-Filled Polypropylene Syringes
by Juan Carlos Ruiz Ramirez, Icram Talsi Hamdani, Laura Bermúdez Gazquez, Alice Charlotte Viney and José M. Alonso Herreros
Pharmaceutics 2025, 17(10), 1302; https://doi.org/10.3390/pharmaceutics17101302 - 7 Oct 2025
Viewed by 291
Abstract
Background: Clonazepam is a benzodiazepine drug indicated in all clinical forms of epileptic seizures, various forms of myoclonic seizures, myoclonus and other abnormal movements. At present, it is classified as a hazardous drug requiring special precautions for personnel at reproductive risk, according to [...] Read more.
Background: Clonazepam is a benzodiazepine drug indicated in all clinical forms of epileptic seizures, various forms of myoclonic seizures, myoclonus and other abnormal movements. At present, it is classified as a hazardous drug requiring special precautions for personnel at reproductive risk, according to a technical document produced by the Spanish National Institute for Safety and Health at Work (INSST), in collaboration with the Spanish Society of Hospital Pharmacy (SEFH). The commercial solutions of clonazepam, for oral and parenteral administration, are supplied by laboratories in glass containers. Repacking in pre-filled polypropylene (PP) syringes, made in the pharmacy service, and in aseptic conditions, may facilitate its administration and reduce the risks to the health or safety of nursing personnel. Nevertheless, there is a lack of stability studies of clonazepam in pre-filled PP syringes. Objectives: To evaluate the physicochemical stability of commercial clonazepam 2.5 mg/mL oral solution and 1 mg/mL parenteral solution repackaged in pre-filled PP syringes under various storage conditions. Methods: A rapid, linear, precise and sensitive high-performance liquid chromatography (HPLC) method for chemical stability studies of Clonazepam 1 mg/mL (parenteral use) and 2.5 mg/mL (oral use) in solution was implemented after repackaging in pre-filled PP syringes. The studies were conducted by measuring concentrations of oral and parenteral clonazepam in pre-filled syringes, at various time points, over 30 days in several different storage conditions: oral clonazepam protected from light in refrigerator and at controlled room temperature exposed to ambient light; parenteral clonazepam protected from light in a refrigerator and at controlled room temperature protected or unprotected from light. Visual aspects and pH change as well as crystal formation were checked to determine physical stability. Results: The degradation of the active ingredient in all groups was less than 10% after 30 days. No evidence of crystal formation, pH and visual aspect changes were observed. Conclusions: Clonazepam 1 mg/mL parenteral solution and 2.5 mg/mL oral solution in pre-filled PP syringes are stable for up to 30 days in the tested conditions. The centralized repackaging of clonazepam in pre-filled PP syringes, connected to a closed safety system, in the pharmacy service, reduces drug manipulation by nursing staff decreasing the risk of occupational exposure. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

24 pages, 4205 KB  
Article
Mechanism and Data-Driven Grain Condition Information Perception Method for Comprehensive Grain Storage Monitoring
by Yunshandan Wu, Ji Zhang, Xinze Li, Yaqiu Zhang, Wenfu Wu and Yan Xu
Foods 2025, 14(19), 3426; https://doi.org/10.3390/foods14193426 - 5 Oct 2025
Viewed by 359
Abstract
Conventional grain monitoring systems often rely on isolated data points (e.g., point-based temperature measurements), limiting holistic condition assessment. This study proposes a novel Mechanism and Data Driven (MDD) framework that integrates physical mechanisms with real-time sensor data. The framework quantitatively analyzes solar radiation [...] Read more.
Conventional grain monitoring systems often rely on isolated data points (e.g., point-based temperature measurements), limiting holistic condition assessment. This study proposes a novel Mechanism and Data Driven (MDD) framework that integrates physical mechanisms with real-time sensor data. The framework quantitatively analyzes solar radiation and external air temperature effects on silo boundaries and introduces a novel interpolation-optimized model parameter initialization technique to enable comprehensive grain condition perception. Rigorous multidimensional validation confirms the method’s accuracy: The novel initialization technique achieved high precision, demonstrating only 1.89% error in Day-2 low-temperature zone predictions (27.02 m2 measured vs. 26.52 m2 simulated). Temperature fields were accurately reconstructed (≤0.5 °C deviation in YOZ planes), capturing spatiotemporal dynamics with ≤0.45 m2 maximum low-temperature zone deviation. Cloud map comparisons showed superior simulation fidelity (SSIM > 0.97). Further analysis revealed a 22.97% reduction in total low-temperature zone area (XOZ plane), with Zone 1 (near south exterior wall) declining 27.64%, Zone 2 (center) 25.30%, and Zone 3 20.35%. For dynamic evolution patterns, high-temperature zones exhibit low moisture (<14%), while low-temperature zones retain elevated moisture (>14%). A strong positive correlation between temperature and relative humidity fields; temperature homogenization drives humidity uniformity. The framework enables holistic monitoring, providing actionable insights for smart ventilation control, condensation risk warnings, and mold prevention. It establishes a robust foundation for intelligent grain storage management, ultimately reducing post-harvest losses. Full article
Show Figures

Figure 1

12 pages, 2104 KB  
Article
Accessible Thermoelectric Characterization: Development and Validation of Two Modular Room Temperature Measurement Instruments
by František Mihok, Katarína Gáborová, Viktor Puchý and Karel Saksl
Inorganics 2025, 13(10), 333; https://doi.org/10.3390/inorganics13100333 - 4 Oct 2025
Viewed by 367
Abstract
This paper describes two low-cost, modular instruments developed for rapid room-temperature characterization of mainly thermoelectrics. The first instrument measures the Seebeck coefficient across diverse sample geometries and incorporates a four-point probe configuration for simultaneous electrical conductivity measurement, including disk-shaped samples. The second instrument [...] Read more.
This paper describes two low-cost, modular instruments developed for rapid room-temperature characterization of mainly thermoelectrics. The first instrument measures the Seebeck coefficient across diverse sample geometries and incorporates a four-point probe configuration for simultaneous electrical conductivity measurement, including disk-shaped samples. The second instrument implements the Van der Pauw method, enabling detailed investigation of charge carrier behavior within materials. Both devices prioritize accessibility, constructed primarily from 3D-printed components, basic hardware, and readily available instrumentation, ensuring ease of reproduction and modification. A unique calibration protocol using pure elemental disks and materials with well-established properties was employed for both instruments. Validation against comparable systems confirmed reliable operation. Control and data acquisition software for both devices was developed in-house and is fully documented and does not require an experienced operator. We demonstrate the utility of these instruments by characterizing the electronic properties of polycrystalline SnSe thermoelectric materials doped with Bi, Ag, and In. The results reveal highly complex charge carrier behavior significantly influenced by both dopant type and concentration. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

19 pages, 9101 KB  
Article
Improved Measurement Method of Human Skin Temperature Based on Human Skin-like Gradient Standard Radiation Source
by Tianshuo Li, Zhenyuan Zhang, Guojin Feng, Xinhua Chen and Ziqi Hao
Thermo 2025, 5(4), 38; https://doi.org/10.3390/thermo5040038 - 2 Oct 2025
Viewed by 283
Abstract
Infrared thermography for human skin temperature measurement, when calibrated with standard blackbodies, suffers from errors due to the mismatch in emissivity between a blackbody and human skin. This study introduces a novel calibration method utilizing a human skin-like gradient radiation source to enhance [...] Read more.
Infrared thermography for human skin temperature measurement, when calibrated with standard blackbodies, suffers from errors due to the mismatch in emissivity between a blackbody and human skin. This study introduces a novel calibration method utilizing a human skin-like gradient radiation source to enhance measurement accuracy. A custom radiation source with six temperature points and skin-like emissivity was developed. Thermal imagers were calibrated using this source, and their performance was compared against traditional blackbody calibration. The proposed method reduced the calibration error to 0.04 °C, a significant improvement over the 0.15 °C error obtained with blackbody calibration. Calibration with a skin-like radiation source proves superior to the blackbody method, enabling high-accuracy (less than 0.1 °C) human skin temperature measurement for improved fever screening. Full article
Show Figures

Figure 1

Back to TopTop