Optimising a Functional Beverage from Quinoa and Cherimoya Mixtures Fermented with Water Kefir Grains
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Sample Preparation
Cherimoya Juice (CJ) and Quinoa Puree (QP) Preparations
2.3. Measurements
2.3.1. Enumeration of LAB and Yeast Colonies
2.3.2. Sensory Evaluation and Overall Liking Determination
2.3.3. Ascorbic Acid Determination
2.3.4. Reducing Sugar and Total Protein Determination
2.4. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Multi-Response Optimisation for Mixed-Combined Experiments
3.2. Comparison of the Optimal with the Raw Materials That Originate from Them
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | A code factor of CJ proportion |
B | A code factor of QP proportion |
C | A code factor of temperature |
CJ | Mass fraction of cherimoya juice, w/w |
dLAB, dYeast, dOL | Desirability function of each response (LAB, Yeast, and OL score) |
D | Overall desirability function |
ΔLAB | Increment in lactic acid bacteria concentration, CFU mL−1 |
LAB0 | Initial concentration of lactic acid bacteria, CFU mL−1 |
OL | Overall liking score |
temp | Temperature of fermentation, °C |
QP | Mass fraction of quinoa purée, w/w |
ΔYeast | Increment in yeast concentration, CFU mL−1 |
Yeast0 | Initial concentration of yeast, CFU mL−1 |
Model to predict the increment in LAB concentration, CFU mL−1 | |
Model to predict the OL score | |
Model to predict the increment in Yeast concentration, CFU mL−1 |
References
- Ballini, A.; Charitos, I.A.; Cantore, S.; Topi, S.; Bottalico, L.; Santacroce, L. About Functional Foods: The Probiotics and Prebiotics State of Art. Antibiotics 2023, 12, 635. [Google Scholar] [CrossRef]
- Lynch, K.M.; Wilkinson, S.; Daenen, L.; Arendt, E.K. An Update on Water Kefir: Microbiology, Composition and Production. Int. J. Food Microbiol. 2021, 345, 109128. [Google Scholar] [CrossRef] [PubMed]
- Moretti, A.F.; Moure, M.C.; Quiñoy, F.; Esposito, F.; Simonelli, N.; Medrano, M.; León-Peláez, Á. Water Kefir, a Fermented Beverage Containing Probiotic Microorganisms: From Ancient and Artisanal Manufacture to Industrialized and Regulated Commercialization. Future Foods 2022, 5, 100123. [Google Scholar] [CrossRef]
- Cai, Y.; Sounderrajan, A.; Serventi, L. Water Kefir: A Review of Its Microbiological Profile, Antioxidant Potential and Sensory Quality. Acta Sci. Nutr. Health 2020, 4, 10–17. [Google Scholar] [CrossRef]
- Pendón, M.D.; Bengoa, A.A.; Iraporda, C.; Medrano, M.; Garrote, G.L.; Abraham, A.G. Water Kefir: Factors Affecting Grain Growth and Health-Promoting Properties of the Fermented Beverage. J. Appl. Microbiol. 2021, 133, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.A.; Fernández, L.A.; Díaz, M.L.; Pérez, M.; Corona, M.; Reynaldi, F.J. Microbiological and Chemical Characterization of Water Kefir: An Innovative Source of Potential Probiotics for Bee Nutrition. Rev. Argent. Microbiol. 2023, 55, 176–180. [Google Scholar] [CrossRef]
- Pablo, A.G.; Balmori, V. Water Kefir Beverages and Probiotic Properties. In Natural Products in Beverages; Reference Series in Phytochemistry; Mérillon, J.M., Riviere, C., Lefèvre, G., Eds.; Springer: Cham, Switzerland, 2023; pp. 1–23. ISBN 978-3-031-04195-2. [Google Scholar]
- Deziderio, M.A.; de Souza, H.F.; Kamimura, E.S.; Petrus, R.R. Plant-Based Fermented Beverages: Development and Characterization. Foods 2023, 12, 4128. [Google Scholar] [CrossRef]
- Fels, L.; Jakob, F.; Vogel, R.F.; Wefers, D. Structural Characterization of the Exopolysaccharides from Water Kefir. Carbohydr. Polym. 2018, 189, 296–303. [Google Scholar] [CrossRef]
- Aligita, W.; Singgih, M.; Sutrisno, E.; Adnyana, I.K. Hepatoprotective Properties of Water Kefir: A Traditional Fermented Drink and Its Potential Role. Int. J. Prev. Med. 2023, 14, 93. [Google Scholar] [CrossRef]
- Gökırmaklı, Ç.; Erol, Z.; Gun, I.; Ozmen, O.; Guzel-Seydim, Z.B. Prophylaxis Effects of Water Kefir on Post-Infectious Irritable Bowel Syndrome in Rat Model. Int. J. Food Sci. Technol. 2023, 58, 3371–3378. [Google Scholar] [CrossRef]
- Ruiz Rodríguez, L.G.; Zamora Gasga, V.M.; Pescuma, M.; Van Nieuwenhove, C.; Mozzi, F.; Sánchez Burgos, J.A. Fruits and Fruit By-Products as Sources of Bioactive Compounds. Benefits and Trends of Lactic Acid Fermentation in the Development of Novel Fruit-Based Functional Beverages. Food Res. Int. 2021, 140, 109854. [Google Scholar] [CrossRef] [PubMed]
- Cerdá-Bernad, D.; Valero-Cases, E.; Pastor, J.J.; Frutos, M.J.; Pérez-Llamas, F. Probiotic Red Quinoa Drinks for Celiacs and Lactose Intolerant People: Study of Functional, Physicochemical and Probiotic Properties during Fermentation and Gastrointestinal Digestion. Int. J. Food Sci. Nutr. 2022, 73, 49–59. [Google Scholar] [CrossRef]
- da Silva Vale, A.; Venturim, B.C.; da Silva Rocha, A.R.F.; Martin, J.G.P.; Maske, B.L.; Balla, G.; De Dea Lindner, J.; Soccol, C.R.; de Melo Pereira, G.V. Exploring Microbial Diversity of Non-Dairy Fermented Beverages with a Focus on Functional Probiotic Microorganisms. Fermentation 2023, 9, 496. [Google Scholar] [CrossRef]
- Gökırmaklı, Ç.; Güzel-Seydim, Z.B. Water Kefir Grains vs. Milk Kefir Grains: Physical, Microbial and Chemical Comparison. J. Appl. Microbiol. 2022, 132, 4349–4358. [Google Scholar] [CrossRef] [PubMed]
- Çevik, T.; Aydoğdu, N.S.; Özdemir, N.; Kök Taş, T. The Effect of Different Sugars on Water Kefir Grains. Turk. J. Agric. Food Sci. Technol. 2019, 7, 40–45. [Google Scholar] [CrossRef]
- Koh, W.Y.; Utra, U.; Rosma, A.; Effarizah, M.E.; Rosli, W.I.W.; Park, Y.H. Development of a Novel Fermented Pumpkin-Based Beverage Inoculated with Water Kefir Grains: A Response Surface Methodology Approach. Food Sci. Biotechnol. 2018, 27, 525–535. [Google Scholar] [CrossRef]
- Cufaoglu, G.; Erdinc, A.N. An Alternative Source of Probiotics: Water Kefir. Food Front. 2023, 4, 21–31. [Google Scholar] [CrossRef]
- Gülhan, A. Usability of Carbon Sources as Sucrose, Honey and Agave Syrup in Fermentation of Lemonade with Water Kefir Grains. Sugar Tech. 2023, 25, 1542–1556. [Google Scholar] [CrossRef]
- Laureys, D.; De Vuyst, L. The Water Kefir Grain Inoculum Determines the Characteristics of the Resulting Water Kefir Fermentation Process. J. Appl. Microbiol. 2017, 122, 719–732. [Google Scholar] [CrossRef]
- Güzel-Seydim, Z.B.; Şatır, G.; Gökırmaklı, Ç. Use of Mandarin and Persimmon Fruits in Water Kefir Fermentation. Food Sci. Nutr. 2023, 11, 5890–5897. [Google Scholar] [CrossRef] [PubMed]
- Darvishzadeh, P.; Orsat, V.; Martinez, J.L. Process Optimization for Development of a Novel Water Kefir Drink with High Antioxidant Activity and Potential Probiotic Properties from Russian Olive Fruit (Elaeagnus angustifolia). Food Bioproc. Tech. 2021, 14, 248–260. [Google Scholar] [CrossRef]
- Gülhan, A. Use of Ice Teas Formulated with Black Teas Prepared with Different Infusion Methods and Grape Juice in the Production of Water Kefir Beverages. Food Humanit. 2024, 2, 100219. [Google Scholar] [CrossRef]
- Arapović, M.; Puljić, L.; Kajić, N.; Banožić, M.; Kartalović, B.; Habschied, K.; Mastanjević, K. The Impact of Production Techniques on the Physicochemical Properties, Microbiological, and Consumer’s Acceptance of Milk and Water Kefir Grain-Based Beverages. Fermentation 2024, 10, 2. [Google Scholar] [CrossRef]
- Tavares, P.P.L.G.; Mamona, C.T.P.; Nascimento, R.Q.; dos Anjos, E.A.; de Souza, C.O.; Almeida, R.C.D.C.; de Oliveira Mamede, M.E.; Magalhães-Guedes, K.T. Non-Conventional Sucrose-Based Substrates: Development of Non-Dairy Kefir Beverages with Probiotic Potential. Fermentation 2023, 9, 384. [Google Scholar] [CrossRef]
- Sanches, F.L.; Weis, C.M.S.C.; Gonçalves, G.C.V.; Andrade, G.S.; Diniz, L.G.T.; Camargo, A.F.; Kubeneck, S.; Klein, G.H.; Romani, L.C.; Longo, V.D.; et al. Study and Characterization of a Product Based on a Vegetable Extract of Quinoa Fermented with Water Kefir Grains. World J. Microbiol. Biotechnol. 2024, 40, 118. [Google Scholar] [CrossRef]
- Alrosan, M.; Tan, T.C.; Easa, A.M.; Gammoh, S.; Alu’datt, M.H.; Aleid, G.M.; Alhamad, M.N.; Maghaydah, S. Evaluation of Quality and Protein Structure of Natural Water Kefir-Fermented Quinoa Protein Concentrates. Food Chem. 2023, 404, 134614. [Google Scholar] [CrossRef]
- Isas, A.S.; Mariotti Celis, M.S.; Pérez Correa, J.R.; Fuentes, E.; Rodríguez, L.; Palomo, I.; Mozzi, F.; Van Nieuwenhove, C. Functional Fermented Cherimoya (Annona cherimola Mill.) Juice Using Autochthonous Lactic Acid Bacteria. Food Res. Int. 2020, 138, 109729. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Huang, Q.; Shi, J.; Guan, X.; Song, H.; Zhang, Y.; Xie, J.; Fang, Y. Effect of Conventional and Microwave Heating Treatment on Antioxidant Activity of Quinoa Protein after Simulated Gastrointestinal Digestion. Food Chem. 2023, 415, 135763. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, G.A.; Opazo-Navarrete, M.; Meurs, M.; Minor, M.; Sala, G.; van Boekel, M.; Stieger, M.; Janssen, A.E.M. Denaturation and in Vitro Gastric Digestion of Heat-Treated Quinoa Protein Isolates Obtained at Various Extraction PH. Food Biophys. 2016, 11, 184–197. [Google Scholar] [CrossRef]
- Bonfiglio, G.V.; Wierna, R.V.; Bonini, N.A.; Armada, M.; Goldner, M.C. Study of Bitterness Perception of Quinoa (Chenopodium quinoa Wild.) Saponin Extracts. J. Cereal. Sci. 2020, 95, 103032. [Google Scholar] [CrossRef]
- Suárez-Estrella, D.; Torri, L.; Pagani, M.A.; Marti, A. Quinoa Bitterness: Causes and Solutions for Improving Product Acceptability. J. Sci. Food Agric. 2018, 98, 4033–4041. [Google Scholar] [CrossRef]
- Khuri, A.I.; Conlon, M. Simultaneous Optimization of Multiple Responses Represented by Polynomial Regression Functions. Technometrics 1981, 23, 363–375. [Google Scholar] [CrossRef]
- Nastar Marcillo, D.A.; Olmedo Galarza, V.; Pinto Mosquera, N.S.; Espín Valladares, R.D.C.; Nuñez Perez, J.; Pais-Chanfrau, J.-M. Multi-Objective Optimization of Beverage Based on Lactic Fermentation of Goat’s Milk Whey and Fruit Juice Mixes by Kefir Granules. Fermentation 2022, 8, 500. [Google Scholar] [CrossRef]
- Alvarado-Cóndor, P.M.; Núñez-Pérez, J.; Espín-Valladares, R.C.; Pais-Chanfrau, J.M. Multiple-Objective Optimization of Lactic-Fermentation Parameters to Obtain a Functional-Beverage Candidate. Electron. J. Biotechnol. 2022, 58, 10–13. [Google Scholar] [CrossRef]
- Marinković, V. Some Applications of a Novel Desirability Function in Simultaneous Optimization of Multiple Responses. FME Trans. 2021, 49, 534–548. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P. Red Beetroot Juice Fermented by Water Kefir Grains: Physicochemical, Antioxidant Profile and Anticancer Activity. Eur. Food Res. Technol. 2023, 249, 939–950. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Chen, J.; Yang, L.; Pang, X.; Fan, Y.; Chen, X.; Chen, K.; Liu, C.; Li, X.; et al. Conventional versus Emerging Techniques in Probiotic Enumeration: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2025, 1–24. [Google Scholar] [CrossRef]
- Baranda, A.B.; Ríos, Y.; Llorente, R.; Naranjo, A.B.; da Quinta, N. Neuroscience Tools to Study the Effect of the Presentation Form on Food-Evoked Emotion for Senior Population. Food Res. Int. 2024, 183, 114158. [Google Scholar] [CrossRef]
- Wiest, I.C.; Sicorello, M.; Yesmembetov, K.; Ebert, M.P.; Teufel, A. Usage Behaviour and Adoption Criteria for Mobile Health Solutions in Patients with Chronic Diseases in Gastroenterology. Visc. Med. 2024, 40, 61–74. [Google Scholar] [CrossRef]
- AOAC Official Method 967.21 45.1.14 AOAC Official Method 967.21 Ascorbic Acid in Vitamin Preparations and Juices: 2,6-Dichloroindophenol Titrimetric Method. In Official Method of Analysis of AOAC International; Latimer, G.W., Ed.; AOAC Publications: New York, NY, USA, 2023; p. C45–22. [Google Scholar]
- Schoorl, N. Zucker-Titration. Z. Unters. Lebensm. 1929, 57, 566–576. [Google Scholar] [CrossRef]
- Kjeldahl, J. A New Method for the Determination of Nitrogen in Organic Matter. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Geoffrey Vining, G.; Borror, C.M.; Kowalski, S.M. Response Surface Methodology: A Retrospective and Literature Survey. J. Qual. Technol. 2003, 36, 53–78. [Google Scholar] [CrossRef]
- Kowalski, S.; Cornell, J.A.; Vining, G.G. A New Model and Class of Designs for Mixture Experiments with Process Variables. Commun. Stat. Theory Methods 2000, 29, 2255–2280. [Google Scholar] [CrossRef]
- Hecer, C.; Ulusoy, B.; Kaynarca, D. Effect of Different Fermentation Conditions on Composition of Kefir Microbiota. Int. Food Res. J. 2019, 26, 401–409. [Google Scholar]
- Bikbulatov, E.S.; Stepanova, I.E. Harrington’s Desirability Function for Natural Water Quality Assessment. Russ. J. Gen. Chem. 2011, 81, 2694–2704. [Google Scholar] [CrossRef]
- Vera Candioti, L.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental Design and Multiple Response Optimization. Using the Desirability Function in Analytical Methods Development. Talanta 2014, 124, 123–138. [Google Scholar] [CrossRef]
- Akteke-Ozturk, B.; Koksal, G.; Weber, G.W. Nonconvex Optimization of Desirability Functions. Qual. Eng. 2018, 30, 293–310. [Google Scholar] [CrossRef]
- Pal, S.; Gauri, S.K. A Desirability Functions-Based Approach for Simultaneous Optimization of Quantitative and Ordinal Response Variables in Industrial Processes. Int. J. Eng. Sci. Technol. 2018, 10, 76–87. [Google Scholar] [CrossRef]
- Roy, R.; Ghosh, S.K.; Kaisar, T.I.; Ahmed, T.; Hossain, S.; Aslam, M.; Kaseem, M.; Rahman, M.M. Multi-Response Optimization of Surface Grinding Process Parameters of AISI 4140 Alloy Steel Using Response Surface Methodology and Desirability Function under Dry and Wet Conditions. Coatings 2022, 12, 104. [Google Scholar] [CrossRef]
- Dabbas, R.M.; Fowler, J.W.; Rollier, D.A.; McCarville, D. Multiple Response Optimization Using Mixture-Designed Experiments and Desirability Functions in Semiconductor Scheduling. Int. J. Prod. Res. 2003, 41. [Google Scholar] [CrossRef]
- Boateng, I.D. Application of Graphical Optimization, Desirability, and Multiple Response Functions in the Extraction of Food Bioactive Compounds. Food Eng. Rev. 2023, 15, 104. [Google Scholar] [CrossRef]
- Calvi, A.; Preiti, G.; Poiana, M.; Marconi, O.; Gastl, M.; Zarnkow, M. Multi-Response Optimization of the Malting Process of an Italian Landrace of Rye (Secale cereale L.) Using Response Surface Methodology and Desirability Function Coupled with Genetic Algorithm. Foods 2022, 11, 3561. [Google Scholar] [CrossRef]
- Pereira Bicudo, M.O.; Vasques, E.D.C.; Zuim, D.R.; Bileski Candido, L.M. Elaboration and Characterization of Fermented Drink from Quinoa Water-Soluble Extract and Pulp Fruit. Bol. Cent. Pesqui. Process. Aliment. 2012, 30, 19–26. [Google Scholar]
- Zannini, E.; Lynch, K.M.; Nyhan, L.; Sahin, A.W.; O’ Riordan, P.; Luk, D.; Arendt, E.K. Influence of Substrate on the Fermentation Characteristics and Culture-Dependent Microbial Composition of Water Kefir. Fermentation 2023, 9, 28. [Google Scholar] [CrossRef]
- Wang, L.; Deng, K.; Zhang, Y. Isolation and Screening of High-Quality Lactic Acid Bacteria and Yeast Strains in Kefir Grains and Preparation of Kefir Compound Fermentation Starter. J. Food Process. Preserv. 2022, 46, e17073. [Google Scholar] [CrossRef]
- Smuda, M.; Glomb, M.A. Maillard Degradation Pathways of Vitamin C. Angew. Chem. Int. Ed. 2013, 52, 4887–4891. [Google Scholar] [CrossRef]
- Akbyk, T.; Sönmezoǧlu, I.; Güçlü, K.; Tor, I.; Apak, R. Protection of Ascorbic Acid from Copper(II) Catalyzed Oxidative Degradation in the Presence of Fruit Acids: Citric, Oxalic, Tartaric, Malic, Malonic, and Fumaric Acids. Int. J. Food Prop. 2012, 15, 398–411. [Google Scholar] [CrossRef]
- Salazar-Vega, K.S.; Pillalaza Montalvo, S.A.; Vaca-Suquillo, I. The Effect of Ascorbic and Citric Acids in the in Vitro Establishment of Solanum betaceum to Prevent Phenolic Oxidation. Smart Innov. Syst. Technol. 2022, 252, 199–205. [Google Scholar] [CrossRef]
- Benavides, R.M.; Rodríguez, I.; Inampués, M. Functional, Nutritional, and Technological Potential of Quinoa through Lactic Acid Fermentation: A Review. Ing. Compet. 2023, 25, 3. [Google Scholar] [CrossRef]
- Jiang, H.; Nie, P.; Lü, W.; Song, L. Study on the Processing Optimization for the Enrichment of Polyphenols and Flavonoids in Co-Fermentation of Quinoa and Black Barley and Its Bioavailability. Sci. Technol. Food Ind. 2024, 45, 150–160. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W. Optimization of Quinoa Fermented Drink with Kefir by Response Surface Methodology and Its Antioxidant Properties. Food Ferment. Ind. 2021, 47, 20. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Hernández-Ledesma, B. Nutritional and Biological Value of Quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci. 2017, 14, 1–6. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B. Quinoa (Chenopodium quinoa Willd.) as Source of Bioactive Compounds: A Review. Bioact. Compd. Health Dis. 2019, 2, 27–47. [Google Scholar] [CrossRef]
- Agarwal, A.; Rizwana; Tripathi, A.D.; Kumar, T.; Sharma, K.P.; Patel, S.K.S. Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds. Antioxidants 2023, 12, 1413. [Google Scholar] [CrossRef]
- Pandya, A.; Thiele, B.; Köppchen, S.; Zurita-Silva, A.; Usadel, B.; Fiorani, F. Characterization of Bioactive Phenolic Compounds in Seeds of Chilean Quinoa (Chenopodium quinoa Willd.) Germplasm. Agronomy 2023, 13, 2170. [Google Scholar] [CrossRef]
- Romero-Benavides, J.C.; Guaraca-Pino, E.; Duarte-Casar, R.; Rojas-Le-Fort, M.; Bailon-Moscoso, N. Chenopodium quinoa Willd. and Amaranthus hybridus L.: Ancestral Andean Food Security and Modern Anticancer and Antimicrobial Activity. Pharmaceuticals 2023, 16, 1728. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Zou, L.; Fu, C.; Li, P.; Zhao, G. Chemical Characterization, Antioxidant, Immune-Regulating and Anticancer Activities of a Novel Bioactive Polysaccharide from Chenopodium Quinoa Seeds. Int. J. Biol. Macromol. 2017, 99, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.; Siddiqui, R.A. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients 2022, 14, 558. [Google Scholar] [CrossRef]
- Wu, D.T.; Li, J.; Wang, J.; Lei, J.; Gan, R.Y.; Qin, P.; Hu, Y.C.; Wu, X.Y.; Zou, L. Comparison of Soluble Dietary Fibers from Various Quinoa Microgreens: Structural Characteristics and Bioactive Properties. Food Res. Int. 2024, 181, 114108. [Google Scholar] [CrossRef] [PubMed]
- Vega-Gálvez, A.; Zura, L.; Lutz, M.; Jagus, R.; Victoria Agüero, M.; Pastén, A.; Di Scala, K.; Uribe, E. Assessment of Dietary Fiber, Isoflavones and Phenolic Compounds with Antioxidant and Antimicrobial Properties of Quinoa (Chenopodium quinoa Willd.). Chil. J. Agric. Anim. Sci. 2018, 34, 1. [Google Scholar] [CrossRef]
- Franco, W.; Pérez-Díaz, I.M.; Connelly, L.; Diaz, J.T. Isolation of Exopolysaccharide-Producing Yeast and Lactic Acid Bacteria from Quinoa (Chenopodium quinoa) Sourdough Fermentation. Foods 2020, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Abdelshafy, A.M.; Rashwan, A.K.; Osman, A.I. Potential Food Applications and Biological Activities of Fermented Quinoa: A Review. Trends Food Sci. Technol. 2024, 144, 104339. [Google Scholar] [CrossRef]
- Castro-Alba, V.; Lazarte, C.E.; Perez-Rea, D.; Carlsson, N.G.; Almgren, A.; Bergenståhl, B.; Granfeldt, Y. Fermentation of Pseudocereals Quinoa, Canihua, and Amaranth to Improve Mineral Accessibility through Degradation of Phytate. J. Sci. Food Agric. 2019, 99, 5239–5248. [Google Scholar] [CrossRef] [PubMed]
- Perrone, A.; Yousefi, S.; Salami, A.; Papini, A.; Martinelli, F. Botanical, Genetic, Phytochemical and Pharmaceutical Aspects of Annona cherimola Mill. Sci. Hortic. 2022, 296, 110896. [Google Scholar] [CrossRef]
- Puccio, S.; Perrone, A.; Sortino, G.; Gianguzzi, G.; Gentile, C.; Farina, V. Yield, Pomological Characteristics, Bioactive Compounds and Antioxidant Activity of Annona cherimola Mill. Grown in Mediterranean Climate. AIMS Agric. Food 2019, 4, 592–603. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ajgunde, B.R.; Jadge, D.R. Annona cherimola Mill. (Custard Apple): A Review on Its Plant Profile, Nutritional Values, Traditional Claims and Ethnomedicinal Properties. Orient Pharm. Exp. Med. 2017, 17, 189–201. [Google Scholar] [CrossRef]
- Durán, A.G.; Gutiérrez, M.T.; Mejías, F.J.R.; Molinillo, J.M.G.; Macías, F.A. An Overview of the Chemical Characteristics, Bioactivity and Achievements Regarding the Therapeutic Usage of Acetogenins from Annona cherimola Mill. Molecules 2021, 26, 2926. [Google Scholar] [CrossRef]
- Verma, A.M.; Kumar, A.P.; Shekar, R.K.; Kumar, K.A.; Chakrapani; Rani, R.A. Pharmacological Screening of Annona cherimola for Antihyperlipidemic Potential. J. Basic Clin. Pharm. 2011, 2, 63–69. [Google Scholar]
- Albuquerque, T.G.; Santos, F.; Sanches-Silva, A.; Beatriz Oliveira, M.; Bento, A.C.; Costa, H.S. Nutritional and Phytochemical Composition of Annona cherimola Mill. Fruits and by-Products: Potential Health Benefits. Food Chem. 2016, 193, 187–195. [Google Scholar] [CrossRef]
- Fuel, M.; Mesas, C.; Martínez, R.; Ortiz, R.; Quiñonero, F.; Prados, J.; Porres, J.M.; Melguizo, C. Antioxidant and Antiproliferative Potential of Ethanolic Extracts from Moringa oleifera, Tropaeolum tuberosum and Annona cherimola in Colorrectal Cancer Cells. Biomed. Pharmacother. 2021, 143, 112248. [Google Scholar] [CrossRef] [PubMed]
- Alrosan, M.; Tan, T.C.; Mat Easa, A.; Gammoh, S.; Alu’datt, M.H.; Tranchant, C.C.; Almajwal, A.M.; Maghaydah, S.; Dheyab, M.A.; Jameel, M.S.; et al. Preparation of Lentil and Quinoa Protein Complexes through Protein–Protein Interactions and Water Kefir–Assisted Fermentation to Improve Protein Quality and Functionality. Front. Sustain. Food Syst. 2023, 7, 1174597. [Google Scholar] [CrossRef]
- Gökırmaklı, Ç.; Şatır, G.; Guzel-Seydim, Z.B. Microbial Viability and Nutritional Content of Water Kefir Grains under Different Storage Conditions. Food Sci. Nutr. 2024, 12, 4143–4150. [Google Scholar] [CrossRef]
- Laureys, D.; Van Jean, A.; Dumont, J.; De Vuyst, L. Investigation of the Instability and Low Water Kefir Grain Growth during an Industrial Water Kefir Fermentation Process. Appl. Microbiol. Biotechnol. 2017, 101, 2811–2819. [Google Scholar] [CrossRef] [PubMed]
Factors | Actual Responses | Model Responses | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Run | A: CJ (w/w) † | B: QP (w/w) | C: Temp (°C) | LAB0 × 106 CFU mL−1 | ΔLAB × 109 CFU mL−1 | Yeast0 × 106 CFU mL−1 | ΔYeast × 109 CFU mL−1 | OL Adim. | × 109 CFU mL−1 | × 109 CFU mL−1 | Adim. |
1 | 0.25 | 0.75 | −1.00 | 0.20 ± 0.02 | 0.56 ± 0.05 | 0.17 ± 0.01 | 0.10 ± 0.01 | 4.94 ± 0.40 | 0.63 ± 0.09 | 0.13 ± 0.00 | 4.65 ± 0.52 |
2 | 1.00 | 0.00 | +1.00 | 2.43 ± 1.02 | 3.00 ± 0.00 | 0.30 ± 0.02 | 0.30 ± 0.06 | 3.67 ± 0.42 | 4.74 ± 0.64 | 0.38 ± 0.01 | 3.26 ± 0.37 |
3 | 0.50 | 0.50 | +1.00 | 2.01 ± 0.67 | 5.60 ± 0.37 | 0.40 ± 0.02 | 0.40 ± 0.04 | 4.23 ± 0.54 | 10.8 ± 1.46 | 0.32 ± 0.01 | 4.38 ± 0.49 |
4 | 0.00 | 1.00 | −1.00 | 0.16 ± 0.01 | 0.98 ± 0.07 | 0.10 ± 0.01 | 0.55 ± 0.04 | 5.85 ± 0.81 | 1.09 ± 0.15 | 0.70 ± 0.01 | 5.21 ± 0.59 |
5 | 0.25 | 0.75 | +1.00 | 6.70 ± 0.45 | 55.0 ± 4.63 | 1.00 ± 0.00 | 0.99 ± 0.06 | 5.11 ± 0.87 | 23.6 ± 3.19 | 1.10 ± 0.02 | 4.93 ± 0.56 |
6 | 0.50 | 0.50 | −1.00 | 0.19 ± 0.01 | 0.53 ± 0.06 | 0.12 ± 0.09 | 0.42 ± 0.05 | 4.20 ± 0.60 | 0.51 ± 0.07 | 0.27 ± 0.00 | 4.10 ± 0.46 |
7 | 0.75 | 0.25 | −1.00 | 0.12 ± 0.00 | 0.59 ± 0.02 | 1.00 ± 0.08 | 0.73 ± 0.06 | 3.48 ± 0.38 | 0.54 ± 0.07 | 0.93 ± 0.02 | 3.54 ± 0.40 |
8 | 1.00 | 0.00 | −1.00 | 0.41 ± 0.02 | 0.80 ± 0.05 | 0.10 ± 0.01 | 0.67 ± 0.09 | 3.22 ± 0.57 | 0.74 ± 0.10 | 0.76 ± 0.01 | 2.98 ± 0.34 |
9 | 0.75 | 0.25 | +1.00 | 4.45 ± 1.67 | 4.45 ± 1.67 | 0.40 ± 0.04 | 0.36 ± 0.02 | 4.05 ± 0.36 | 6.63 ± 0.90 | 0.43 ± 0.01 | 3.82 ± 0.43 |
10 | 0.00 | 1.00 | +1.00 | 2.80 ± 0.06 | 90.0 ± 2.93 | 1.45 ± 0.06 | 145 ± 7.07 | 5.89 ± 0.47 | 112 ± 15.1 | 120 ± 2.04 | 5.49 ± 0.62 |
11 | 0.00 | 1.00 | −1.00 | 0.40 ± 0.03 | 1.32 ± 0.15 | 0.14 ± 0.01 | 1.00 ± 0.11 | 4.67 ± 0.77 | 1.09 ± 0.15 | 0.70 ± 0.01 | 5.21 ± 0.59 |
12 | 1.00 | 0.00 | −1.00 | 0.58 ± 0.10 | 0.65 ± 0.02 | 0.31 ± 0.01 | 0.90 ± 0.00 | 2.32 ± 0.68 | 0.74 ± 0.10 | 0.75 ± 0.01 | 2.98 ± 0.34 |
13 | 0.00 | 1.00 | +1.00 | 5.40 ± 1.84 | 9.00 ± 1.92 | 1.02 ± 0.05 | 102 ± 2.85 | 4.62 ± 0.83 | 11.2 ± 1.51 | 120 ± 2.04 | 5.49 ± 0.62 |
14 | 1.00 | 0.00 | +1.00 | 3.20 ± 0.01 | 7.50 ± 0.88 | 0.50 ± 0.08 | 0.50 ± 0.08 | 3.07 ± 0.30 | 4.74 ± 0.64 | 0.38 ± 0.01 | 3.26 ± 0.37 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Response 1: ; Transform: inverse SQRT; constant: −0.5 | ||||||
Model | 3.131 × 10−9 | 5 | 6.261 × 10−10 | 63.74 | <0.0001 | significant |
Linear Mixture | 1.824 × 10−10 | 1 | 1.824 × 10−10 | 18.56 | 0.0026 | |
AB | 7.972 × 10−11 | 1 | 7.972 × 10−11 | 8.11 | 0.0215 | |
AC | 5.298 × 10−10 | 1 | 5.298 × 10−10 | 53.93 | <0.0001 | |
BC | 7.975 × 10−10 | 1 | 7.975 × 10−10 | 81.18 | <0.0001 | |
ABC | 5.768 × 10−11 | 1 | 5.768 × 10−11 | 5.87 | 0.0417 | |
Residual | 7.859 × 10−11 | 8 | 9.824 × 10−12 | |||
Lack of Fit | 3.896 × 10−11 | 4 | 9.739 × 10−12 | 0.9828 | 0.5065 | not significant |
Pure Error | 3.964 × 10−11 | 4 | 9.909 × 10−12 | |||
Cor. Total | 3.209 × 10−9 | 13 | ||||
Fit Statistics | ||||||
Std. Dev. | 3.134 × 10−6 | R2 = 0.9755 | R2-adj = 0.9602 | |||
%C.V. | 13.51 | Adeq. Precision: 20.0314 | ||||
Response 2: ; Transform: base 10 log; constant: 0 | ||||||
Model | 10.6 | 6 | 1.77 | 74.61 | <0.0001 | significant |
Linear Mixture | 2.48 | 1 | 2.48 | 104.93 | <0.0001 | |
C-temp | 5.33 | 1 | 5.33 | 224.91 | <0.0001 | |
AB | 1.89 | 1 | 1.89 | 80 | <0.0001 | |
AC | 3.64 | 1 | 3.64 | 116.46 | <0.0001 | |
ABC | 0.485 | 1 | 0.485 | 20.48 | 0.0027 | |
AB(A-B) | 0.6388 | 1 | 0.6388 | 26.98 | 0.0013 | |
Residual | 0.1657 | 7 | 0.0237 | |||
Lack of Fit | 0.0868 | 3 | 0.0289 | 1.46 | 0.3506 | not significant |
Pure Error | 0.079 | 4 | 0.0197 | |||
Cor. Total | 10.76 | 13 | ||||
Fit Statistics | ||||||
Std. Dev. | 0.1539 | R2 = 0.9846 | R2-adj = 0.9714 | |||
%C.V. | 1.7 | Adeq. Precision: 27.3387 | ||||
Response 3: | ||||||
Model | 11.41 | 2 | 5.7 | 24.91 | <0.0001 | significant |
Linear Mixture | 11.13 | 1 | 11.13 | 48.62 | <0.0001 | |
C-temp | 0.2744 | 1 | 0.2744 | 1.2 | 0.2971 | |
Residual | 2.52 | 11 | 0.229 | |||
Lack of Fit | 0.4313 | 7 | 0.0616 | 0.1181 | 0.9919 | not significant |
Pure Error | 2.09 | 4 | 0.5219 | |||
Cor. Total | 13.93 | 13 | ||||
Fit Statistics | ||||||
Std. Dev. | 0.4785 | R2 = 0.8191 | R2-adj = 0.7862 | |||
%C.V. | 11.29 | Adeq. Precision: 11.3058 |
Name | Goal | Lower Limit | Upper Limit | Weight 1 | Importance 2 |
---|---|---|---|---|---|
A: CJ | is in range | 0 | 1 | 1 | 3 |
B: QP | is in range | 0 | 1 | 1 | 3 |
C: temp | is in range | 25 | 32 | 1 | 3 |
maximise | 5.25 × 108 | 1.00 × 1011 | 1 | 3 | |
maximise | 9.18 × 107 | 1.45 × 1011 | 1 | 3 | |
minimise | 2.3 | 5.9 | 1 | 3 |
Number | CJ (w/w) | QP (w/w) | Temp (°C) | × 109 CFU mL−1 | × 109 CFU mL−1 | Adim. | Desirability Adim. |
---|---|---|---|---|---|---|---|
1 | 0.87 | 0.13 | 25 | 0.62 ± 0.08 | 1.22 ± 0.02 | 3.27 ± 0.37 | 0.62 |
2 | 1 | 0 | 25 | 0.75 ± 0.10 | 0.81 ± 0.01 | 2.98 ± 0.34 | 0.58 |
3 | 0 | 1 | 26.4 | 1.67 ± 0.23 | 2.03 ± 0.03 | 5.26 ± 0.59 | 0.34 |
Run | LAB × 109 CFU mL−1 | Yeast × 109 CFU mL−1 | OL Adim. |
---|---|---|---|
1 | 0.57 | 0.31 | 3.21 |
2 | 0.42 | 3 | 3.45 |
3 | 0.71 | 1.1 | 3.31 |
Response | Pred. Mean | Pred. Median | Std. Dev. | n | SE Pred | 95% PI Low | Data Mean | 95% PI High |
---|---|---|---|---|---|---|---|---|
LAB | 6.1346 × 108 | 6.0275 × 108 | 9.3993 × 107 | 3 | N/A | 4.6539 × 108 | 5.4752 × 108 | 8.1129 × 108 |
Yeast | 1.2181 × 109 | 1.1440 × 109 | 4.4548 × 108 | 3 | N/A | 0.5526 × 109 | 1.0076 × 109 | 2.3684 × 109 |
OL | 3.2741 | 3.2741 | 0.4785 | 3 | 0.3507 | 2.5022 | 3.3233 | 4.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacios-Castillo, A.E.; Campoverde-Quilca, T.N.; Núñez-Pérez, J.; Burbano-García, J.L.; Pineda-Flores, H.M.; Espín-Valladares, R.C.; Zárate-Baca, S.; Pais-Chanfrau, J.-M. Optimising a Functional Beverage from Quinoa and Cherimoya Mixtures Fermented with Water Kefir Grains. Foods 2025, 14, 3464. https://doi.org/10.3390/foods14203464
Palacios-Castillo AE, Campoverde-Quilca TN, Núñez-Pérez J, Burbano-García JL, Pineda-Flores HM, Espín-Valladares RC, Zárate-Baca S, Pais-Chanfrau J-M. Optimising a Functional Beverage from Quinoa and Cherimoya Mixtures Fermented with Water Kefir Grains. Foods. 2025; 14(20):3464. https://doi.org/10.3390/foods14203464
Chicago/Turabian StylePalacios-Castillo, Abigail E., Tatiana N. Campoverde-Quilca, Jimmy Núñez-Pérez, Jhomaira L. Burbano-García, Holger M. Pineda-Flores, Rosario C. Espín-Valladares, Santiago Zárate-Baca, and José-Manuel Pais-Chanfrau. 2025. "Optimising a Functional Beverage from Quinoa and Cherimoya Mixtures Fermented with Water Kefir Grains" Foods 14, no. 20: 3464. https://doi.org/10.3390/foods14203464
APA StylePalacios-Castillo, A. E., Campoverde-Quilca, T. N., Núñez-Pérez, J., Burbano-García, J. L., Pineda-Flores, H. M., Espín-Valladares, R. C., Zárate-Baca, S., & Pais-Chanfrau, J.-M. (2025). Optimising a Functional Beverage from Quinoa and Cherimoya Mixtures Fermented with Water Kefir Grains. Foods, 14(20), 3464. https://doi.org/10.3390/foods14203464