Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (248)

Search Parameters:
Keywords = temperature dependent dielectric properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4361 KiB  
Article
Synthesis of Tetragonal BaTiO3 Nanoparticles in Methanol
by Nasser Mohamed-Noriega, Julia Grothe and Stefan Kaskel
Nanomaterials 2025, 15(16), 1226; https://doi.org/10.3390/nano15161226 - 12 Aug 2025
Viewed by 355
Abstract
BaTiO3 (BT) is an essential material for many applications due to its dielectric, ferroelectric, and piezoelectric properties; nevertheless, it has been reported to possess a “critical size” in the nanoscale below which its outstanding properties are lost and the paraelectric cubic phase [...] Read more.
BaTiO3 (BT) is an essential material for many applications due to its dielectric, ferroelectric, and piezoelectric properties; nevertheless, it has been reported to possess a “critical size” in the nanoscale below which its outstanding properties are lost and the paraelectric cubic phase is stabilized at room temperature instead of the tetragonal phase. This value depends on multiple factors, mostly resulting from the synthesis route and conditions. Especially, internal stresses are known to promote the loss of tetragonality. Stresses are commonly present in water-containing synthesis routes because of the incorporation of hydroxyl groups into the oxygen sublattice of BaTiO3. On the other hand, the use of an organic solvent instead of water as a reaction medium overcomes the mentioned problem. This work presents a one-pot water-free solvothermal treatment of a Ti(O-iPr)4-Ba(OH)2·8H2O sol in methanol in the presence of small amounts of oleic acid, which allows the synthesis of spherical crystalline BT nanoparticles (from ~12 nm to ~30 nm in diameter) at temperatures as low as 100 °C with a cubic/tetragonal crystal structure confirmed by powder XRD, but predominantly tetragonal according to the Raman spectra. The retention of the tetragonal crystal structure is attributed to the lack of lattice hydroxyls (confirmed by FTIR spectroscopy) resulting from the use of an organic solvent (methanol) as reaction medium. To the best of the author’s knowledge, this synthesis approach is the first report of tetragonal BT nanoparticles synthesized in methanol without the addition of extra water and without the need for a post-synthetic calcination step. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

13 pages, 5624 KiB  
Article
Identification of Hexagonal Boron Nitride Thickness on SiO2/Si Substrates by Colorimetry and Contrast
by Elena Blundo, Niklas H. T. Schmidt, Andreas V. Stier and Jonathan J. Finley
Appl. Sci. 2025, 15(15), 8400; https://doi.org/10.3390/app15158400 - 29 Jul 2025
Viewed by 387
Abstract
Hexagonal boron nitride (hBN) is a layered material with a wide variety of excellent properties for emergent applications in quantum photonics using atomically thin materials. For example, it hosts single-photon emitters that operate up to room-temperature, it can be exploited for atomically flat [...] Read more.
Hexagonal boron nitride (hBN) is a layered material with a wide variety of excellent properties for emergent applications in quantum photonics using atomically thin materials. For example, it hosts single-photon emitters that operate up to room-temperature, it can be exploited for atomically flat tunnel barriers, and it can be used to form high finesse photonic nanocavities. Moreover, it is an ideal encapsulating dielectric for two-dimensional (2D) materials and heterostructures, with highly beneficial effects on their electronic and optical properties. Depending on the use case, the thickness of hBN is a critical parameter and needs to be carefully controlled from the monolayer to hundreds of layers. This calls for quick and non-invasive methods to unambiguously identify the thickness of exfoliated flakes. Here, we show that the apparent color of hBN flakes on different SiO2/Si substrates can be made to be highly indicative of the flake thickness, providing a simple method to infer the hBN thickness. Using experimental determination of the colour of hBN flakes and calculating the optical contrast, we derived the optimal substrates for the most reliable hBN thickness identification for flakes with thickness ranging from a few layers towards bulk-like hBN. Our results offer a practical guide for the determination of hBN flake thickness for widespread applications using 2D materials and heterostructures. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Graphical abstract

26 pages, 2441 KiB  
Article
Structure–Property Relationship in Isotactic Polypropylene Under Contrasting Processing Conditions
by Edin Suljovrujic, Dejan Milicevic, Katarina Djordjevic, Zorana Rogic Miladinovic, Georgi Stamboliev and Slobodanka Galovic
Polymers 2025, 17(14), 1889; https://doi.org/10.3390/polym17141889 - 8 Jul 2025
Viewed by 889
Abstract
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by [...] Read more.
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by the crystallization behavior of the polymer under specific conditions. The most important industrial PP remains the isotactic one, and it has been studied extensively for its polymorphic characteristics and crystallization behavior for over half a century. Due to its regular chain structure, isotactic polypropylene (iPP) belongs to the group of polymers with a high tendency for crystallization. The rapid quenching of molten iPP fails to produce a completely amorphous polymer but leads to an intermediate crystalline order. On the other hand, slow cooling yields a material with high crystalline content. The processing conditions that occur in practice and industry are between these two extremes and, in some cases, are even very close. Therefore, the study of limits in processability and the impact of extreme preparation conditions on morphology, structure, thermal, and mechanical properties fills a gap in the current understanding of how the processing conditions of iPP can be used to design the desired properties for specific applications and is in the focus of this research. The first set of samples (Q samples) was obtained by rapid quenching, while the second was prepared by very slow cooling from the melt to room temperature (SC samples). Testing of samples was performed by optical microscopy (OM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic dielectric spectroscopy (DDS), and mechanical measurements. Characterization revealed that slowly cooled samples exhibited a significantly higher degree of crystallinity and larger crystallites (χ ≥ 55% and L(110) ≈ 20 nm), compared to quenched samples (χ < 30%, L(110) ≤ 3 nm). Mechanical testing showed a drastic contrast: quenched samples exhibited elongation at break > 500%, while slowly cooled samples broke below 15%, reflecting their brittle behavior. For the first time, DDS is applied to investigate molecular mobility differences between processing-dependent structural forms, specifically the mesomorphic (smectic) and α-monoclinic forms. In slowly cooled samples, α relaxation exhibited both enhanced intensity and an upward temperature shift, indicating stronger structural constraints due to a much higher crystalline phase content and significantly larger crystallite size, respectively. These findings provide novel insights into the structure–property–processing relationship, which is crucial for industrial applications. Full article
(This article belongs to the Special Issue Thermal and Elastic Properties of Polymer Materials)
Show Figures

Figure 1

11 pages, 3538 KiB  
Article
Effect of Sm3+ Doping on Energy Storage Property and Thermal Stability of BaSnxTi1−xO3 Ceramics
by Zhengchao Qin, Zhiyi Wang, Si Gao, Hongjuan Zheng, Jin Luo, Yunfei Liu and Yinong Lyu
Crystals 2025, 15(7), 600; https://doi.org/10.3390/cryst15070600 - 26 Jun 2025
Viewed by 339
Abstract
Dielectric capacitors have become a key component for energy storage systems, owing to their exceptional power density and swift charge–discharge performance. In a series of lead-free ferroelectric ceramic materials, BaSnxTi1-xO3 (BTS) received widespread attention due to its [...] Read more.
Dielectric capacitors have become a key component for energy storage systems, owing to their exceptional power density and swift charge–discharge performance. In a series of lead-free ferroelectric ceramic materials, BaSnxTi1-xO3 (BTS) received widespread attention due to its unique properties. However, BTS ceramics with high Sn content have high efficiency (η) but low recovery energy storage density (Wrec). We incorporated the Sm element into BTS ceramics and aimed to optimize both efficiency and recoverable energy density at moderate Sn content. With the synergistic effect between Sm and Sn, the optimal composition was found at 5% Sn content with 1% low-level Sm dopants, where the energy storage density reached 0.2310 J/cm3 at 40 kV/cm. Furthermore, the thermal stability of the ceramic was investigated using temperature-dependent dielectric spectroscopy, in situ XRD, and temperature-dependent hysteresis loops. With Sm doping, the fluctuation of Wrec decreased from 18.48% to 12.01%. In general, this work not only enhances the understanding of samarium dopants but also proposes strategies for developing lead-free ferroelectric ceramics with superior energy storage properties. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

24 pages, 6677 KiB  
Article
Investigation into the Performance of TDR and FDR Techniques for Measuring the Water Content of Biochar-Amended Loess
by Nan Zhou, Ziyi Zhao, Ming Li, Junping Ren, Ping Li and Qiang Su
Sensors 2025, 25(13), 3970; https://doi.org/10.3390/s25133970 - 26 Jun 2025
Viewed by 372
Abstract
Biochar has garnered considerable attention for its potential to improve soil properties due to its unique characteristics. However, the precise measurement of soil water content using electromagnetic sensors becomes challenging after biochar is incorporated. This study investigated the impact of biochar on soil [...] Read more.
Biochar has garnered considerable attention for its potential to improve soil properties due to its unique characteristics. However, the precise measurement of soil water content using electromagnetic sensors becomes challenging after biochar is incorporated. This study investigated the impact of biochar on soil water content measurement by adding biochar of varying dosages and particle sizes to a typical loess, under both room and subzero temperature conditions by using time domain reflectometry (TDR) and frequency domain reflectometry (FDR) techniques. The results demonstrate that biochar amendment significantly influenced the measurement accuracy of both TDR and FDR. A clear dosage-dependent relationship was observed, with measurement errors exhibiting progressive escalation as biochar addition rates increased. At room temperature, the root mean square error (RMSE) values for loess were remarkably low (TDR: 0.029; FDR: 0.093). In contrast, the 9% coarse-grained biochar-amended soil (BAS-9%C) showed substantially elevated RMSE values (TDR: 0.2006; FDR: 0.1468). Furthermore, comparative analysis revealed that particle size significantly affected measurement precision, with coarse-grained biochar demonstrating more pronounced interference effects than fine-grained biochar at equivalent application rates. At subzero temperatures, BAS-6%C exhibited significantly higher RMSE values (TDR: 0.1753; FDR: 0.2022) compared to BAS-6%F (TDR: 0.079; FDR: 0.1872). A dielectric mixing model was established for calculating the dielectric constant of BAS. In addition, calibration equations for accurately determining the water content of biochar-amended loess under both room and subzero temperature conditions were established. Furthermore, the mechanisms by which biochar influenced the performance of the TDR and FDR sensors are comprehensively discussed. These findings can provide valuable theoretical foundation and practical guidance for future soil improvement with biochar and accurate water content measurement in BAS. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

18 pages, 5735 KiB  
Article
Fractional Calculus as a Tool for Modeling Electrical Relaxation Phenomena in Polymers
by Flor Y. Rentería-Baltiérrez, Jesús G. Puente-Córdova, Nasser Mohamed-Noriega and Juan Luna-Martínez
Polymers 2025, 17(13), 1726; https://doi.org/10.3390/polym17131726 - 20 Jun 2025
Viewed by 505
Abstract
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus ( [...] Read more.
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus (M*=M+iM) formalism to simultaneously describe two key relaxation phenomena: α-relaxation and interfacial polarization (Maxwell–Wagner–Sillars effect). The model incorporates fractional elements (cap-resistors) into a modified Debye equivalent circuit to capture polymer dynamics and energy dissipation. Fractional differential equations are derived, with fractional orders taking values between 0 and 1; the frequency and temperature responses are analyzed using Fourier transform. Two temperature-dependent behaviors are considered: the Matsuoka model, applied to α-relaxation near the glass transition, and an Arrhenius-type equation, used to describe interfacial polarization associated with thermally activated charge transport. The proposed model is validated using literature data for amorphous polymers, polyetherimide (PEI), polyvinyl chloride (PVC), and polyvinyl butyral (PVB), successfully fitting dielectric spectra and extracting meaningful physical parameters. The results demonstrate that the EFM is a robust and versatile tool for modeling complex dielectric relaxation in polymeric systems, offering improved interpretability over classical integer-order models. This approach enhances understanding of coupled relaxation mechanisms and may support the design of advanced polymer-based materials with tailored dielectric properties. Full article
(This article belongs to the Special Issue Relaxation Phenomena in Polymers)
Show Figures

Figure 1

18 pages, 4003 KiB  
Article
Exploring Layered Ruddlesden-Popper Structures for High-Performance Energy Devices
by Ahmad Hussain, Sumaira Zafar, Nawishta Jabeen, Muhammad Usman Khan, Imtiaz Ahmad Khan and Mahmoud M. Hessien
Inorganics 2025, 13(6), 203; https://doi.org/10.3390/inorganics13060203 - 17 Jun 2025
Viewed by 601
Abstract
This study presents comprehensive DFT calculations to determine the structural, electronic, mechanical, and optical properties of the Ruddlesden–Popper Phase family member, La2XO4, which has an orthorhombic crystal structure with a Cmce space group. Ultrasoft pseudopotential plane wave and PBE-GGA [...] Read more.
This study presents comprehensive DFT calculations to determine the structural, electronic, mechanical, and optical properties of the Ruddlesden–Popper Phase family member, La2XO4, which has an orthorhombic crystal structure with a Cmce space group. Ultrasoft pseudopotential plane wave and PBE-GGA approaches have been implemented using the CASTEP tool. The exchange–correlation approximation calculations show that the La2XO4 (where X = Ni, Fe, Ba, and Pb) compounds possess no band gap. The results indicate that the compounds are metallic, which are ideal for supercapacitor (SC) applications. The compound’s optical conductivity, dielectric function, extinction coefficients, absorption refractive index, loss function, and reflectivity are also analyzed for SC applications. UV spectra of the compounds observed high absorption coefficient (105 cm−1), dielectric function (9–10), optical conductivity (7 fs−1), and refractive index (4) values. Furthermore, as B/G > 1.75, the mechanical (elastic) properties have shown ductile behavior and mechanical stability. Using the Born stability criteria, the mechanical stability of the compounds is examined. All of the compounds are ductile, according to Pugh’s and Frantesvich ratios. Finally, time-simulations-dependent temperature stability plots for the compounds are computed by employing dynamical stability with norm-conserved pseudopotential, which confirm their potential for SC applications. Full article
Show Figures

Graphical abstract

16 pages, 3899 KiB  
Article
Uncooled Insulated Monopole Antenna for Microwave Ablation: Improved Performance with Coaxial Cable Annealing
by Federico Cilia, Lourdes Farrugia, Charles Sammut, Arif Rochman, Julian Bonello, Iman Farhat and Evan Joe Dimech
Appl. Sci. 2025, 15(12), 6616; https://doi.org/10.3390/app15126616 - 12 Jun 2025
Viewed by 340
Abstract
There is growing interest in measuring the temperature-dependent dielectric properties of bio-tissues using dual-mode techniques (scattering measurements and thermal treatment). Uncooled coaxial antennas are preferred for their direct contact with the measured medium and reduced complexity; however, they exhibit structural changes during ablation [...] Read more.
There is growing interest in measuring the temperature-dependent dielectric properties of bio-tissues using dual-mode techniques (scattering measurements and thermal treatment). Uncooled coaxial antennas are preferred for their direct contact with the measured medium and reduced complexity; however, they exhibit structural changes during ablation due to the thermal expansion of polytetrafluoroethylene (PTFE). This paper presents an experimental study on PTFE expansion in an uncooled coaxial insulated monopole antenna in response to changes in the tissue’s thermal environment. Furthermore, it presents a methodology to mitigate these effects through coaxial annealing. The investigation consists of two distinct experiments: characterising PTFE expansion and assessing the effects of annealing through microwave ablation. This was achieved by simulating the thermal effects experienced during ablation by immersing the test antenna in heated peanut oil. PTFE expansion was measured through camera monitoring and using a toolmaker’s microscope, revealing two expansion modalities: linear PTFE expansion and non-linear plastic deformation from manufacturing processes. The return loss during ablation and consequential changes in the ablated lesion were also assessed. Antenna pre-annealing increased resilience against structural changes in the antenna, improving lesion ellipticity. Therefore, this study establishes a fabrication method for achieving an uncooled thermally stable antenna, leading to an optimised dual-mode ablation procedure, enabling quasi-real-time permittivity measurement of the surrounding tissue. Full article
Show Figures

Figure 1

20 pages, 3663 KiB  
Article
Sol–Gel Synthesis and Comprehensive Study of Structural, Electrical, and Magnetic Properties of BiBaO3 Perovskite
by Faouzia Tayari, Kais Iben Nassar, João Pedro Carvalho, Sílvia Soreto Teixeira, Imen Hammami, Sílvia Rodrigues Gavinho, Manuel P. F. Graça and Manuel Almeida Valente
Gels 2025, 11(6), 450; https://doi.org/10.3390/gels11060450 - 12 Jun 2025
Cited by 3 | Viewed by 1514
Abstract
In this study, BiBaO3 perovskite was successfully synthesized via the sol–gel method and thoroughly characterized to evaluate its structural, microstructural, dielectric, electrical, and magnetic properties. X-ray diffraction (XRD) confirmed the formation of a single-phase perovskite structure with high crystallinity. Scanning electron microscopy [...] Read more.
In this study, BiBaO3 perovskite was successfully synthesized via the sol–gel method and thoroughly characterized to evaluate its structural, microstructural, dielectric, electrical, and magnetic properties. X-ray diffraction (XRD) confirmed the formation of a single-phase perovskite structure with high crystallinity. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) revealed a uniform grain morphology and elemental composition consistent with the intended stoichiometry. Dielectric measurements exhibited strong frequency-dependent behavior, suggesting potential for capacitive applications. The electrical conductivity displayed thermally activated behavior, indicative of semiconducting characteristics. Magnetic measurements showed weak ferromagnetic behavior at room temperature, an unusual observation for undoped BaBiO3-based systems. This magnetism may stem from subtle structural distortions or compositional variations introduced during synthesis. Comparison with previously reported studies underscores the significant influence of the synthesis route and microstructural features on the multifunctional properties of BiBaO3. Overall, the results highlight the promise of sol–gel-derived BiBaO3 as a candidate for multifunctional electronic and magnetic applications. Full article
(This article belongs to the Special Issue Gels for Efficient Energy Storage and Conversion)
Show Figures

Figure 1

33 pages, 5225 KiB  
Review
A Study of the Dielectric Relaxation of Nitrile–Butadiene Rubber, Ethylene–Propylene–Diene Monomer, and Fluoroelastomer Polymers with a Self-Developed Deconvolution Analysis Program
by Youngil Moon, Gyunghyun Kim and Jaekap Jung
Polymers 2025, 17(11), 1539; https://doi.org/10.3390/polym17111539 - 31 May 2025
Viewed by 1176
Abstract
This study presents an integrated analysis of the dielectric characteristics of nitrile–butadiene rubber (NBR), ethylene–propylene–diene monomer (EPDM), and fluoroelastomer (FKM) polymers. Dispersion spectra were obtained over a wide range of frequencies and temperatures, and, via our self-developed “Dispersion Analysis” program, the obtained dielectric [...] Read more.
This study presents an integrated analysis of the dielectric characteristics of nitrile–butadiene rubber (NBR), ethylene–propylene–diene monomer (EPDM), and fluoroelastomer (FKM) polymers. Dispersion spectra were obtained over a wide range of frequencies and temperatures, and, via our self-developed “Dispersion Analysis” program, the obtained dielectric spectra were precisely deconvoluted. Notably, α, α’, β, and γ relaxation phenomena, including the DC conduction process, were identified in NBR, whereas three relaxation processes, namely, α, β, and the Maxwell‒Wagner‒Sillars (MWS) process, as well as DC conduction, were observed in EPDM and FKM copolymers. The activation energies (Ea) for secondary relaxation—namely, β, γ, and MWS—and the DC conduction process, which are observed in NBR, EPDM, and FKM, were determined via the Arrhenius temperature dependence model, and these values were compared with previously published results. Furthermore, the glass transition temperature (Tg), extrapolated from the relaxation rate of the α process, was estimated via the Vogel–Fulcher–Tamman–Hesse (VFTH) law. The values of Tg obtained using dielectric spectroscopy for NBR, EPDM, and FKM agreed well with the differential scanning calorimetry (DSC) measurements. This study provides foundational insights into the dielectric properties of widely used rubber polymers, offering a comprehensive reference for future research. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

15 pages, 5629 KiB  
Article
Phase and Valence State Engineering of MOFs-Derived Iron Oxide@Carbon Polyhedrons for Advanced Microwave Absorption
by Xiaojiao Yang, Shuai Han, Hongna Xing, Yi Dong, Xia Deng, Yan Zong, Juan Feng, Xiuhong Zhu, Xinghua Li and Xinliang Zheng
Nanomaterials 2025, 15(11), 806; https://doi.org/10.3390/nano15110806 - 27 May 2025
Viewed by 426
Abstract
MOFs-derived magnetic carbon-based composites are considered to be valuable materials for the design of high-performance microwave absorbents. Regulating phase structures and introducing mixed-valence states within the composites is a promising strategy to enhance their charge transfer properties, resulting in improved microwave absorption performance. [...] Read more.
MOFs-derived magnetic carbon-based composites are considered to be valuable materials for the design of high-performance microwave absorbents. Regulating phase structures and introducing mixed-valence states within the composites is a promising strategy to enhance their charge transfer properties, resulting in improved microwave absorption performance. In this study, iron oxide components show a temperature-dependent phase evolution process (α-Fe2O3→Fe3O4→Fe3O4/FeO), during which the valence states of iron ions are regulated. The tunable phases modulate the magnetic Fe3O4 component, resulting in enhanced magnetic loss. The changed valence states affect the polarization relaxation by adjusting the electronic structure and tune the electron scattering by introducing defects, leading to enhanced dielectric loss. The microwave absorption properties of iron oxide@carbon composites display phase- and valence state-dependent characteristics. Especially, Fe3O4@C composites exhibit superior microwave absorption properties, ascribed to the improved magnetic/dielectric losses induced by good impedance matching and strong microwave attenuation capacity. The minimum reflection loss of Fe3O4@C composites reaches −73.14 dB at 10.35 GHz with an effective absorption bandwidth of 4.9 GHz (7.69–12.59 GHz) when the absorber thickness is 2.31 mm. This work provides new insights into the adjustment of electromagnetic parameters and microwave absorption properties by regulating the phase and valence state. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

21 pages, 13910 KiB  
Article
Modeling and Simulation for Predicting Thermo-Mechanical Behavior of Wafer-Level Cu-PI RDLs During Manufacturing
by Xianglong Chu, Shitao Wang, Chunlei Li, Zhizhen Wang, Shenglin Ma, Daowei Wu, Hai Yuan and Bin You
Micromachines 2025, 16(5), 582; https://doi.org/10.3390/mi16050582 - 15 May 2025
Viewed by 1107
Abstract
The development of chip manufacturing and advanced packaging technologies has significantly changed redistribution layers (RDLs), leading to shrinking line width/spacing, increasing the number of build-up layers and package size, and introducing organic materials such as polyimide (PI) for dielectrics. The fineness and complexity [...] Read more.
The development of chip manufacturing and advanced packaging technologies has significantly changed redistribution layers (RDLs), leading to shrinking line width/spacing, increasing the number of build-up layers and package size, and introducing organic materials such as polyimide (PI) for dielectrics. The fineness and complexity of structures, combined with the temperature-dependent and viscoelastic properties of organic materials, make it increasingly difficult to predict the thermo-mechanical behavior of wafer-level Cu-PI RDL structures, posing a severe challenge in warpage prediction. This study models and simulates the thermo-mechanical response during the manufacturing process of Cu-PI RDL at the wafer level. A cross-scale wafer-level equivalent model was constructed using a two-level partitioning method, while the PI material properties were extracted via inverse fitting based on thermal warpage measurements. The warpage prediction results were compared against experimental data using the maximum warpage as the indicator to validate the extracted PI properties, yielding errors under less than 10% at typical process temperatures. The contribution of RDL build-up, wafer backgrinding, chemical mechanical polishing (CMP), and through-silicon via (TSV)/through-glass via (TGV) interposers to the warpage was also analyzed through simulation, providing insight for process risk evaluation. Finally, an artificial neural network was developed to correlate the copper ratios of four RDLs with the wafer warpages for a specific process scenario, demonstrating the potential for wafer-level warpage control through copper ratio regulation in RDLs. Full article
(This article belongs to the Special Issue 3D Integration: Trends, Challenges and Opportunities)
Show Figures

Figure 1

35 pages, 6358 KiB  
Article
Development of Diopside-Modified Marl-Based Dielectric Composite for Microelectronics Applications
by Nassima Riouchi, Oussama Riouchi, Othmane Lamrani, El Hassan Yahakoub, Mohammed Mansori, Boštjan Genorio, Mitja Kolar, Petranka Petrova, Soufian El Barkany, Mohamed Abou-Salama and Mohamed Loutou
Nanomaterials 2025, 15(9), 668; https://doi.org/10.3390/nano15090668 - 27 Apr 2025
Viewed by 553
Abstract
This research explores the modification of marl by the incorporation of diopside (CaMgSi2O6) to develop a composite material with improved dielectric properties, while addressing environmental and economic challenges through the use of abundant natural resources. X-ray fluorescence (XRF) analysis [...] Read more.
This research explores the modification of marl by the incorporation of diopside (CaMgSi2O6) to develop a composite material with improved dielectric properties, while addressing environmental and economic challenges through the use of abundant natural resources. X-ray fluorescence (XRF) analysis reveals a high silicate content in the raw marl, mainly SiO2 (68.12%) and Al2O3 (12.54%), while laser particle size analysis indicates a homogeneous grain size distribution centered around 100 µm. The composite was synthesized by the solid-state reaction method, achieving good phase homogeneity. X-ray diffraction (XRD) and infrared spectroscopy confirm the incorporation of diopside, while SEM analysis shows a porous morphology with granular aggregates. The modified material has an average particle size of 11.653 µm, optimizing the electrical properties. Impedance spectroscopy demonstrates improved dielectric performance, with accumulated permittivity and reduced losses, which improves energy storage and dissipation. Tests showed the remarkable stability of dielectric properties over a wide frequency range (10 Hz to 10 MHz) and low-temperature dependence. The performance was demonstrated on a single sample with a thickness of 0.63 mm, demonstrating consistent efficiency. These results position the diopside-modified marl as a promising candidate for electrochemical and microelectronic applications. Full article
Show Figures

Figure 1

14 pages, 5969 KiB  
Article
Si3N4 Nanoparticle Reinforced Si3N4 Nanofiber Aerogel for Thermal Insulation and Electromagnetic Wave Transmission
by Zongwei Tong, Xiangjie Yan, Yun Liu, Yali Zhao and Kexun Li
Gels 2025, 11(5), 324; https://doi.org/10.3390/gels11050324 - 26 Apr 2025
Viewed by 570
Abstract
Traditional nanoparticle aerogels suffer from inherent brittleness and thermal instability at elevated temperatures. In recent years, ceramic nanofiber aerogels, utilizing flexible nanofibers as structural units, have emerged as mechanically resilient alternatives with ultrahigh porosity (>90%). However, their thermal insulation capabilities are compromised by [...] Read more.
Traditional nanoparticle aerogels suffer from inherent brittleness and thermal instability at elevated temperatures. In recent years, ceramic nanofiber aerogels, utilizing flexible nanofibers as structural units, have emerged as mechanically resilient alternatives with ultrahigh porosity (>90%). However, their thermal insulation capabilities are compromised by micron-scale pores (10–100 μm) and overdependence on ultralow density, which exacerbates mechanical fragility. This study pioneers a gas-phase self-assembly strategy to fabricate Si3N4 nanoparticle reinforced Si3N4 nanofiber aerogels (SNP-R-SNFA) with gradient pore architectures. By leveraging methyltrimethoxysilane/vinyltriethoxysilane composite aerogel (MVa) as a reactive template, we achieved spontaneous growth of Si3N4 nanofiber films (SNP-R-SNF) featuring nanoparticle-fiber interpenetration and porosity gradients. The microstructure formation mechanism of SNP-R-SNF was analyzed using field-emission scanning electron microscopy. Layer assembly and hot-pressing composite technology were employed to prepare the SNP-R-SNFA, which showed low density (0.033 g/cm3), exceptional compression resilience, insensitive frequency dependence of dielectric properties (ε′ = 2.31–2.39, tan δ < 0.08 across 8–18 GHz). Infrared imaging displayed backside 893 °C cooler than front, demonstrating superior insulation performance. This study not only provides material solutions for integrated electromagnetic wave-transparent/thermal insulation applications but more importantly establishes an innovative paradigm for enhancing the mechanical robustness of nanofiber-based aerogels. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
Show Figures

Figure 1

11 pages, 5643 KiB  
Article
Investigating 3D-Printed Carbon–Carbonyl Iron Composites for Electromagnetic Applications
by Dzmitry Tsyhanok, Darya Meisak, Pauline Blyweert, Algirdas Selskis, Jan Macutkevič, Jūras Banys, Vanessa Fierro and Alain Celzard
Polymers 2025, 17(8), 1009; https://doi.org/10.3390/polym17081009 - 8 Apr 2025
Cited by 1 | Viewed by 551
Abstract
The electromagnetic properties of 3D-printed carbon–carbonyl iron powder (CIP) composites are studied in the radio (20 Hz–1 MHz) and microwave (26–37 GHz) frequency ranges. Relatively high electrical conductivities (about several hundred S/m), typical for these structures in the radio frequency range, are observed. [...] Read more.
The electromagnetic properties of 3D-printed carbon–carbonyl iron powder (CIP) composites are studied in the radio (20 Hz–1 MHz) and microwave (26–37 GHz) frequency ranges. Relatively high electrical conductivities (about several hundred S/m), typical for these structures in the radio frequency range, are observed. The temperature dependence of electrical conductivity is described by Arrhenius’ law, with distinct activation energies above and below a critical temperature, attributed to electron transport through various defects. The microwave properties of the investigated structures are particularly noteworthy. For instance, a 2 mm-plate with 20 wt.% magnetic inclusions achieves 52% absorption at 35 GHz. The microwave dielectric properties of the composite structures strongly depend on the concentration of carbonyl iron particles, with the highest values of the imaginary part of complex dielectric permittivity observed in carbon structures containing 20 wt.% CIP. Moreover, carbon composites with the highest CIP concentration exhibited interesting resonance states, demonstrating significant potential for Salisbury screen applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop