Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = telechelic polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 14917 KB  
Article
Preparation of Nanoparticle-Immobilized Gold Surfaces for the Reversible Conjugation of Neurotensin Peptide
by Hidayet Gok, Deniz Gol, Betul Zehra Temur, Nureddin Turkan, Ozge Can, Ceyhun Ekrem Kirimli, Gokcen Ozgun and Ozgul Gok
Biomolecules 2025, 15(6), 767; https://doi.org/10.3390/biom15060767 - 27 May 2025
Viewed by 3410
Abstract
Polymer coatings as thin films stand out as a commonly used strategy to modify biosensor surfaces for improving detection performance; however, nonspecific biomolecule interactions and the limited degree of ligand conjugation on the surface have necessitated the development of innovative methods for surface [...] Read more.
Polymer coatings as thin films stand out as a commonly used strategy to modify biosensor surfaces for improving detection performance; however, nonspecific biomolecule interactions and the limited degree of ligand conjugation on the surface have necessitated the development of innovative methods for surface modification. To this end, methacrylated tethered telechelic polyethylene glycol (PEG-diMA) chains of three different molecular weights (2, 6, and 10 kDa) were synthesized herein and used for obtaining thiolated nanoparticles (NPs) upon adding excess amounts of a tetra-thiol crosslinker. Characterized according to their size, surface charge, morphology, and thiol amounts, these nanoparticles were immobilized on gold surfaces that mimicked gold-coated mass sensor platforms. The PEG-based nanoparticles, prepared especially by PEG6K-diMA polymers, were shown to result in the preparation of a monolayer and smooth coating of 80–120 nm thickness. Cysteine-modified NTS(8–13) peptide (RRPYIL) was conjugated to thiolated NP with reversible disulfide bonds and it was demonstrated that its cleavage with a reducing agent such as dithiothreitol (DTT) restores the NP-immobilized gold surface for at least two cycles. Together with its binding studies to NTSR2 antibodies, it was revealed that the peptide-conjugated NP-modified gold surface could be employed as a model for a reusable sensor surface for the detection of biomarkers of same or different types. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

21 pages, 4118 KB  
Article
Bicontinuous Nanophasic Conetworks of Polystyrene with Poly(dimethylsiloxane) and Divinylbenzene: From Macrocrosslinked to Hypercrosslinked Double-Hydrophobic Conetworks and Their Organogels with Solvent-Selective Swelling
by Anna Petróczy, István Szanka, András Wacha, Zoltán Varga, Yi Thomann, Ralf Thomann, Rolf Mülhaupt, Laura Bereczki, Nóra Hegyesi and Béla Iván
Gels 2025, 11(5), 318; https://doi.org/10.3390/gels11050318 - 24 Apr 2025
Cited by 3 | Viewed by 1822
Abstract
Polymer conetworks, which consist of two or more covalently crosslinked polymer chains, not only combine the individual characteristics of their components, but possess various unique structural features and properties as well. In this study, we report on the successful synthesis of a library [...] Read more.
Polymer conetworks, which consist of two or more covalently crosslinked polymer chains, not only combine the individual characteristics of their components, but possess various unique structural features and properties as well. In this study, we report on the successful synthesis of a library of polystyrene-l-poly(dimethylsiloxane) (PSt-l-PDMS) (“l” stands for “linked by”) and polystyrene-l-poly(dimethylsiloxane)/divinylbenzene (PSt-l-PDMS/DVB) polymer conetworks. These conetworks were prepared via free radical copolymerization of styrene (St) with methacryloxypropyl-telechelic poly(dimethylsiloxane) (MA-PDMS-MA) as macromolecular crosslinker in the absence and presence of DVB with 36:1 and 5:1 St/DVB ratios (m/m), the latter leading to hypercrosslinked conetworks. Macroscopically homogeneous, transparent conetworks with high gel fractions were obtained over a wide range of PDMS contents from 30 to 80 m/m%. The composition of the conetworks determined by elemental analysis was found to be in good agreement with that obtained from the 1H NMR spectra of the extraction residues, as a new method which can be widely used to easily determine the composition of multicomponent networks and gels. DSC, SAXS, and AFM measurements clearly indicate bicontinuous disordered nanophase separated morphology for all the investigated conetworks with domain sizes in the range of 3–30 nm, even for the hypercrosslinked PSt-l-PDMS/DVB conetworks with extremely high crosslinking density. The cocontinuous morphology is also proved by selective, composition-dependent uniform swelling in hexane for the PDMS and in 1-nitropropane for the PSt domains. The Korsmeyer–Peppas type evaluation of the swelling data indicates hindered Fickian diffusion of both solvents in the conetwork organogels. The unique nanophasic bicontinuous morphology and the selective swelling behavior of the PSt-l-PDMS and PSt-l-PDMS/DVB conetworks and their gels offer a range of various potential applications. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Graphical abstract

24 pages, 3727 KB  
Article
Experimental Design (24) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH)
by Jaime Maldonado-Estudillo, Rodrigo Navarro Crespo, Ángel Marcos-Fernández, María Dolores de Dios Caputto, Gustavo Cruz-Jiménez and José E. Báez
Polymers 2025, 17(5), 668; https://doi.org/10.3390/polym17050668 - 28 Feb 2025
Cited by 2 | Viewed by 1242
Abstract
Aliphatic unsegmented polyurethanes (PUs) have garnered relatively limited attention in the literature, despite their valuable properties such as UV resistance and biocompatibility, making them suitable for biomedical applications. This study focuses on synthesizing poly(ester-urethanes) (PEUs) using 1,6-hexamethylene diisocyanate and the macrodiol α,ω-hydroxy telechelic [...] Read more.
Aliphatic unsegmented polyurethanes (PUs) have garnered relatively limited attention in the literature, despite their valuable properties such as UV resistance and biocompatibility, making them suitable for biomedical applications. This study focuses on synthesizing poly(ester-urethanes) (PEUs) using 1,6-hexamethylene diisocyanate and the macrodiol α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH). To optimize the synthesis, a statistical experimental design approach was employed, a methodology not commonly utilized in polymer science. The influence of reaction temperature, time, reagent concentrations, and solvent type on the resulting PEUs was investigated. Characterization techniques included FT-IR, 1H NMR, differential scanning calorimetry (DSC), gel permeation chromatography (GPC), optical microscopy, and mechanical testing. The results demonstrated that all factors significantly impacted the number-average molecular weight (Mn) as determined by GPC. Furthermore, the statistical design revealed crucial interaction effects between factors, such as a dependence between reaction time and temperature. For example, a fixed reaction time of 1 h, with the temperature varying from 50 °C to 61° C, did not significantly alter Mn. Better reaction conditions yielded high Mn (average: 162,000 g/mol), desirable mechanical properties (elongation at break > 1000%), low levels of unreacted HOPCLOH in the PEU films (OH/ESTER response = 0.0008), and reduced crystallinity (ΔHm = 11 J/g) in the soft segment, as observed by DSC and optical microscopy. In contrast, suboptimal conditions resulted in low Mn, brittle materials with unmeasurable mechanical properties, high crystallinity, and significant amounts of residual HOPCLOH. The best experimental conditions were 61 °C, 0.176 molal, 8 h, and chloroform as the solvent (ε = 4.8). Full article
Show Figures

Graphical abstract

13 pages, 2179 KB  
Article
Smart and Efficient Synthesis of Cyclic Poly(N-isopropylacrylamide)s by Ring Expansion RAFT (RE-RAFT) Polymerization and Analysis of Their Unique Temperature-Responsive Properties
by Jin Motoyanagi, Kenichi Bessho and Masahiko Minoda
Molecules 2024, 29(22), 5392; https://doi.org/10.3390/molecules29225392 - 15 Nov 2024
Cited by 1 | Viewed by 1723
Abstract
Cyclic polymers have many interesting properties compared to their linear analogs, but there are very few examples of their synthesis. This is because most cyclic polymers have been synthesized by stepwise processes, including synthesizing homo- or hetero-telechelic end-functionalized precursor polymers and consecutive intramolecularly [...] Read more.
Cyclic polymers have many interesting properties compared to their linear analogs, but there are very few examples of their synthesis. This is because most cyclic polymers have been synthesized by stepwise processes, including synthesizing homo- or hetero-telechelic end-functionalized precursor polymers and consecutive intramolecularly coupling of both ends of the polymers. This requires a complicated synthesis, and the product yields are very low because the target cyclic polymers are usually synthesized under highly dilute conditions, consequently, making it difficult to systematically analyze the properties of cyclic polymers. In the present research, we have synthesized cyclic polymers using a ring expansion polymerization method. Particularly, the ring expansion RAFT polymerization (RE-RAFT polymerization) that we have developed using a cyclic chain transfer agent is a smart method that can synthesize cyclic polymers very efficiently. In this paper, we successfully synthesized cyclic-poly(N-isopropylacrylamide), which is widely known as a thermo-responsive polymer, by RE-RAFT polymerization. Furthermore, we have compared the thermo-responsive properties of the cyclic-poly(N-isopropylacrylamide)s with those of their linear analogs. Full article
Show Figures

Graphical abstract

15 pages, 4187 KB  
Article
Synthesis and Characterization of DOPO-Containing Poly(2,6-dimethyl-1,4-phenylene oxide)s by Oxidative Coupling Polymerization
by Cheng-Hao Lu, Chi Chang, Yu-Chen Huang, Jun-Xiang You and Mong Liang
Polymers 2024, 16(2), 303; https://doi.org/10.3390/polym16020303 - 22 Jan 2024
Cited by 2 | Viewed by 4113
Abstract
A set of polyphenylene oxides incorporating DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) functionality, denoted as DOPO−R−PPO, was synthesized by copolymerization of 2,6-dimethylphenol (2,6-DMP) with various DOPO-substituted tetramethyl bisphenol monomers. In the initial step, a Friedel–Crafts acylation reaction was employed to react 2,6-DMP with different acyl chlorides, leading [...] Read more.
A set of polyphenylene oxides incorporating DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) functionality, denoted as DOPO−R−PPO, was synthesized by copolymerization of 2,6-dimethylphenol (2,6-DMP) with various DOPO-substituted tetramethyl bisphenol monomers. In the initial step, a Friedel–Crafts acylation reaction was employed to react 2,6-DMP with different acyl chlorides, leading to the formation of ketone derivatives substituted with 2,6-dimethylphenyl groups. Subsequently, the ketones, along with DOPO and 2,6-DMP, underwent a condensation reaction to yield a series of DOPO-substituted bisphenol derivatives. Finally, polymerizations of 2,6-dimethylphenol with these DOPO-substituted bisphenols were carried out in organic solvents using copper(I) bromide/N-butyldimethylamine catalysts (CuBr/DMBA) under a continuous flow of oxygen, yielding telechelic PPO oligomers with DOPO moieties incorporated into the polymer backbone. The chemical structures of the synthesized compounds were characterized using various analytical techniques, including Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), phosphorus nuclear magnetic resonance (31P NMR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). When compared to conventional poly(2,6-dimethyl-1,4-phenylene oxide)s with a similar molecular weight range, all DOPO−PPOs exhibited higher glass transition temperatures, enhanced thermal degradability, and increased char yield formation at 800 °C without compromising solubility in organic solvents. Full article
Show Figures

Graphical abstract

15 pages, 4026 KB  
Article
A Telechelic Fluorescent Indicator Based on Polymer Conformational Change for Free Copper(II) Ions
by Yuan Chen, Bo Si, Noah Cote, Roy P. Planalp and Rudi Seitz
Sensors 2023, 23(23), 9476; https://doi.org/10.3390/s23239476 - 28 Nov 2023
Viewed by 1877
Abstract
A novel copper(II) ion indicator based on polymer conformational change is designed and its chemo-response to the target analyte is tested in this paper. The word ‘telechelic’ in the title means that a polymer has two different fluorophores on either end. If one [...] Read more.
A novel copper(II) ion indicator based on polymer conformational change is designed and its chemo-response to the target analyte is tested in this paper. The word ‘telechelic’ in the title means that a polymer has two different fluorophores on either end. If one of them is a fluorescent donor and the other is a fluorescent acceptor, then the extent of Foerster resonance energy transfer (FRET) will depend on polymer conformation. The sensitivity of these sensors is tunable based on the chain length and the amount of the receptor on the polymer. This is revealed by the fluorescence response of 30mer, 50mer, and 100mer of poly(N-isopropyl)acrylamide with different amounts of metal chelation monomers. We also address the change in fluorescence over time due to the untangling of poly(N-isopropylacrylamide) in water. The fluorescent signal can maintain stability after metal binding. The photoluminescence results agree with the length calculation of polyelectrolytes. A fluorescent standard curve is created for the measurement of different concentrations of copper ions. The sensing limit can reach 10−10 M analytes, which is suitable for the measurement of chemicals in trace amounts in the environment. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

23 pages, 8316 KB  
Article
Influence of Photoinitiator Type and Curing Conditions on the Photocuring of Soft Polymer Network
by Malwina J. Niedźwiedź, Gokhan Demirci, Nina Kantor-Malujdy and Miroslawa El Fray
Materials 2023, 16(23), 7348; https://doi.org/10.3390/ma16237348 - 25 Nov 2023
Cited by 7 | Viewed by 3833
Abstract
The presented work deals with the photocuring of telechelic macromonomers derived from plant-based fatty acids to obtain a soft polymer network. Compositions were made by mixing macromonomers with three different concentrations (0.5, 1, and 2%) of two type I photoinitiators (Omnirad 2022 and [...] Read more.
The presented work deals with the photocuring of telechelic macromonomers derived from plant-based fatty acids to obtain a soft polymer network. Compositions were made by mixing macromonomers with three different concentrations (0.5, 1, and 2%) of two type I photoinitiators (Omnirad 2022 and Omnirad 819). All formulations were then subjected to photopolymerization studies by applying UV-assisted differential scanning calorimetry (UV-DSC) measurements at isothermal conditions at 37 °C with a narrow light source wavelength of 365 nm and irradiation (light intensity) of 20 and 50 mW/cm2. The percentage conversions, reaction orders, and constants were estimated based on autocatalytic Sestak–Berggen and Avrami models. In this work, for the first time, the influence of the curing conditions on the photopolymerization process, such as the photoinitiator concentration, light intensity, and oxygen presence/absence, were investigated for these novel systems. The results indicated significant differences between the two commercially available photoinitiators and their effects on photopolymerization kinetics. The maximum reaction rate was found to be considerably higher for Omnirad 2022 (which is a blend of three different compounds), especially at a lower light intensity, i.e., 20 mW/cm2, compared to Omnirad 819. However, it led to lower maximum conversion in an air atmosphere. The dynamic thermomechanical analysis (DMTA) revealed that light intensity, photoinitiator concentration, and oxygen presence had a strong effect on the storage modulus and loss modulus values. It was concluded that the chemical structure of the photoinitiator and curing conditions had a strong effect on the photopolymerization kinetics and properties of the prepared soft polymer networks. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

23 pages, 785 KB  
Article
Thermoreversible Gelation with Supramolecularly Polymerized Cross-Link Junctions
by Fumihiko Tanaka
Gels 2023, 9(10), 820; https://doi.org/10.3390/gels9100820 - 15 Oct 2023
Cited by 3 | Viewed by 2677
Abstract
Structure and reversibility of cross-link junctions play pivotal roles in determining the nature of thermoreversible gelation and dynamic mechanical properties of the produced polymer networks. We attempt to theoretically explore new types of sol–gel transitions with mechanical sharpness by allowing cross-links to grow [...] Read more.
Structure and reversibility of cross-link junctions play pivotal roles in determining the nature of thermoreversible gelation and dynamic mechanical properties of the produced polymer networks. We attempt to theoretically explore new types of sol–gel transitions with mechanical sharpness by allowing cross-links to grow without upper bound. We consider thermoreversible gelation of the primary molecules R{Af} carrying the number f of low molecular weight functional groups (gelators) A. Gelators A are assumed to form supramolecular assemblies. Some examples are: telechelic polymers (f=2) carrying ππ stacking benzene derivatives at their both ends, and trifunctional star molecules (f=3) bearing multiple hydrogen-bonding gelators. The sol–gel transition of the primary molecules becomes sharper with the cooperativity parameter of the stepwise linear growth of the cross-links. There is a polymerization transition (crossover without singularity) of the junctions in the postgel region after the gel point is passed. If the gelator A tends to form supramolecular rings competitively with linear chains, there is another phase transition in the deep postgel region where the average molecular weight of the rings becomes infinite (Bose–Einstein condensation of rings). As a typical example of binary cross-links where gelators A and B form mixed junctions, we specifically consider metal-coordinated binding of ligands A by metal ions B. Two types of multi-nuclear supramolecular complexes are studied: (i) linear stacking (ladder) of the sandwich A2B units, and (ii) linear train of egg-box A4B units. To find the strategy towards experimental realization of supramolecular cross-links, the average molecular weight, the gel fraction, the average length of the cross-link junctions are numerically calculated for all of these models as functions of the functionality f, the concentration of the solute molecules, and the temperature. Potential candidates for the realization of these new types of thermoreversible gelation are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Thermoreversible Gelation)
Show Figures

Figure 1

16 pages, 3829 KB  
Article
Low-Viscosity Polydimethylsiloxane Resin for Facile 3D Printing of Elastomeric Microfluidics
by Elyse Fleck, Charlise Keck, Karolina Ryszka, Emma DeNatale and Joseph Potkay
Micromachines 2023, 14(4), 773; https://doi.org/10.3390/mi14040773 - 30 Mar 2023
Cited by 7 | Viewed by 5260
Abstract
Microfluidics is a rapidly advancing technology with expansive applications but has been restricted by slow, laborious fabrication techniques for polydimethylsiloxane (PDMS)-based devices. Currently, 3D printing promises to address this challenge with high-resolution commercial systems but is limited by a lack of material advances [...] Read more.
Microfluidics is a rapidly advancing technology with expansive applications but has been restricted by slow, laborious fabrication techniques for polydimethylsiloxane (PDMS)-based devices. Currently, 3D printing promises to address this challenge with high-resolution commercial systems but is limited by a lack of material advances in generating high-fidelity parts with micron-scale features. To overcome this limitation, a low-viscosity, photopolymerizable PDMS resin was formulated with a methacrylate-PDMS copolymer, methacrylate-PDMS telechelic polymer, photoabsorber, Sudan I, photosensitizer, 2-isopropylthioxanthone, and a photoinitiator, 2,4,6-trimethyl benzoyl diphenylphosphine oxide. The performance of this resin was validated on a digital light processing (DLP) 3D printer, an Asiga MAX X27 UV. Resin resolution, part fidelity, mechanical properties, gas permeability, optical transparency, and biocompatibility were investigated. This resin produced resolved, unobstructed channels as small as 38.4 (±5.0) µm tall and membranes as thin as 30.9 (±0.5) µm. The printed material had an elongation at break of 58.6% ± 18.8%, Young’s modulus of 0.30 ± 0.04 MPa, and was highly permeable to O2 (596 Barrers) and CO2 (3071 Barrers). Following the ethanol extraction of the unreacted components, this material demonstrated optical clarity and transparency (>80% transmission) and viability as a substrate for in vitro tissue culture. This paper presents a high-resolution, PDMS 3D-printing resin for the facile fabrication of microfluidic and biomedical devices. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Micromachines)
Show Figures

Figure 1

15 pages, 2883 KB  
Article
Original Fluorinated Non-Isocyanate Polyhydroxyurethanes
by Lolwa Haydar, Wassim El Malti, Vincent Ladmiral, Ali Alaaeddine and Bruno Ameduri
Molecules 2023, 28(4), 1795; https://doi.org/10.3390/molecules28041795 - 14 Feb 2023
Cited by 3 | Viewed by 2864
Abstract
New fluorinated polyhydroxyurethanes (FPHUs) with various molar weights were synthesized via the polyaddition reaction of a fluorinated telechelic bis(cyclocarbonate) (bis-CC) with a diamine. The fluorinated bis-CC was initially synthesized by carbonylation of a fluorinated diepoxide, 1,4-bis(2′,3′-epoxypropyl)perfluorobutane, in the presence of LiBr catalyst, in [...] Read more.
New fluorinated polyhydroxyurethanes (FPHUs) with various molar weights were synthesized via the polyaddition reaction of a fluorinated telechelic bis(cyclocarbonate) (bis-CC) with a diamine. The fluorinated bis-CC was initially synthesized by carbonylation of a fluorinated diepoxide, 1,4-bis(2′,3′-epoxypropyl)perfluorobutane, in the presence of LiBr catalyst, in high yield. Then, several reaction conditions were optimized through the model reactions of the fluorinated bis-CC with hexylamine. Subsequently, fluorinated polymers bearing hydroxyurethane moieties (FPHUs) were prepared by reacting the bis-CC with different hexamethylenediamine amounts in bulk at 80 °C and the presence of a catalyst. The chemoselective polymerization reaction yielded three isomers bearing primary and secondary hydroxyl groups in 61–82% yield. The synthesized fluorinated CCs and the corresponding FPHUs were characterized by 1H, 19F, and 13C NMR spectroscopy. They were compared to their hydrogenated homologues synthesized in similar conditions. The gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) data of the FPHUs revealed a higher molar mass and a slight increase in glass transition and decomposition temperatures compared to those of the PHUs. Full article
(This article belongs to the Special Issue Themed Issue Dedicated to Prof. Bernard Boutevin)
Show Figures

Figure 1

16 pages, 4639 KB  
Article
Dynamic Light Scattering Based Microrheology of End-Functionalised Triblock Copolymer Solutions
by Ren Liu, Alessio Caciagli, Jiaming Yu, Xiaoying Tang, Rini Ghosh and Erika Eiser
Polymers 2023, 15(3), 481; https://doi.org/10.3390/polym15030481 - 17 Jan 2023
Cited by 2 | Viewed by 3691
Abstract
Nano-sized particles functionalised with short single-stranded (ss)DNAs can act as detectors of complementary DNA strands. Here we consider tri-block-copolymer-based, self-assembling DNA-coated nanoparticles. The copolymers are chemically linked to the DNA strands via azide (N3) groups. The micelles aggregate when they are [...] Read more.
Nano-sized particles functionalised with short single-stranded (ss)DNAs can act as detectors of complementary DNA strands. Here we consider tri-block-copolymer-based, self-assembling DNA-coated nanoparticles. The copolymers are chemically linked to the DNA strands via azide (N3) groups. The micelles aggregate when they are linked with complementary ssDNA. The advantage of such block-copolymer-based systems is that they are easy to make. Here we show that DNA functionalisation results in inter-micellar attraction, but that N3-groups that have not reacted with the DNA detector strands also change the phase behaviour of the tri-block polymer solution. We studied the triblock copolymer, Pluronic® F108, which forms spherical micelles in aqueous solutions upon heating. We find that the triblock chains ending with either an N3 or N3-DNA complex show a dramatic change in phase behaviour. In particular, the N3-functionalisation causes the chain ends to cluster below the critical micelle temperature (CMT) of pure F108, forming flower-micelles with the N3-groups at the core, while the PPO groups are exposed to the solvent. Above the CMT, we see an inversion with the PPO chains forming the micellar core, while the N3-groups are now aggregating on the periphery, inducing an attraction between the micelles. Our results demonstrate that, due to the two competing self-assembling mechanisms, the system can form transient hydrogels. Full article
(This article belongs to the Special Issue Block Copolymers: Synthesis, Self-Assembly and Application)
Show Figures

Graphical abstract

24 pages, 7817 KB  
Article
Synthesis of New Type Polymers by Quasi-Living Atom Transfer Radical Polymerization
by Gergely Illés, Csaba Németh, Karina Ilona Hidas, József Surányi, Adrienn Tóth, Ferenc Pajor and Péter Póti
Polymers 2022, 14(14), 2795; https://doi.org/10.3390/polym14142795 - 8 Jul 2022
Viewed by 2408
Abstract
Thanks to the polymer revolution of the 20th century, plastics are now part of our everyday lives. We use plastics as naturally as if they had always been an integral part of our lives. However, in the recent past, we were still predominantly [...] Read more.
Thanks to the polymer revolution of the 20th century, plastics are now part of our everyday lives. We use plastics as naturally as if they had always been an integral part of our lives. However, in the recent past, we were still predominantly using wood, metal, and glass objects, which were replaced by plastic products at an explosive rate. In many cases, this replacement has resulted in products with better physical, chemical, or biological properties. The changeover was too rapid, and the consequences were not recognized in time. This is evidenced by the huge scale of plastic pollution worldwide today. It is therefore in the interests of the future of both humans and animals that we must pay particular attention to the direct and indirect environmental impact of plastics introduced in animal husbandry. Starting from the tetrafunctional initiator produced as the first step of my work, poly(n-butyll acrylate) star polymers of different molecular weights were synthesized by atom transfer radical polymerization, using the so-called “core first” method. The bromine chain end of the produced star polymers was replaced by an azide group using a substitution reaction. Propalgyl telechelic PEGs were synthesized as a result of lattice end modification of poly(ethylene glycol) with different molecular weights. The azidated star polymers were connected with propalgyl telechelic PEGs using Huisgen’s “click” chemical process, and as a result of the “click” connection, amphiphilic polymer networks with several different structures were obtained. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

34 pages, 13992 KB  
Review
Ring-Opening Polymerization (ROP) and Catalytic Rearrangement as a Way to Obtain Siloxane Mono- and Telechelics, as Well as Well-Organized Branching Centers: History and Prospects
by Kseniya A. Bezlepkina, Sergey A. Milenin, Natalia G. Vasilenko and Aziz M. Muzafarov
Polymers 2022, 14(12), 2408; https://doi.org/10.3390/polym14122408 - 14 Jun 2022
Cited by 39 | Viewed by 13117
Abstract
PDMS telechelics are important both in industry and in academic research. They are used both in the free state and as part of copolymers and cross-linked materials. At present, the most important, practically used, and well-studied method for the preparation of such PDMS [...] Read more.
PDMS telechelics are important both in industry and in academic research. They are used both in the free state and as part of copolymers and cross-linked materials. At present, the most important, practically used, and well-studied method for the preparation of such PDMS is diorganosiloxane ring-opening polymerization (ROP) in the presence of nucleophilic or electrophilic initiators. In our brief review, we reviewed the current advances in the field of obtaining polydiorganosiloxane telechelics and monofunctional PDMS, as well as well-organized branching centers by the ROP mechanism and catalytic rearrangement, one of the first and most important reactions in the polymer chemistry of silicones, which remains so at the present time. Full article
(This article belongs to the Special Issue Recent Advances in the Synthesis and Application of Polysiloxanes)
Show Figures

Figure 1

13 pages, 7777 KB  
Article
3D Printable Composite Polymer Electrolytes: Influence of SiO2 Nanoparticles on 3D-Printability
by Zviadi Katcharava, Anja Marinow, Rajesh Bhandary and Wolfgang H. Binder
Nanomaterials 2022, 12(11), 1859; https://doi.org/10.3390/nano12111859 - 29 May 2022
Cited by 21 | Viewed by 3360
Abstract
We here demonstrate the preparation of composite polymer electrolytes (CPEs) for Li-ion batteries, applicable for 3D printing process via fused deposition modeling. The prepared composites consist of modified poly(ethylene glycol) (PEG), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and SiO2-based nanofillers. PEG was successfully end [...] Read more.
We here demonstrate the preparation of composite polymer electrolytes (CPEs) for Li-ion batteries, applicable for 3D printing process via fused deposition modeling. The prepared composites consist of modified poly(ethylene glycol) (PEG), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and SiO2-based nanofillers. PEG was successfully end group modified yielding telechelic PEG containing either ureidopyrimidone (UPy) or barbiturate moieties, capable to form supramolecular networks via hydrogen bonds, thus introducing self-healing to the electrolyte system. Silica nanoparticles (NPs) were used as a filler for further adjustment of mechanical properties of the electrolyte to enable 3D-printability. The surface functionalization of the NPs with either ionic liquid (IL) or hydrophobic alkyl chains is expected to lead to an improved dispersion of the NPs within the polymer matrix. Composites with different content of NPs (5%, 10%, 15%) and LiTFSI salt (EO/Li+ = 5, 10, 20) were analyzed via rheology for a better understanding of 3D printability, and via Broadband Dielectric Spectroscopy (BDS) for checking their ionic conductivity. The composite electrolyte PEG 1500 UPy2/LiTFSI (EO:Li 5:1) mixed with 15% NP-IL was successfully 3D printed, revealing its suitability for application as printable composite electrolytes. Full article
(This article belongs to the Special Issue Conductive Nanocomposites and Their 3D Printing)
Show Figures

Graphical abstract

13 pages, 3423 KB  
Article
Room-Temperature Solid-State UV Cross-Linkable Vitrimer-like Polymers for Additive Manufacturing
by Jian Chen, Ya Wen, Lingyi Zeng, Xinchun Wang, Hongmei Chen, Wei Min Huang, Yuefeng Bai, Wenhao Yu, Keqing Zhao and Ping Hu
Polymers 2022, 14(11), 2203; https://doi.org/10.3390/polym14112203 - 29 May 2022
Cited by 12 | Viewed by 3815
Abstract
In this paper, a UV cross-linkable vitrimer-like polymer, ureidopyrimidinone functionalized telechelic polybutadiene, is reported. It is synthesized in two steps. First, 2(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1H]-pyrimidinone (UPy-NCO) reacts with hydroxy-functionalized polybutadiene (HTPB) to obtain UPy-HTPB-UPy, and then the resulted UPy-HTPB-UPy is cross-linked under 365 nm UV light [...] Read more.
In this paper, a UV cross-linkable vitrimer-like polymer, ureidopyrimidinone functionalized telechelic polybutadiene, is reported. It is synthesized in two steps. First, 2(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1H]-pyrimidinone (UPy-NCO) reacts with hydroxy-functionalized polybutadiene (HTPB) to obtain UPy-HTPB-UPy, and then the resulted UPy-HTPB-UPy is cross-linked under 365 nm UV light (photo-initiator: bimethoxy-2-phenylacetophenone, DMPA). Further investigation reveals that the density of cross-linking and mechanical properties of the resulting polymers can be tailored via varying the amount of photo-initiator and UV exposure time. Before UV cross-linking, UPy-HTPB-UPy is found to be vitrimer-like due to the quadruple hydrogen-bonding interactions. The UPy groups at the end of the chain also enable for rapid solidification upon the evaporation of the solvent. The unsaturated double bonds in the HTPB chains enable UPy-HTPB-UPy to be UV cross-linkable in the solid state at room temperature. After cross-linking, the polymers have good shape memory effect (SME). Here, we demonstrate that this type of polymer can have many potential applications in additive manufacturing. In the cases of fused deposition modelling (FDM) and direct ink writing (DIW), not only the strength of the interlayer bonding but also the strength of the polymer itself can be enhanced via UV exposure (from thermoplastic to thermoset) either during printing or after printing. The SME after cross-linking further helps to achieve rapid volumetric additive manufacturing anytime and anywhere. Full article
(This article belongs to the Special Issue Shape Memory Polymers IV)
Show Figures

Graphical abstract

Back to TopTop