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Abstract: Structure and reversibility of cross-link junctions play pivotal roles in determining the
nature of thermoreversible gelation and dynamic mechanical properties of the produced polymer
networks. We attempt to theoretically explore new types of sol–gel transitions with mechanical
sharpness by allowing cross-links to grow without upper bound. We consider thermoreversible
gelation of the primary molecules R{A f } carrying the number f of low molecular weight functional
groups (gelators) A. Gelators A are assumed to form supramolecular assemblies. Some examples
are: telechelic polymers ( f = 2) carrying π–π stacking benzene derivatives at their both ends,
and trifunctional star molecules ( f = 3) bearing multiple hydrogen-bonding gelators. The sol–gel
transition of the primary molecules becomes sharper with the cooperativity parameter of the stepwise
linear growth of the cross-links. There is a polymerization transition (crossover without singularity)
of the junctions in the postgel region after the gel point is passed. If the gelator A tends to form
supramolecular rings competitively with linear chains, there is another phase transition in the deep
postgel region where the average molecular weight of the rings becomes infinite (Bose–Einstein
condensation of rings). As a typical example of binary cross-links where gelators A and B form mixed
junctions, we specifically consider metal-coordinated binding of ligands A by metal ions B. Two types
of multi-nuclear supramolecular complexes are studied: (i) linear stacking (ladder) of the sandwich
A2B units, and (ii) linear train of egg-box A4B units. To find the strategy towards experimental
realization of supramolecular cross-links, the average molecular weight, the gel fraction, the average
length of the cross-link junctions are numerically calculated for all of these models as functions of the
functionality f , the concentration of the solute molecules, and the temperature. Potential candidates
for the realization of these new types of thermoreversible gelation are discussed.

Keywords: thermoreversible gelation; supramolecular cross-linking; cooperative polymerization;
Bose–Einstein condensation of rings; metal-coordinated supramolecules; ladder junction; egg-box junction

1. Introduction

Thermoreversible gelation (TRG) in solutions of polymers, as well as of low molecular
weight molecules, has been attracting researcher’s interest [1–7] because of its scientific
importance and vast mechanical and biomedical applications of the produced gels. Many
examples of the phase diagrams with sol–gel transition lines have been reported in the
literature. Some original studies, reviews, and conceptual works have appeared with
relation to responsive gels [8–12], hydrogels for biomedical applications [6,7,13], and
hydrogen-bonding [14–19] and π-functional supramolecular gelators [20–22]. The use of
weak non-covalent interactions for cross-linking with self-assembly processes in synthetic
systems to realize complex multicomponent reversible materials promises possible new
attractive functionalities as adhesives, gelators, batteries, anti-fouling coatings, and regen-
erative medicines. Specific examples of non-covalent interactions utilized are metal–ligand
interactions, multiple hydrogen bonding, π-π stacking, host-guest inclusion interactions,
and electrostatic interactions.
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Most of the studies so far have, however, been concerned on the cross-links of poly-
mers that are confined in small spatial regions. For instance, hydrogen-bonding cross-links
are mostly formed by complementary pair of functional groups attached on the primary
molecules. Metal-coordinated cross-links are formed by stoichiometric complexes of metal
ions and ligands. The cross-linking regions of these interactions are spatially localized
in small regions. In contrast, micellar cross-links of hydrophobic short chains, as seen in
hydrophobically modified water-soluble polymers [23–29] (associating polymers), have
intermediate size (several tens of hydrophobic groups), but their stable size has an up-
per limit.

In this paper, we eliminate such restriction on the number of functional groups in a
cross-link junction (referred to as cross-link multiplicity k), and study TRG with cross-links
that can grow without upper bound, such as seen in supramolecular assembly. The specific
systems we consider are functional groups (gelators) incorporated within macromolecular
structures in several different ways, such as at polymer chain ends, at the termini of the
arms of combs/brushes, or within the polymer main chain. They form supramolecular
assemblies such as twisted chains (zig-zag array of hydrogen bonds), rings of fibrillar
random coils [30–33], ladders, and egg-boxes. The polymer architecture and number of
gelator units per polymer chain (referred to as the functionality f ) are also adjusted to
afford stable supramolecular gels to permit multiple sites of association per polymer chain.

Specific examples of such functional polymers are: hydrogen-bonding polyacry-
lates with side chains functionalized by ureidopyrimidone (UPy), or adenine-thymine
functionalised polymethacrylate co-polymerised with polybutacrylate [32,33], telechelic
polysiloxanes endcapped with UPy used as an adhesive, or telechelic poly(isobutylene)
with aminoacid residues used [34], and telechelic macromonomers forming metal-ligand
supramolecular complexes [35–38]. A combination of the conventional covalent bonding
with macrocycle-based host-guest interactions [39] is another powerful method to realize
supramolecular polymer networks.

2. Theoretical Method

The model solution we consider is an associating solution in which the number N of
reactive (associative) molecules (denoted by R{A f }) with degree of polymerization n are
dissolved in the number N0 of solvent molecules (S). We refer to the solution as R{A f }/ S.
Molecules can be any type, such as high molecular weight linear polymers, star polymers,
or low molecular weight polyfunctional molecules, etc. Each molecule carries the number f
of functional groups A, which can form interchain cross-links made up of variable number
k of A-groups (multiplicity k) [4,40–42].

In this paper, we specifically consider low-mass gelators as the functional groups
A which are capable of forming supramolecular assembly without upper bound in the
multiplicity k. Some examples of such reactive molecules are telechelic polymers ( f = 2)
carrying multiple hydrogen-bonding gelators (oil gelators) [32,33], or carrying π–π stacking
benzene derivatives [20], at their both chain ends, trifunctional star molecules ( f = 3)
bearing multiple hydrogen-bonding gelators at their arm ends [14,21]. In the solutions of
such reactive molecules, self-association of functional groups A takes place.

In contrast to such self-association, we can consider supramolecular assembly consist-
ing of complementary functional groups A and B. Gelation phenomena in such solutions
with mixed cross-link junctions can be observed in the mixed solutions R{A f }/R{Bg}/S.
To study the nature of TRG with supramolecular binary cross-link junctions, we consider
metal-coordinated binding of ligands A by metal ions B. The functionality of a metal ion is
regarded as g = 1. We study two types of multi-nuclear coordinate complexes with metal
ions: (i) linear stacking (ladders) of sandwich units A2B, and (ii) linear trains of egg-box
units A4B.
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2.1. Self-Association

Let us start from the self-association. This is based on the lattice-theoretical picture
of polymer solutions [43,44], and divides the system volume V into cells of size a of the
solvent molecule, each of which is assumed to accommodate a statistical repeat unit of the
reactive molecules. The volume of a reactive molecule is then given by n, and that of a
solvent molecule is n0 ≡ 1 in the unit of the cell volume. We assume incompressibility of
the solution, so that we have Ω = nN + N0 for the total volume. The volume fraction of
each component is then given by φ = nN/Ω for the reactive molecule, and φ0 = N0/Ω for
the solvent. In terms of the functional groups, the number concentration of A-groups on
the reactive molecules is ψ = f φ/n.

In our previous work [42,45], we studied TRG and phase separation in solutions
of functional molecules with unary (self) cross-linking. We started from the equilib-
rium condition nk

n1
k = Kk(T) (1)

for the number concentration nk of the cross-link junctions of multiplicity k. Here, Kk(T) is
the equilibrium constant of the cross-linking reaction, and n1 is the concentration of the
free A groups. Let pk be the probability for an arbitrarily chosen A group to belong to a
cross-link junction of multiplicity k (conventionally referred to as equilibrium conversion).
Then, we have the relation

ψpk = knk (2)

because there are k of A groups in a k-junction. The equilibrium condition leads to
the relation

ψpk = kKkzk (3)

for the reactivity given in terms of the number concentration of the free groups z ≡ ψp1.
From the normalization condition of pk, we find the conservation law

ψ = zu(z) (4)

where
u(z) ≡ ∑

k≥1
kKkzk−1 (5)

is a function for the characterization of the cross-linking.
In what follows, we assume, as in the classical theory of gelation [46–51], is that

(i) all functional groups A are equally reactive (principle of equal reactivity), and (ii) three-
dimensional cross-linked polymers take a tree structure; there is no cyclic structure (tree
statistics). However, the restriction of covalent pairwise reaction is eliminated so that
we can treat arbitrary multiplicity k with the conversion pk given by (3) in terms of the
equilibrium constants [40–42].

To study TRG with such multiple cross-links, we go back to Good’s theory [52–54] of
cascade processes, and introduce the probability generating function (p.g.f.)

W̃(θ) ≡ ∑
m≥1

Wmθm (6)

where Wm is the molecular weight distribution of the cross-linked polymers (m-mers), and
θ is a mathematical dummy index to transform it to p.g.f. We then apply cascade analysis
of the branching processes [52], and find the recursion equations

W̃(θ) = θũ(x) f (7a)

x = θũ(x) f−1 (7b)

for the tree structure, where x is the probability for an arbitrarily chosen unreacted func-
tional group to belong to the sol part. It is referred to as extinction probability in the cascade
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theory, because it means the probability that any reacted path starting from an unreacted
functional group A does not continue to infinity. The cascade function ũ(x) is defined by

ũ(x) ≡ ∑
k≥1

pkxk−1 (8)

For TRG for which equilibrium condition (3) holds, we have

ũ(x) =
1

ψx ∑
k≥1

kKk(xz)k =
z
ψ

u(xz) =
u(xz)
u(z)

(9)

for the cascade function written in terms of the function u(z) for the description of the
conservation law. In the pregel region, we have x = 1 by definition.

On the basis of these cascade equations, we calculate the weight-average molecular
weight M̄w measured in terms of the molecular weight M of the primary molecule [42,45],
and find that in the pregel region it is given by

Pw ≡
M̄w

M
=

1 + κ(z)
1− f ′κ(z)

(10)

where f ′ ≡ f − 1, and

κ(z) ≡ ∑
k≥2

(k− 1)pk =
d ln u(z)

d ln z
(11)

is the average branching number of the cross-links. Hence, for the gel point where M̄w
diverges, we have the condition

D(z) ≡ 1− f ′κ(z) = 0 (12)

The average branching number is related to the average multiplicity defined by

µ̄w ≡ ∑
k≥1

kpk (13)

through the relation
κ(z) = µ̄w(z)− 1 (14)

(For counting the number of reacted paths going out from a cross-link junction, one
path coming into it must be subtracted.)

In the postgel region where the gel point is passed, we must go back to the cascade
recursion relation (7b) of the branching process. For the dummy parameter of p.g.f. θ = 1,
it is an equation

x = ũ(x) f ′ (15)

A detailed discussion of this equation is given in the papers by Gordon [52] and
Good [53,54]. Fukui and Yamabe [40] also derived the same equation by applying the
method of steepest descent to find the molecular weight distribution in the postgel region
from p.g.f. For the pairwise reaction as seen in covalent cross-linking, this equation
is reduced to Flory’s postgel treatment. For TRG, the equation to find the extinction
probability x can be transformed to

H(x) ≡ x1/ f ′u(z)− u(xz) = 0 (16)

It has a solution x1 (0 < x1 < 1) apart from the trivial solution x = 1. Because x1 has
the physical meaning of the probability for an arbitrarily chosen unreacted (free) A group
to belong to the sol part, the weight fraction of the sol part Wsol = W̃(θ = 1) is given by

Wsol = W̃(θ = 1) = x1ũ(x1) = x1
f / f ′ (17)
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from the first Equation (7a). Then, the gel fraction is given by

Wgel = 1−Wsol = 1− x1
f / f ′ (18)

Similarly, the weight-average molecular weight of the sol part is found to be

P(s)
w =

1 + κ(x1z)
1− f ′κ(x1z)

(19)

Therefore, in the postgel region, we have only to replace z by x1z to find the average
quantities referring to the sol part. While the total average multiplicity of the cross-link
junctions is

µ̄w = κ(z) + 1 (20)

by definition, the average multiplicity of cross-link junctions in the sol part is

µ̄
(s)
w = κ(x1z) + 1 (21)

To summarize, the conservation law (4), the gel-point condition (12) and the equation
for the extinction (16) serve as a complete set for the study of TRG with unary cross-linking
as functions of the given concentration, temperature, and functionality.

Some examples of the supramolecular cross-linking are shown in Figure 1. In Figure 1a,
cross-linked networks consisting of low molecular weight trifunctional ( f = 3) molecules
are shown. Functional groups (low-mass gelators) on a molecule are assumed to form
either linear chains or rings of arbitrary length. The multiplicity k of a cross-link junction is
therefore equivalent to the length of chains and rings. In order to apply the conventional
tree statistics (cascade theory) for the study of gelation, we assume all networks take the
tree form without forming cycles. Rings considered here are, therefore, not the network
cycles, but expanded branch points (branch zones). The smallest ring consists of three
reacted functional groups. The molecules bearing more than one reacted functional groups
in a network serve as branch points [55].

(a) network of trifunctional molecules 

with chain/ring cross-links  

ring (k = 6)

chain (k = 16)

branch 

molecule

chain (k = 8)

ring (k = 7)

(b) network of telechelic polymers 

with chain/ring cross-links

Figure 1. (a) A network of a tree type consisting of low molecular weight trifunctional ( f = 3)
molecules with cross-link junctions of linear chains and rings. A chain of the length k (dotted line) is
regarded as a connected cross-link junction of multiplicity k. Similarly, each ring of the length k is
regarded as a cross-link junction of multiplicity k in the loop form. There are branching points where
the primary reactive molecules have more than one reacted functional groups. The smallest ring has
the size k = 3. (b) A network consisting of high molecular weight bifunctional ( f = 2) molecules
(telechelic polymers) with coexisting cross-link junctions of linear chains and rings. Functional groups
(low-mass gelators) are shown by the blue thick rods at the ends of molecules.
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In Figure 1b, networks consisting of telechelic polymers (n >> 1) carrying gelators
at their both ends ( f = 2) are shown. Gelators on a molecule are assumed to form either
linear chains or rings of arbitrary length as in Figure 1a. Although the physical properties
of the formed gels are very different from those of low-mass trifunctional molecules, the
nature of TRG can be studied from a unified theoretical scheme by properly tuning the
functionality f and the molecular weight n.

2.2. Linear Growth of the Cross-Link Junctions

Let us first consider the simplest case of stepwise linear growth without rings. The
association of A groups starts from the nucleation process

J(1) + J(1) 
 J(2) :
n2

n1
2 = λ2 (22)

where a symbol J(k) means a junction of multiplicity k, nk is their number concentration,
and λ2 is the association constant of the dimerization. The following step is the repetition of

J(k− 1) + J(1) 
 J(k) :
nk

n1nk−1
= λk (k = 3, 4, · · · ) (23)

with the equilibrium constant λk of the k-th step. The total equilibrium constant is then
given by

Kk = λ2λ3 · · · λk (24)

In the special case where all stepwise constants are the same (called isodemic
association [32]), it is simply

Kk = λk−1 (25)

We have already studied TRG and phase separation with such isodemic cross-linking
in detail [41]. In the cooperative association, we assume the nucleation process requires
highly restricted conditions leading to a small equilibrium constant λ2 compared to the all
subsequent steps. The simplest model λ2 = σλ with all other constants λk equal to λ has
been extensively studied [30–32]. We then have

Kk = σλk−1 (26)

with small constant σ (referred to as cooperativity parameter). (For σ larger than 1, the model
is referred to as anti-cooperative association [32].)

This cooperative model with two constants λ and σ can be extended to include variable
size s of the nucleus, such as

λk = σλ (k = 2, · · · , s− 1), λk = λ (s ≥ k) (27)

Also, we can extend this model to the cross-links for which the s-th step is very difficult
to go through compared to others. We then have the equilibrium constants

λk = λ (k 6= s), λs = σλ (28)

for such a bottle-neck model. This model may be applied to the chelate effect as seen in
metal-coordinated complex formation.

For the cooperative growth of linear assembly, we have

u(z) = 1 + uC(λz) (29)

where the function uC(z) is defined by

uC(z) ≡ σ ∑
k≥2

kzk−1 = σ
z(2− z)
(1− z)2 (30)
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Since the concentration z is always scaled by the factor λ, in what follows we write λz
as z. The conservation law then takes the form

a = zu(z) (31)

where

u(z) = 1 + uC(z) =
1− 2(1− σ)z + (1− σ)z2

(1− z)2 (32)

and

a ≡ λ(T) f
n

φ (33)

is the scaled concentration of the primary molecules. Because the equilibrium constant
λ depends on the temperature, we have explicitly indicated its temperature dependence.
Therefore, as far as TRG is concerned, the concentration and temperature always appear as
a single combined variable λ(T)φ.

Simple differentiation leads to the average branching number

κ(z) =
2σz

(1− z)[1− 2(1− σ)z + (1− σ)z2]
(34)

Its proportionality to the parameter σ results in a sharp sol–gel transition of a coopera-
tive chain growth.

To see the nature of TRG with cross-links of supramolecular chain growth, we first
numerically solve the three fundamental coupled equations described above. The conser-
vation law (31) takes the form

F(z) ≡ a(1− z)2 − z{1− 2(1− σ)z + (1− σ)z2} = 0 (35)

from which we can find the concentration z = z(a) of unreacted functional groups as a
function of the total concentration a. At the gel point, the condition (12) gives the numerical
value of z = zg. Together with the conservation law, we find the gel-point concentration
(temperature) is given by

ag =

[
f
n

λ(T)φ
]

g
=

2 f ′σzg
2

(1− zg)3 (36)

In the post-gel region, we have to numerically solve extinction (16) for a given z. Because
z is a function of a, we find x1 = x1(a) as a function of the concentration a. Then, the gel
fraction Wgel is given by (18). The reciprocal average length of the cross-links µ̄−1

w (13), and the
fraction of the reacted functional groups

WC = 1− z(a)/a (37)

are also calculated.
To capture an entire view of TRG, in Figure 2, we show all of these important observ-

ables plotted as functions of the volume fraction of the primary trifunctional low-mass
molecules ( f = 3, n = 6) for a given association constant λ = 5.0. The cooperativity
parameter is fixed at σ = 10−3 as a typical example. We see that the transition region of
TRG where Pw goes to infinity is very narrow. At the gel-point concentration φ = φg, the
extinction probability x1 deviates from unity, and decreases with the concentration. The
average chain length µ̄w increases with the concentration. At a concentration above the
gel point, just after the gel point is passed, it increases sharply in a narrow concentration
region. This point can be regarded as the polymerization point [30,31], although it is not a
true phase transition accompanied by a singularity, but a very sharp crossover change.
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volume fraction  φ

P
w

-1
, 
 x

1
, 
 W

g
e

l, 
 μ

w
-1
, 
W

C

σ = 10-3

P
w

-1

P(s)
w

-1

x
1 W

gel

W
C

μ
w

-1

polymerization transition

Figure 2. The reciprocal weight-average molecular weight (red solid lines) P−1
w in the pregel region,

and P(s)
w
−1

in the postgel region, the gel fraction Wgel (blue broken line), the extinction probability
x1 (red broken line), the reciprocal average chain length µ̄−1

w (black line), and the fraction WC of the
reacted functional groups (green line) plotted against the volume fraction of the primary molecules
for f = 3, n = 6, λ = 5.0. The cooperativity parameter is fixed at σ = 10−3. The sol–gel transition is
very sharp. There is a polymerization point just after the gel point is passed.

To see how TRG depends on the cooperativity of cross-linking, we also plot these
properties in Figure 3 by varying the cooperativity parameter. Figure 3a plots the reciprocal

weight-average molecular weight P−1
w in the pregel region, and that of the sol part P(s)

w
−1

in
the postgel region, together with the gel fraction Wgel. We can clearly see that TRG becomes
sharper and sharper with a decrease in σ (stronger cooperativity). Since the gel fraction
rises sharply after the gel point, we expect the dynamic mechanical modulus of the solution
goes up sharply at the gel point, leading to easy experimental detection of the transition
point. Similarly, Figure 3b plots the reciprocal chain length of the cross-link junctions µ̄−1

w
together with the gel fraction Wgel. We can see that polymerization transition also becomes
sharper with a decrease in σ.

To study TRG near the gel point in more detail, let us expand Pw(z)−1 in the pregel
region in powers of the small deviation of ε ≡ (zg − z)/zg. Simple calculation leads to

Pw(z)−1 '
f ′κ(zg)

1 + κ(zg)
κ2(zg)ε + O(ε2) (38)

where

κ2(z) ≡
d ln κ(z)

d ln z
(39)

At the gel point, we find

κ2(zg) = 1 +
(1− σ)(1− zg)2

f ′σ
' 1

σ
(for σ << 1) (40)

Hence, the amplitude of divergence in Pw becomes smaller in proportional to σ.
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W
g

e
l, 
μ

w
-1

σ = 100

f = 3

n = 6

volume fraction  φ

σ = 101

σ = 102

σ = 103

σ = 105

polymerization transition

W
gel

μ
w

-1

volume fraction  φ

P
w

-1
, 
 P

(s
) w

-1
 ,
 W

g
e

l

σ = 101

σ = 102

σ = 103

σ = 100

f = 3

n = 6

σ = 105

(a) (b)

Figure 3. (a) The reciprocal weight-average molecular weight (red solid lines) P−1
w in the pregel

region, and P(s)
w
−1

in the postgel region, and the gel fraction Wgel (blue broken lines) plotted against
the volume fraction of the primary molecules. (b) The reciprocal average chain length µ̄−1

w (black
lines), and the gel fraction Wgel (blue broken lines) plotted against the volume fraction of the primary
molecules, both for f = 3, n = 6, λ = 5.0. The cooperativity parameter is varied from curve to curve
from σ = 100 to σ = 10−5. Both the sol–gel transition and the polymerization transition become
sharper and sharper with decrease in the cooperativity parameter.

2.3. Chain/Ring Supramolecular Cross-Link Junctions

Let us next consider the effect of ring formation. We assume that the functional group A
forms either linear chains with equilibrium constants K(C)

k , or rings with K(R)
k (see Figure 1a,b).

We then have
u(z) = 1 + uC(z) + uR(z) (41)

where
uC(z) ≡ ∑

k≥2
kK(C)

k zk−1 (42)

and
uR(z) ≡ ∑

k≥3
kK(R)

k zk−1 (43)

(A minimum ring has the size k = 3.) The average branching number is then given by

κ(z) ≡ d ln u(z)
d ln z

= WC(z)κC(z) + WR(z)κR(z) (44)

where

WC(z) ≡
uC(z)
u(z)

, WR(z) ≡
uR(z)
u(z)

(45)

are the weight fraction of chain cross-links and of ring cross-links. Assuming the uniform
association constants λC = λ and λR = µλ, we have

K(C)
k = σCλk−1 (46)

for the chain growth as above. For the ring formation, we have assumed random growth in
contrast to the directional linear growth of chains. If we assume Gaussian chain statistics for
the growth, the ring closure probability [56–59] is proportional to 1/k5/2. Hence, we have

K(R)
k = σR

(µλ)k

k5/2 (47)
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Scaling the variable z by λ, we have the conservation law in the form (31) with

u(z) = 1 + σC
z(2− z)
(1− z)2 +

σR

z
Φ(µz; 3/2) (48)

where

Φ(z; α) ≡ ∑
k≥3

zk

kα
(49)

is essentially the Truesdell function [60] of order α. (k = 1, 2 are excluded from the
summation.) We then have

κC(z) =
2

(1− z)(2− z)
(50)

and

κR(z) =
Φ(µz; 1/2)
Φ(µz; 3/2)

− 1 (51)

The concentration z of the unreacted groups is physically limited to the range 0 < z < 1
in the case of chain growth, and to the range 0 < z < 1/µ in the case of ring growth. If
µ < 1, the function uC(z) goes to infinity before uR(z) does. The cross-links are dominated
by the chain formation. TRG in such cases is essentially similar to the one we studied
above. On the contrary, if µ > 1, the function uR(z) goes to infinity before uC(z) does, and
therefore only the region 0 < z < 1/µ is physically meaningful. At the upper limit

z∗ ≡ 1/µ (52)

the function Φ(µz; 3/2) in (48) takes a finite value

Φ(1; 3/2) = ζ(3/2)− 1− 1
23/2 = 1.258 (53)

where ζ(3/2) = 2.612 is the numerical value of Rieman’s zeta function at 3/2. In what
follows, therefore, we focus on the case µ > 1.

With increase in the scaled concentration a, the concentration of unreacted functional
groups z takes a unique value as the solution of the conservation law (31). The system then
reaches the gel point z = zg where the gel-point condition

D(z) = 1 + uC(z)[1− f ′κC(z)] + uR(z)[1− f ′κR(z)] = 0 (54)

is fulfilled.
In the postgel region, when a reaches a critical value a∗ given by

a∗ ≡ z∗u(z∗) (55)

the total concentration of rings of finite length is fixed at this value because the function
Φ(z; 3/2) has a finite value at µz = 1 but it goes to infinity above this value. We then
have a situation similar to the Bose–Einstein condensation (BEC) of ideal Bose gases [61,62].
The parameter z plays a role of the activity of an ideal Bose gas. Above the concentration
a > a∗, the concentration of the chain is fixed at a∗C = z∗uC(z∗), and that of the finite
rings at a∗R = z∗uR(z∗). Because the summation in uR(z) does not include the contribution
from rings of infinite size k = ∞, the remaining part a− a∗ should be regarded as rings of
infinite size. More precisely, for a system of finite particle number N, the upper limit of
the summation k is bound by the total number of functional groups kmax = f N. Therefore,
the number of rings with k = kmax increases to the order N as soon as the concentration a
exceeds the critical value a∗, leading to the finite fraction of the infinite rings. Because the
activity is fixed at z = z∗, the fraction of linear chains is given by WC = a∗C/a, that of finite
rings by WR = a∗R/a. As a result, the fraction of infinite rings by aR

∗
∞ = 1− a∗/a.
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Figure 4 shows some important physical quantities plotted against the association
constant λ(T) for telechelic polymers f = 2, n = 30. Instead of changing the volume
fraction φ, we change λ for tuning the scaled concentration a to cover a wide range of its
value. Changing φ with a constant λ is not enough to cover a range for observing BEC
of rings. As an example, parameters are fixed at σC = 3.000, σR = 0.050, µ = 1.2, and the
concentration is fixed at a constant φ = 0.2. In the region of small λ (high temperature), we
have only the sol part. The chain fraction WC is much larger than the ring fraction WR in
this sol region because the former is proportional to z2, while the latter is to z3. At the gel
point, the gel fraction starts to appear and the extinction probability x1 deviates from unity.
The cross-links are dominated by linear chains in the critical regions.

However, as λ increases (temperature is lowered) in the postgel region, chain fraction
WC shows a peak where ring fraction WR starts to increase. Eventually, the solution with
mixed sol and gel reaches the BEC point. At this point the fraction of infinite rings WR∞
starts to appear. It increases sharply after the BEC point, while chains and finite rings show
kinks (discontinuous slopes) and decrease. The average molecular weight of P(s)

w of the sol
part stays constant in this region.

log
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, 
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x
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W
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C
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R

W
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Figure 4. Variation of physical properties characteristic to ring/chain competing TRG of telechelic
polymers ( f = 2, n = 30) plotted against the strength λ of the association constant. The reciprocal of
the weight-average molecular weight Pw

−1 (red line) of the three-dimensional cross-linked polymers

in the pregel region, that of the sol parts P(s)
w
−1

(red line) in the postgel region are shown. In the
postgel region, we also plot gel fraction Wgel (blue broken line), and extinction probability x1 (red
broken line). The fraction of chain cross-links WC (green line), and that of ring cross-links WR (green
broken line) are plotted in both regions. The fraction of infinite rings WR∞ (black line) start to appear
at deep point inside the postgel region. The cooperativity parameters are fixed at σC = 3.00, σR = 0.05.
In this model calculation, TRG occurs at log λ = 2.3, while the second transition (BEC of rings) takes
place at log λ = 4.6, deep in the postgel region.

3. Metallo-Supramolecular Cross-Link Junctions

Let us move to TRG with binary supramolecular cross-linking. To study mixed cross-
link junctions, we consider a model polymer solution consisting of two species of reactive
molecules, referred to as R{A f }(A molecule) and R{Bg} (B molecule), in a common solvent
S (mostly water), each carrying the number f of functional groups A, and g of groups B.
Let nA be the number of statistical repeat units on an A molecule, and nB on a B molecule.
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The molecular weights of them are then MA = M(A)
0 nA and MB = M(B)

0 nB, where M(A)
0

and M(B)
0 are the molecular weights of their statistical repeat units.

Let Nα be the number of molecules of the component α in the solution. The volume
fraction of each component is then φA = nANA/Ω for R{A f }, φB = nBNB/Ω for R{Bg},
and φ0 = N0/Ω for the solvent, where Ω ≡ nANA + nBNB + N0 is the total volume. The
number concentration of A groups and B groups are then given by ψA = f φA/nA and
ψB = gφB/nB.

Let us first briefly review our theoretical scheme for the study of TRG with binary
cross-linking [42,45]. For the stepwise reversible formation of the cross-link junctions

k1J(1, 0) + k2J(0, 1) � J(k1, k2) (56)

with the multiplicity type (k1, k2) varied from small ones to larger, we have the equilib-
rium conditions

ψA pk1,k2 /k1

(ψA p1,0)k1(ψBq0,1)k2
=

ψBqk1,k2 /k2

(ψA p1,0)k1(ψBq0,1)k2
= Kk1,k2 (57)

where pk1,k2 is the probability for an arbitrarily chosen A group to belong to a junction
J(k1, k2), and let qk1,k2 be that for a B group. They are the counterparts of the conventional
reactivity of the functional groups.

We then have

pk1,k2 = p1,0k1Kk1,k2 zA
k1−1zB

k2 (58a)

qk1,k2 = q0,1k2Kk1,k2 zA
k1 zB

k2−1 (58b)

where
zA ≡ ψA p1,0 zB ≡ ψBq0,1 (59)

are the concentration of the free functional groups that remain unreacted in the solution.
The conservation laws are given by

ψA = zAuA(zA, zB) (60a)

ψB = zBuB(zA, zB) (60b)

where functions uA, uB are defined by

uA(zA, zB) ≡ ∑
k1≥1,k2≥0

k1Kk1,k2 zA
k1−1zB

k2 (61a)

uB(zA, zB) ≡ ∑
k1≥0,k2≥1

k2Kk1,k2 zA
k1 zB

k2−1 (61b)

in terms of the equilibrium constants. They have physical meanings of the reciprocal
unreactivity uA(zA, zB) = 1/p1,0, uB(zA, zB) = 1/q0,1. The coupled conservation equations
must be solved for the two unknown variables zA, zB as functions of the concentration
ψA, ψB given in the preparation stage of the experiments.

In our previous paper [42,45], we derived the weight-average molecular weight of
the three-dimensional polymers (clusters) connected by cross-links. Under the simplifying
assumption for the molecular weight M(A)

0 = M(B)
0 ≡ M0, the result (Equation (26) in [45])

of Pw ≡ M̄w/M0 is

φPw = nAφA + nBφB +
1
D

{
nA

2ψA[κA,A − (g− 1)Dκ ] + nB
2ψB[κB,B − ( f − 1)Dκ ]

}
+

nAnB

D
(ψAκA,B + ψBκB,A) (62)
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where φ ≡ φA + φB is the total solute volume fraction. Elements of the branching matrix κ̂
are defined by the logarithmic derivatives

κα,β ≡
∂ ln uα

∂ ln zβ
(63)

and Dκ ≡ κA,AκB,B − κA,BκB,A is its determinant. The denominator D in Pw is defined by

D(zA, zB) ≡ 1− f ′κA,A − g′κB,B + f ′g′Dκ (64)

It was referred to as Gordon determinant because it was first presented in their cascade
theory of gelation [52] for the mixtures of multi-component reactive molecules. Abbreviated
notations f ′ ≡ f − 1 and g′ ≡ g− 1 have been used, since they will frequently appear in
the following.

At the gel point, the weight average molecular weight goes to infinity, and hence
we have

D(zA, zB) = 0 (65)

for a gel to appear. We have D(zA, zB) > 0 for the pregel region, and D(zA, zB) < 0 for the
postgel region. Materials conservation laws (60a) and (60b), together with the gel point
condition (65), leads to the relation between ψA and ψB, and therefore gives the sol–gel
transition line on the ternary phase plane when parameters zA and zB are eliminated in
favor of φA and φB.

In the postgel region where the gel point is passed, we have to find the extinction prob-
abilities x1 and y1, i.e., the probability for an arbitrarily chosen unreacted A, or B, group to
belong to the sol part. They are given by the non-trivial solutions of the coupled equations

HA(x, y) ≡ x1/ f ′uA(zA, zB)− uA(xzA, yzB) = 0 (66a)

HB(x, y) ≡ y1/g′uB(zA, zB)− uB(xzA, yzB) = 0 (66b)

In what follows in this paper, we focus on the metallo-supramolecular cross-
linking [35–38] by assuming that the B molecule is a metal ion. It has functionality g = 1,
and is of low molecular weight nB = 1, but can form multiple cross-links. The gel-point
condition is simplified to

D(zA, zB) = 1− f ′κA,A(zA, zB) = 0 (67)

Obviously, we have only a trivial solution y1 = 1 for y because g′ = 0.

3.1. Ladder Model

The first model of our supramolecular metal-coordinated cross-link junction is a ladder
form in which elementary units of the type J(2, 1) (bridge or sandwich) are piled up one by
one in layered structure (see Figure 5a). The first step is to form a sandwich

2J(1, 0) + J(0, 1) 
 J(2, 1) :
n2,1

n1,0
2n0,1

= λ1
2 (68)

Then, subsequent piling steps follow

J(2k− 2, k− 1) + J(2, 1) 
 J(2k, k) :
n2k,k

n2k−2,k−1n2,1
= λ2 (69)

The multiplicity index of a ladder junction is specified by

(k1, k2) = (2k, k) (k = 1, 2, · · · ) (70)
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where k is the number of layers, or equivalently of metal ions, in the cross-links. Let λ1 be
the association constant of an A group within a sandwich unit in (68), and let λ2 be the
binding constant between the adjacent layers in (69). The equilibrium constant then takes
a form

Kk ≡ K2k,k = (λ2
1)

kλ2
k−1 = σ(λ2

1λ2)
k (71)

where σ ≡ 1/λ2 plays a role of the cooperativity parameter for ladder formation.

(a) network with ladder cross-links (b) phase diagram of trifunctional

molecules with ladder cross-links

ladder (k = 8)

branch molecule

multiplicity index 

(2,1) 0.5 0.5

0.5

λ =3

6

9

12

15

u
1

u
2

GEL

Figure 5. (a) Network structure with cross-link junctions of ladder form made up of trifunctional
( f = 3) low-mass (n = 6) molecules. The cross-linker (metal ion) is shown by a red sphere. The
elementary unit of a cross-link is a sandwich complex with multiplicty index (2, 1). A network is
made up of ladder cross-links and branch molecules [55] bearing more than one reacted functional
groups. (b) Ternary phase diagram for the ladder model of low-mass (n = 6) trifunctional ( f = 3)
molecules showing reentrant sol–gel–sol transition (red lines). The association constant λ of the
ladder unit is changed from curve to curve at a constant ratio µ = 1.0. For a given solute volume
fraction φ, there are two composition u1 and u2 for the gel point; the former from sol to gel, and the
latter from gel to sol.

Scaling the concentrations ψA, zA by λ1, and ψB, zB by λ2, we find

pk ≡ p2k,k = 2µkzk/a, qk ≡ q2k,k = kzk/b (72)

Then, the conservation laws are transformed to

a = zA + 2µzu(z) (73a)

b = zB + zu(z) (73b)

where a ≡ λ1ψA and b ≡ λ2ψB are the scaled concentrations,

z ≡ zA
2zB (74)

is a combined concentration variable, and

µ ≡ λ1/λ2 (75)

is the ratio of the intra- and interlayer association constant. The function u(z) is defined by

u(z) ≡ ∑
k≥1

kzk−1 =
1

(1− z)2 (76)
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as in the unary cross-linking.
Solving these equations for zA and zB, and substituting the results into the definition (74)

of the variable z, we find a single equation

F(z) ≡ z− {a− 2µzu(z)}2{b− zu(z)} = 0 (77)

for z for the conservation law.
To find the branching matrix, we take logarithmic derivatives of uA and uB. Simple

calculation leads to

κ̂(z) = zu(z)

[
2µ
a {1 + 2κ(z)}, 2µ

a {1 + κ(z)}
2
b{1 + κ(z)}, 1

b κ(z)

]
(78)

for the κ̂-matrix with

κ(z) ≡ d ln u(z)
d ln z

=
2z

1− z
(79)

The gel-point condition is then given by

D(z) ≡ 1− 2 f ′µ
a

zu(z){1 + 2κ(z)} = 0 (80)

We have numerically solved these equations and constructed phase diagrams showing
the sol–gel transition lines on the ternary phase plane. Figure 5b shows an example of
low-mass trifunctional molecules ( f = 3, n = 6) cross-linked by metal ions (g = 1, nB = 1)
in a solvent. The ratio of the association constants is fixed at µ = 1, while λ is changed
from curve to curve. The gel region takes a dome shape, whose top indicates the optimal
mixing ratio of the solute components.

To see the behavior of TRG across the gel region, let us introduce the solute volume
fraction φ ≡ φA + φB, and the mixing ratio (composition) u ≡ φB/φ of the solute molecules.
Then, we have

a = a1φ(1− u), b = b1φu (81)

where a1 ≡ µλ f /nA and b1 ≡ λg/nB. For the numerical calculation, we fix φ and plot
physical properties as functions of the composition u.

In the postgel region, the extinction probability for a metal ion is y1 = 1 because its
functionality is g = 1, and hence unreacted free ions can exist only in the sol part. The
extinction probability of a functional group A should satisfy

H(x) ≡ a(1− x1/ f ′)− 2µz{u(z)− xu(x2z)} = 0 (82)

By using the non-trivial solution x1 of this equation, fraction of the sol part is calculated
to be

Wsol = (1− u)x1
f / f ′ + uũB(x1, 1) (83)

where
ũB(x1, 1) =

1
b

{
b− zu(z) + x1

2zu(x1
2z)
}

(84)

The average molecular weight of the clusters in the sol part in the postgel region is
given by

P(s)
w = Pw(x1

2z) (85)

where Pw(z) is given by (62). The average length of ladders, including both sol and gel
part, is calculated by the definition

µ̄w = ∑
k≥1

kqk =
1
b
{zB(z) + zu(z)[1 + κ(z)]} (86)
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Figure 6 shows overviews of the reentrant sol–gel–sol transition of the ladder model for
low-mass trifunctional molecules with (a) µ = 1.0 and (b) µ = 10−4. Excess metal ions brings
the solution back to a sol phase because of the lack of A groups. The average molecular weight

P−1
w in the sol region (u < u1, u2 < u), P(s)

w
−1

in the gel region (u1 < u < u2), and the gel
fraction Wgel, the extinction probability x1 of the functional group A, the average length µ̄−1

w of
the ladder cross-link junctions, are all plotted as functions of the solute composition u. We can
clearly see that TRG becomes sharper with smaller ratio µ, or an equivalent decrease in the
cooperative parameter σ.
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Figure 6. Reentrant TRG with ladder cross-link junctions for trifunctional ( f = 3) low-mass (nA = 6)
molecules. (a) µ = 1.0, λ = 8.0, (b) µ = 10−4, λ = 5.5× 10−3. There are a pregel region (u < u1), a
postgel region (u1 < u < u2), and a reentrant sol region (u1 < u). The average molecular weight

P−1
w in the sol region, P(s)

w
−1

in the gel region, and the gel fraction Wgel, the extinction probability x1

of the functional group A, the average length µ̄−1
w of the ladder cross-link junctions, all plotted as

functions of the solute composition u. The total solute volume fraction is fixed at φ = 0.3.

In the postgel region between the solute composition u1 and u2, the fraction of the gel
part shows a peak at a certain value of u. It is therefore regarded as the optimal ratio for
the gel formation. The extinction x1 takes a minimum value near (but not exactly at) this
optimal gel point. The average length of the ladder junctions also takes a maximum value
near this point.

3.2. Egg-Box Model

The second model we consider for supramolecular metal-coordinated cross-link junc-
tion is an egg-box form [63–65] in which elementary units of the type J(4, 1) (egg-box) are
piled up one by one in layered structure (see Figure 7). The nucleation of a egg-box is
the process

4J(1, 0) + J(0, 1) 
 J(4, 1) :
n4,1

n1,0
4n0,1

= λ1
4 (87)

Then, subsequent piling processes follow

J(2k, k− 1) + J(2, 1) 
 J(2k + 2, k) :
n2k+2,k

n2k,k−1n2,1
= λ2 (88)

The multiplicity index of an egg-box junction is then specified by

(k1, k2) = (2(k + 1), k) (k = 1, 2, · · · ) (89)
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where k is the number of layers (number of metal ions) in a cross-link. Let λ1 be the
association constant of an A group within an egg-box unit in (87), and let λ2 be the binding
constant between the adjacent layers in (88). The equilibrium constant then takes a form

Kk ≡ K2(k+1),k = λ1
4(λ1

2λ2)
k−1 = σ(λ2

1λ2)
k (90)

where σ ≡ λ1
2/λ2 plays a role of the cooperativity parameter for the egg-box formation.

The reactivities are then given by

ψA pk ≡ ψA p2(k+1),k = 2(k + 1)KkzA
2(zA

2zB)
k (91a)

ψBqk ≡ ψBq2(k+1),k = kKkzA
2(zA

2zB)
k (91b)

Scaling the concentrations ψA, zA by λ1, and ψB, zB by λ2, we find

pk = 2µ(k + 1)zA
2zk/a (92a)

qk = kzA
2zk/b (92b)

with
µ ≡ λ1/λ2 (93)

The conservation laws are transformed to the simple ones

a = zA{1 + 2µzAzu0(z)} (94a)

b = zB{1 + zA
4u1(z)} (94b)

where
z ≡ zA

2zB (95)

again, and u functions are defined by

u0(z) ≡ ∑
k≥1

(k + 1)zk−1 =
2− z

(1− z)2 (96a)

u1(z) ≡ ∑
k≥1

kzk−1 =
1

(1− z)2 (96b)

We can solve the conservation laws for zA, zB as functions of z. From (94b), we have

zB =
b

1 + zA
4u1(z)

(97)

Substituting into (94a), we find zA satisfies the equation

2µzu0(z)zA
2 + zA − a = 0 (98)

Hence,

zA = zA(z) ≡
1

4µzu0(z)

{√
1 + 8aµzu0(z)− 1

}
(99)

By the definition (95) of z, we have a single equation

F(z) ≡ z− bzA(z)2

1 + zA(z)
4u1(z)

= 0 (100)

to find a solution of z as a function of the concentrations a, b.
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networks of functional molecules with egg-box cross-links

egg-box (k = 3)

(b) telechelic polymers(a) tri-functional molecules

branch molecules

branch molecules

egg-box (k = 7)

egg-box unit (4,1)

Figure 7. Networks formed by egg-box cross-link junctions made up of (a) trifunctional low-mass
( f = 3, nA ∼ 1) molecules, (b) telechelic polymers ( f = 2, nA >> 1). Cross-linkers (metal ions) are
indicated by red spheres. The elementary unit of a cross-link is an egg-box complex with multiplicity
index (4, 1). A network is made up of linear assembly of egg-boxes and branch molecules bearing
more than one reacted functional groups A.

By partial differentiation of the conservation laws, we have for the branching matrix

κ̂(z) = zzA(z)
2

[
2µ
a u0(z){3 + 2κ0(z)}, 2µ

a u0(z){1 + κ0(z)}
2
b u1(z){2 + κ1(z)}, 1

b u1(z)κ1(z)

]
(101)

with

κ0(z) ≡
d ln u0(z)

d ln z
=

z(3− z)
(1− z)(2− z)

(102a)

κ1(z) ≡
d ln u1(z)

d ln z
=

2
1− z

(102b)

The gel-point condition is then given by

D(z) ≡ 1− f ′
2µ

a
zA(z)

2zu0(z){3 + 2κ0(z)} = 0 (103)

The equation for finding the extinction probability of A groups in the postgel region
takes the form

H(x) = a(1− x1/ f ′)− 2µzA(z)2z{u0(z)− x3u0(x2z)} = 0 (104)

By using the non-trivial solution x1 of this equation, the fraction of the sol part is
calculated to be

Wsol = (1− u)x1
f / f ′ + uũB(x1, 1) (105)

where

ũB(x1, 1) =
1 + (x1zA(z))4u1(x2

1z)
1 + zA(z)4u1(z)

(106)

The average molecular weight of the clusters in the sol part is then given by

P(s)
w (z) = Pw(x1

2z) (107)
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where Pw(z) is calculated by using (62). The average length of egg-boxes, including both
sol- and gel part, is calculated by the definition as

µ̄w = ∑
k≥1

kqk =
z{1 + zA(z)4u2(z)}

bzA(z)2 (108)

with
u2(z) ≡ ∑

k≥1
k2zk−1 =

1 + z
(1− z)3 (109)

Figure 8 shows an overview of the reentrant TRG with metallo-supramolecular egg-
box cross-link junctions for the different ratio of the association constants: (a) µ = 1.0, and
(b) µ = 10−4. For a fixed λ, the ratio µ plays a role of the cooperativity parameter. We can
clearly see that both sol–gel and gel–sol transition become sharper for smaller µ. Though
quantitatively different, nature of TRG with egg-box cross-link junctions essentially similar
to that with ladder junctions. In the postgel region between the solute composition u1 and
u2, the fraction of the gel part shows a peak at a certain value of u. It is therefore regarded
as the optimal ratio for the gel formation. The extinction x1 takes a minimum value near
this optimal gel point. The average length of the egg-box junctions also takes a maximum
value near this point.
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Figure 8. Rentrant TRG with egg-box cross-link junctions for telechelic polymers. (a) µ = 1.0, λ = 40

and (b) µ = 10−4, λ = 1.9× 103. The average molecular weight P−1
w in the sol region (red lines), P(s)

w
−1

in the gel region (red line), and the gel fraction Wgel (blue broken line), the extinction probability x1

of the functional group A (red broken line), the average length µ̄−1
w of the egg-box cross-link junctions

(green line), all plotted as functions of the solute composition u. The total solute volume fraction is
fixed at φ = 0.3.

4. Discussion

On the basis of the observed gel points, we can infer the microscopic parameters from
macroscopic measurements. For example, Equation (36) for the chain model results in

ln φ =
∆H − T∆S

kBT
+ A( f , n, σ) (110)

for the gel-point concentration, because the association constant takes the form

λ(T) = exp [−(∆H − T∆S)/kBT] (111)
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in terms of the enthalpy ∆H(< 0) and entropy ∆S of the binding. The additive part A is a
shift constant

A( f , n, σ) ≡ ln

{
2nσ f ′zg

2

f (1− zg)3

}
(112)

which depends only on the functionality and the cooperativity parameter. Therefore,
from the experimental measurements of the gel-point concentration as a function of the
temperature by rheology, for instance, we can obtain the enthalpy of cross-linking as in the
conventional Eldridge-Ferry analysis [66,67]. Further, by changing the functionality f with
other molecular parameters fixed, information on the cooperativity σ can be obtained.

For the ring closure probability, we applied Gaussian chain statistics, and found
it proportional to ∼1/k5/2 (including the symmetry number). If the piling of gelators
does not obey Gaussian statistics but obeys the scaling law due to the excluded volume
effect, the ring closure probability is proportional to 1/kτ , where τ = νd + γ− 1. (d = 3
is the space dimensions, ν = 0.6 is the Flory’s exponent [44] of the radius of gyration
of a chain, and γ = 1.13 is the exponent of the total number of self-avoiding random
walks [68].) The exponent τ changes from 2.5 to 2.96, but the nature of the functions Φ(z; τ)
(Φ(z; τ), Φ(z; τ − 1) are finite while Φ(z; τ − 2) is infinite at z = 1) remains the same, so
that the singular behavior of the conservation law remains the same.

As for the metal-coordinated supramolecular cross-linking, we have used the com-
position u of the metal ions. In a usual experiment, however, metal ions are added into
the solutions of functional molecules. The number of metal ions relative to the number of
functional groups

R ≡ b
a
=

a1(1− u)
b1u

(113)

is a more convenient variable to describe the composition of solute molecules [69,70]. All
graphs can easily be transformed for this purpose by taking R as the horizontal axis.

5. Conclusions

We have presented a very broad theoretical framework for the study of thermore-
versible gelation with cross-link junctions that can grow without upper limit. The nature of
the sol–gel transition with such supramolecularly polymerized cross-link junctions sensi-
tively depends on the structure of the supramolecules and cooperativity in forming them,
as characterized by the stepwise association constants. As frequently observed examples,
we have presented four fundamental types: (i) linear (zig-zag) array and ring formation
in one-component cross-linking, and (ii) ladder complex and egg-box complex in binary
cross-linking. For each of them, the nature of its thermoreversible gelation is summarized
in a single unified graph in which variations in the important physical quantities are plot-
ted against either the concentration or the temperature. In particular, it is shown that
the cooperativity of supramolecular formation plays a crucial role for exhibiting a sharp
sol–gel transition.

From the results of the model calculation, the following conclusions can be drawn:

(1) Chain model: In addition to the sol–gel transition, there occurs a polymerization
transition at a certain concentration just after the gel point is passed under a fixed
temperature. The transition is not a true phase transition in the sense that it is not
accompanied by any singularity in the physical properties. In particular, the average
chain length grows to infinity only in the inaccessible limit of complete reaction.
However, its variation becomes sharper and sharper with the cooperativity parameter,
leading eventually to a singularity at finite reactivity. The increasing sharpness of
the sol–gel transition with cooperativity parameter, in particular sharp rise of the gel
fraction, makes the experimental detection of the gel point easier.

(2) Chain/ring model: Under a certain simple condition on the association constants, a
new phase transition occurs at a low temperature (large λ) deep in the postgel region,
where the average length of rings goes to infinity. There appears a discontinuity in the
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physical properties at this condensation point of rings. The average molecular weight
of the cross-linked polymers, the extinction probability, and the gel fraction all stay
constant below this temperature. The transition is analogous to the Bose–Einstein
condensation of an ideal Bose gas where a finite fraction of particles falls into the
condensate of zero momentum.

(3) Ladder model: A ladder is one of the simplest structures of multi-nuclear metal-
coordinated complexes. As a function of the composition u of metal ions, there
occur two transitions: one from sol to gel at a low value u1, and the other from gel
back to sol at a higher value u2 (reentrant gel–sol transition). In the gel phase between
them, there is a composition u at which the gel fraction reaches a maximum (optimal
gel point). The average length of the ladder increases around this optimal gel point,
but is limited within a finite value, and hence there is no polymerization transition.
The ratio µ between the intra-layer association constant and the inter-layer one plays a
role of the cooperativity parameter. The transitions become sharper with its decrease.

(4) Egg-box model: Overall variation in physical observables is the same as the ladder
model, although there are some quantitative differences. For instance, the gel fraction
becomes asymmetric in the postgel region.

The model solutions proposed in this study have obvious advantages in finding the
microscopic parameters regarding the cross-linking reaction, such as association constants,
cooperativity parameters, and cross-link multiplicity, etc., from macroscopic measurements
on the gelation concentration, or temperature. Thus, supramolecular polymerization is
incorporated into the conventional framework of the thermoreversible gelation to have
a unified picture of polymer chemistry and supramolecular chemistry. We hope detailed
experimental data on thermoreversible gelation with supramolecular cross-link junctions
as treated here will be reported in the near future.
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