Experimental Design (24) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH)
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH)
2.3. Synthesis of Poly(ester-urethanes) (PEUs) from HOPCLOH
2.4. Experimental Design
3. Measurements
3.1. Fourier Transform Infrared Spectroscopy (FT-IR)
3.2. Nuclear Magnetic Resonance (NMR)
3.3. Gel Permeation Chromatography (GPC)
3.4. Mechanical Properties
3.5. Differential Scanning Calorimetry (DSC)
3.6. Polarized Optical Microscopy (POM)
4. Results and Discussion
4.1. Preparation and Characterization of α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH)
4.2. 24 Experimental Design: Effect of Concentration, Temperature, Solvent, and Reaction Time on the Mn of PEUs
4.3. Analysis of Main Effects (c, T, s, t) on Mn of PEUs
- ΔMn% represents the percentage change in the response variable (Mn) caused by variations in the variables;
- Δx% corresponds to the percentage change in each variable (T: temperature, c: concentration, s: solvent dielectric constant, and t: time).
5. Contrasting Mn (GPC) of PEUs with Other Response Variables
5.1. OH/ESTER Response by 1H NMR
5.2. Enthalpy of Fusion (ΔHm) Response by DSC
6. Characterization of PEUs by Mechanical Properties
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonnenschein, M.F. Polyurethanes: Science, Technology, Markets, and Trends; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Rahman, M.M.; Kim, H.D.; Lee, W.K. Properties of waterborne polyurethane adhesives: Effect of chain extender and polyol content. J. Adhes. Sci. Technol. 2009, 23, 177–193. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Zhang, L.; Guo, Y.; Song, J.; Lou, J.; Guan, Q.; He, C.; You, Z. Strong, detachable, and self-healing dynamic crosslinked hot melt polyurethane adhesive. Mater. Chem. Front. 2019, 3, 1833–1839. [Google Scholar] [CrossRef]
- Hebda, E.; Bukowczan, A.; Michałowski, S.; Wroński, S.; Urbaniak, P.; Kaczmarek, M.; Hutnik, E.; Romaniuk, A.; Wolun-Cholewa, M.; Pielichowski, K. Examining the influence of functionalized POSS on the structure and bioactivity of flexible polyurethane foams. Mater. Sci. Eng. C 2020, 108, 110370. [Google Scholar] [CrossRef]
- de Souza, F.M.; Choi, J.; Ingsel, T.; Gupta, R.K. Nanotechnology in the Automotive Industry; Song, H., Nguyen, T.A., Yasin, G., Singh, N.B., Gupta, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 105–129. [Google Scholar]
- Rabnawaz, M.; Liu, G.; Hu, H. Fluorine-Free Anti-Smudge Polyurethane Coatings. Angew. Chem. 2015, 127, 12913–12918. [Google Scholar] [CrossRef]
- De Haro, J.C.; Allegretti, C.; Smit, A.T.; Turri, S.; D’Arrigo, P.; Griffini, G. Biobased Polyurethane Coatings with High Biomass Content: Tailored Properties by Lignin Selection. ACS Sustain. Chem. Eng. 2019, 7, 11700–11711. [Google Scholar] [CrossRef]
- Huang, S.; Liu, G.; Hu, H.; Wang, J.; Zhang, K.; Buddingh, J. Water-based anti-smudge NP-GLIDE polyurethane coatings. Chem. Eng. J. 2018, 351, 210–220. [Google Scholar] [CrossRef]
- Yagci, M.B.; Bolca, S.; Heuts, J.P.A.; Ming, W.; De With, G. Self-stratifying antimicrobial polyurethane coatings. Prog. Org. Coat. 2011, 72, 305–314. [Google Scholar] [CrossRef]
- Yeoh, F.H.; Lee, C.S.; Kang, Y.B.; Wong, S.F.; Cheng, S.F.; Ng, W.S. Production of biodegradable palm oil-based polyurethane as potential biomaterial for biomedical applications. Polymers 2020, 12, 1842. [Google Scholar] [CrossRef]
- Segan, S.; Jakobi, M.; Khokhani, P.; Klimosch, S.; Billing, F.; Schneider, M.; Martin, D.; Metzger, U.; Biesemeier, A.; Xiong, X.; et al. Systematic Investigation of Polyurethane Biomaterial Surface Roughness on Human Immune Responses in vitro. Biomed. Res. Int. 2020, 2020, 3481549. [Google Scholar] [CrossRef]
- Xu, L.C.; Meyerhoff, M.E.; Siedlecki, C.A. Blood coagulation response and bacterial adhesion to biomimetic polyurethane biomaterials prepared with surface texturing and nitric oxide release. Acta Biomater. 2019, 84, 77–87. [Google Scholar] [CrossRef]
- Pérez-Lara, L.F.; Vargas-Suárez, M.; Lõpez-Castillo, N.N.; Cruz-Gõmez, M.J.; Loza-Tavera, H. Preliminary study on the biodegradation of adipate/phthalate polyester polyurethanes of commercial-type by Alicycliphilus sp. BQ8. J. Appl. Polym. Sci. 2016, 133, 1–9. [Google Scholar] [CrossRef]
- Magnin, A.; Pollet, E.; Phalip, V.; Avérous, L. Evaluation of biological degradation of polyurethanes. Biotechnol. Adv. 2020, 39, 107457. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.L.; Hayward, J.J.; Shane, B.S.; Tinda, K.R. Distinction of Mutagenic Carcinogens from a Mutagenic Noncarcinogen in the Big Blue Transgenic Mouse. Environ. Health Perspect. 1996, 104, 683–686. [Google Scholar]
- Douglas, M.; Joseph, M. An Industrial Outbreak of Toxic Hepatitis Due to Methylenedianiline. N. Engl. J. Med. 1974, 291, 278–282. [Google Scholar]
- Singh, R.P.; Tomer, N.S.; Veera Bhadraiah, S. Photo-oxidation studies on polyurethane coating: Effect of additives on yellowing of polyurethane. Polym. Degrad. Stab. 2001, 73, 443–446. [Google Scholar] [CrossRef]
- Rosu, D.; Rosu, L. Thermal and Photochemical Stability of an Aromatic Polyurethane. Mater. Plastice 2010, 47, 399. [Google Scholar]
- Bruckmoser, J.; Pongratz, S.; Stieglitz, L.; Rieger, B. Highly Isoselective Ring-Opening Polymerization of rac-β-Butyrolactone: Access to Synthetic Poly(3-hydroxybutyrate) with Polyolefin-like Material Properties. J. Am. Chem. Soc. 2023, 145, 11494–11498. [Google Scholar] [CrossRef]
- Carpentier, J.F. Discrete metal catalysts for stereoselective ring-opening polymerization of chiral Racemic β-Lactones. Macromol. Rapid Commun. 2010, 31, 1696–1705. [Google Scholar] [CrossRef]
- Widjaja, T.; Hendrianie, N.; Nurkhamidah, S.; Altway, A.; Yusuf, B.; Fanfulla, F.; Alifatul, A.; Pahlevi, A. Poly lactic acid production using the ring opening polymerization (ROP) method using Lewis acid surfactant combined iron (Fe) catalyst (Fe(DS)3). Heliyon 2023, 9, e17985. [Google Scholar] [CrossRef]
- Fan, Y.F.; Chen, G.; Tanaka, J.; Tateishi, T. L-Phe end-capped poly(L-lactide) as macroinitiator for the synthesis of poly(L-lactide)-b-poly(L-lysine) block copolymer. Biomacromolecules 2005, 6, 3051–3056. [Google Scholar] [CrossRef]
- Báez, J.E.; Marcos-Fernández, Á.; Martínez-Richa, A.; Galindo-Iranzo, P. Poly(ε-caprolactone) Diols (HOPCLOH) and Their Poly(ester-urethanes) (PEUs): The Effect of Linear Aliphatic Diols [HO–(CH2)m–OH] as Initiators. Polym.-Plast. Technol. Eng. 2017, 56, 889–898. [Google Scholar] [CrossRef]
- Báez, J.E.; Martínez-Richa, A. Synthesis and characterization of poly(ε-caprolactone) and copolyesters by catalysis with molybdenum compounds: Polymers with acid-functional asymmetric telechelic architecture. Polymer 2005, 46, 12118–12129. [Google Scholar] [CrossRef]
- Barrera-Nava, M.P.; Navarro, R.; Marcos-Fernández, Á.; Báez, J.E. Synthesis and characterization of macrodiols and non-segmented poly(ester-urethanes) (PEUs) derived from α,ω-hydroxy telechelic poly(ϵ-caprolactone) (HOPCLOH): Effect of initiator, degree of polymerization, and diisocyanate. RSC Adv. 2024, 14, 27241–27251. [Google Scholar] [CrossRef]
- Rodríguez-Deleón, E.; Bah, M.; Jiménez-Halla, J.O.C.; Bonilla-Cruz, J.; Estévez, M.; Báez, J.E. Synthesis and characterization of segmented poly(ester-urethane)s (PEUs) containing carotenoids. Polym. Chem. 2019, 10, 6580–6587. [Google Scholar] [CrossRef]
- Król, P.; Wojturska, J. Kinetic study on the reaction of 2,4- and 2,6-tolylene diisocyanate with 1-butanol in the presence of styrene, as a model reaction for the process that yields interpenetrating polyurethane-polyester networks. J. Appl. Polym. Sci. 2003, 88, 327–336. [Google Scholar] [CrossRef]
- Yilgor, I.; Yilgor, E. Structure-morphology-property behavior of segmented thermoplastic polyurethanes and polyureas prepared without chain extenders. Polym. Rev. 2007, 47, 487–510. [Google Scholar] [CrossRef]
- Yilgör, I.; Yilgör, E.; Wilkes, G.L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer 2015, 58, A1–A36. [Google Scholar] [CrossRef]
- Yang, P.F.; Yu, Y.H.; Li, T.D.; Zhang, M. Kinetic Studies on the Urethane Reaction of Propanediol with Isocyanate in Nitrogenous Solvents. Int. J. Polym. Anal. Charact. 2013, 18, 57–63. [Google Scholar] [CrossRef]
- Balaban, M.; Antić, V.; Pergal, M.; Francolini, I.; Martinelli, A.; Djonlagić, J. The effect of polar solvents on the synthesis of poly(urethane-urea- siloxane)s. J. Serbian Chem. Soc. 2012, 77, 1457–1481. [Google Scholar] [CrossRef]
- Lee, S.Y.; Wu, S.C.; Chen, H.; Tsai, L.L.; Tzeng, J.J.; Lin, C.H.; Lin, Y.M. Synthesis and Characterization of Polycaprolactone-Based Polyurethanes for the Fabrication of Elastic Guided Bone Regeneration Membrane. Biomed. Res. Int. 2018, 2018, 3240571. [Google Scholar] [CrossRef]
- Liu, X.; Xia, Y.; Liu, L.; Zhang, D.; Hou, Z. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces. J. Biomater. Appl. 2018, 32, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, Z.; Li, J.; Zhang, C.; Sun, P. Bioinspired Polyurethane Using Multifunctional Block Modules with Synergistic Dynamic Bonds. ACS Macro Lett. 2021, 10, 510–517. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, M.; Yuan, L.; Zhang, J.; Hou, Z. Preparation, physicochemical properties and hemocompatibility of biodegradable chitooligosaccharide-based polyurethane. Polymers 2018, 10, 580. [Google Scholar] [CrossRef]
- Haryńska, A.; Kucinska-Lipka, J.; Sulowska, A.; Gubanska, I.; Kostrzewa, M.; Janik, H. Medical-grade PCL based polyurethane system for FDM 3D printing-characterization and fabrication. Materials 2019, 12, 887. [Google Scholar] [CrossRef]
- Maldonado-Estudillo, J.; Cruz-Jiménez, G.; Estévez, M.; Navarro, R.; Marcos-Fernández, Á.; González, G.; Ramírez-Hernández, A.; Báez, J.E. Poly(ester-urethanes) derived from poly(ε-caprolactone) macrodiols: Effect of the molar ratios using design of experiments, synthesis, and characterization. J. Macromol. Sci. Part A, 2025; Accepted manuscript. [Google Scholar]
- Kasprzyk, P.; Datta, J. Effect of molar ratio [NCO]/[OH] groups during prepolymer chains extending step on the morphology and selected mechanical properties of final bio-based thermoplastic poly(ether-urethane) materials. Polym. Eng. Sci. 2018, 58, E199–E206. [Google Scholar] [CrossRef]
- Kultys, A.; Podkos’cielny, W.; Podkos’cielny, P.; Pikus, S. Polyurethanes Containing Sulfur. I. New Thermoplastic Polyurethanes with Benzophenone Unit in Their Structure. J. Polym. Sci. A Polym. Chem. 1999, 37, 4140–4150. [Google Scholar]
- Somani, K.P.; Patel, N.K.; Kansara, S.S.; Rakshit, A.K. Effect of chain length of Polyethylene glyeol and crosslink density (NCO/OH) on properties of castor oil based polyurethane elastomers. J. Macromol. Sci. Part A Pure Appl. Chem. 2006, 43, 797–811. [Google Scholar] [CrossRef]
- Mathew, A.; Kurmvanshi, S.; Mohanty, S.; Nayak, S.K. Influence of structure-property relationship on the optical, thermal and mechanical properties of castor oil based transparent polyurethane for catheter applications. J. Macromol. Sci. Part A Pure Appl. Chem. 2017, 54, 772–781. [Google Scholar] [CrossRef]
- Kasprzyk, P.; Datta, J. Novel bio-based thermoplastic poly(ether-urethane)s. Correlations between the structure, processing and properties. Polymer 2019, 160, 1–10. [Google Scholar] [CrossRef]
- Nierzwicki, W.; Wysocka, E. Microphase Separation and Properties of Urethane Elastomers. J. Appl. Polym. Sci. 1980, 25, 739–746. [Google Scholar] [CrossRef]
- Nierzwicki, W. Overall NCO/OH Ratio and Microphase Separation in Urethane Elastomers. J. Appl. Polym. Sci. 1985, 30, 761–768. [Google Scholar] [CrossRef]
- Sheth, J.P.; Klinedinst, D.B.; Wilkes, G.L.; Yilgor, I.; Yilgor, E. Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments. Polymer 2005, 46, 7317–7322. [Google Scholar] [CrossRef]
- Klinedinst, D.B.; Yilgör, E.; Yilgör, I.; Beyer, F.L.; Sheth, J.P.; Wilkes, G.L. Structure-Property Behavior Of New Segmented Polyurethanes And Polyureas Without Use Of Chain Extenders. Rubber Chem. Technol. 2005, 78, 737–753. [Google Scholar] [CrossRef]
- Delebecq, E.; Pascault, J.P.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013, 113, 80–118. [Google Scholar] [CrossRef]
- Dusek’, K.; Spirkovd, M.; Ilavskj, M. Network formation in polyurethanes due to allophanate and biuret formation: Gel fraction and equilibrium modulus. Makromol. Chem. Macromol. Symp. 1991, 45, 87–95. [Google Scholar] [CrossRef]
- Opirkova, M.; Kubin, M.; Dusek, K. Side reactions in the formation of polyurethanes: Model reactions between phenylisocyanate and 1 -butanol. J. Macromol. Sci. Part A-Chem. 1987, 24, 1151–1166. [Google Scholar] [CrossRef]
- Dong, K.I.; Zhi, A.I.; Jacobs, H.; Teruo Okano, S.W. Synthesis and Characterization of SPUU-PEO-Heparin Graft Copolymers. J. Polym. Sci. A Polym. Chem. 1991, 29, 1725–1737. [Google Scholar]
- Kontou, E.; Spathis, G.; Niaounakis, M.; Kefalas, V. Physical and chemical cross-linking effects in polyurethane elastomers. Colloid Polym. Sci. 1990, 268, 636–644. [Google Scholar] [CrossRef]
- Lu, L.; Yang, P.; Liu, Y.; Li, J.; Zhang, Z.; Li, T. Kinetics and thermodynamics of the blocking reaction of several aliphatic isocyanates. J. Macromol. Sci. Part A Pure Appl. Chem. 2016, 53, 574–578. [Google Scholar] [CrossRef]
- Chang, M.C.; Chen, S.A. Kinetics and Mechanism of Urethane Reactions: Phenyl Isocyanate-Alcohol Systems. J. Polym. Sci. A Polym. Chem. 1987, 25, 2543–2559. [Google Scholar] [CrossRef]
- Arnold, R.G.; Nelson, J.; Verbanc, J.J. Recent advances in isocyanate chemistry. Chem. Rev. 1957, 57, 47–76. [Google Scholar] [CrossRef]
- Lapprand, A.; Boisson, F.; Delolme, F.; Méchin, F.; Pascault, J.P. Reactivity of isocyanates with urethanes: Conditions for allophanate formation. Polym. Degrad. Stab. 2005, 90, 363–373. [Google Scholar] [CrossRef]
- Kultys, A.; Podkos’cielny, W.; Podkos’cielny, P.; Majewski, W. Polyurethanes Containing Sulfur. II. New Thermoplastic Nonsegmented Polyurethanes with Diphenylmethane Unit in Their Structure. J. Polym. Sci. A Polym. Chem. 2000, 38, 1767–1773. [Google Scholar]
- De Vasconcelos, C.L.; Martins, R.R.; Ferreira, M.O.; Pereira, M.R.; Fonseca, J.L.C. Rheology of polyurethane solutions with different solvents. Polym. Int. 2002, 51, 69–74. [Google Scholar] [CrossRef]
- Wdowicka, D.; Podkos’cielny, W.; Podkos’cielny, P.; Pikus, S. Segmented and Nonsegmented Polyurethanes: Polyaddition Products of 4,4-Bis(2-Hydroxyethoxy)Diphenyl Ether and 1,6-Hexanediisocyanate. J. Appl. Polym. Sci. 1999, 71, 83–91. [Google Scholar] [CrossRef]
- Rogulska, M.; Podkościelny, W.; Kultys, A.; Pikus, S.; Poździk, E. Studies on thermoplastic polyurethanes based on new diphenylethane-derivative diols. I. Synthesis and characterization of nonsegmented polyurethanes from HDI and MDI. Eur. Polym. J. 2006, 42, 1786–1797. [Google Scholar]
- Król, P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog. Mater. Sci. 2007, 52, 915–1015. [Google Scholar] [CrossRef]
- Lucio, B.; De La Fuente, J.L. Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method. Thermochim. Acta. 2016, 625, 28–35. [Google Scholar] [CrossRef]
- Samuilov, A.Y.; Samuilov, Y.D. Noncatalytic and Autocatalytic Rate Constants of the Reaction of Phenyl Isocyanate with Butan-1-ol. Russ. J. Org. Chem. 2018, 54, 1749–1753. [Google Scholar] [CrossRef]
- Samuilov, A.Y.; Kamalov, T.A.; Balabanova, F.B.; Samuilov, Y.D.; Konovalov, A.I. Quantum-chemical investigation of isocyanate reactions with linear methanol associates: IV. Mechanism of autocatalytic reaction of methyl isocyanate with linear methanol associates. Russ. J. Org. Chem. 2012, 48, 158–163. [Google Scholar]
- Leardi, R. Experimental design in chemistry: A tutorial. Anal. Chim. Acta. 2009, 652, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, A.; Priyakumar, U.D. Artificial intelligence: Machine learning for chemical sciences. J. Chem. Sci. 2022, 134, 2. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.B.; Audus, D.J. Emerging Trends in Machine Learning: A Polymer Perspective. ACS Polym. Au. 2023, 3, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Murray, P.M.; Bellany, F.; Benhamou, L.; Bučar, D.K.; Tabor, A.B.; Sheppard, T.D. The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. Org. Biomol. Chem. 2016, 14, 2373–2384. [Google Scholar] [CrossRef]
- Gutierrez, P. Humberto y de La Vara Salazar Román. Análisis y diseño de Experimentos, Segunda edición; Editorial MC Graw Hill: México City, Mexico, 2008. [Google Scholar]
- Arboretti, R.; Ceccato, R.; Pegoraro, L.; Salmaso, L. Design of Experiments and machine learning for product innovation: A systematic literature review. Qual. Reliab. Eng. Int. 2022, 38, 1131–1156. [Google Scholar] [CrossRef]
- Báez, J.E.; Marcos-Fernández, Á.; Navarro, R.; García, C.; Ramírez-Hernández, A.; Moreno, K.J. A systematic study of macrodiols and poly(ester-urethanes) derived from α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH) with different ether [CH 2 CH 2 O] m groups. Synthesis and characterization. J. Polym. Res. 2019, 26, 32. [Google Scholar]
- MINITAB, version 19.1; Minitab, LLC: State College, PA, USA, 2019.
- Crescenzi, V.; Manzini, G.; Calzolari, G.; Borri, C. Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur. Polym. J. 1972, 8, 449–463. [Google Scholar]
- Falcón-Torres, P.D.; Morales-Segoviano, A.G.; Martínez-Salazar, A.A.; Ortiz-Aldaco, M.G.; Navarro, R.; Marcos-Fernández, Á.; Ramírez-Hernández, A.; Moreno, K.J.; Báez, J.E. Terpenes versus linear alkyl substituents: Effect of the terminal groups on the oligomers derived from poly(ε-caprolactone). Chem. Papers 2021, 75, 5587–5598. [Google Scholar] [CrossRef]
- Artuso, E.; Degani, I.; Fochi, R.; Magistris, C. Preparation of mono-, di-, and trisubstituted ureas by carbonylation of aliphatic amines with S,S-dimethyl dithiocarbonate. Synthesis 2007, 3497–3506. [Google Scholar] [CrossRef]
- Rajendran, S.; Manivannan, M.; Rajendran, S. Investigation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water. Artic. Int. J. Eng. Sci. Technol. 2011, 3, 8048–8058. [Google Scholar]
- Stern, T. Conclusive chemical deciphering of the consistently occurring double-peak carbonyl-stretching FTIR absorbance in polyurethanes. Polym. Adv. Technol. 2019, 30, 675–687. [Google Scholar] [CrossRef]
- Dusek, K.; Spirkova, M.; Havlicek, I. Network Formation of Polyurethanes Due to Side Reactions. Macromolecules 1990, 23, 1774–1781. [Google Scholar] [CrossRef]
- Stern, T. Hierarchical fractal-structured allophanate-derived network formation in bulk polyurethane synthesis. Polym. Adv. Technol. 2018, 29, 746–757. [Google Scholar] [CrossRef]
Levels | Factors | Total Experiments 32 | |||
Temperature (°C) | HOPCLOH Concentration (Molality) | Reaction Time (h) | Solvent Type (Dielectric Constant) | ||
High level | 61 | 0.176 | 8 | Acetonitrile (38) | |
Low level | 50 | 0.089 | 1 | Chloroform (4.8) |
No | Source | DF | SS Adj. | MS Adj. | F Value | p Value |
---|---|---|---|---|---|---|
1 | Temp (°C) | 1 | 3,942,342,609 | 3,942,342,609 | 16.06 | 0.00055243 |
2 | Molal conc. (molality) | 1 | 3,198,620,149 | 3,198,620,149 | 13.03 | 0.00147501 |
3 | Time (h) | 1 | 697,075,220 | 697,075,220 | 28.39 | 2.0721 × 10−5 |
4 | Dielectric const. (Solvent) | 1 | 1.4474 × 1010 | 1.4474 × 1010 | 58.96 | 8.6 × 10−8 |
5 | Temp (°C) × Time (h) | 1 | 7300760075 | 7,300,760,075 | 29.74 | 1.5261 × 10−5 |
6 | Temp (°C) × Dielectric const. (Solvent) | 1 | 2,920,485,845 | 2,920,485,845 | 11.9 | 0.00218247 |
7 | Time (h) × Dielectric const. (Solvent) | 1 | 4,912,709,345 | 4,912,709,345 | 20.01 | 0.00017298 |
8 | Temp (°C) × Time (h) × Dielectric const. (Solvent) | 1 | 4,217,591,285 | 4,217,591,285 | 17.18 | 0.00039241 |
Error | 23 | 5,646,470,439 | 245,498,715 | |||
Lack of fit | 7 | 1,270,754,470 | 181,536,353 | 0.66 | 0.69928137 | |
Pure error | 16 | 4,375,715,970 | 273,482,248 | |||
Total | 31 | 5.3584 × 1010 |
Temperature × Time × Type of Solvent (°C, Hours, Dielectric Constant) | N | Mean | Group |
---|---|---|---|
61, 8, 4.8 | 4 | 140,910 | A |
50, 8, 4.8 | 4 | 46,430 | B |
50, 1, 4.8 | 4 | 45,300 | B |
61, 1, 4.8 | 4 | 33,440 | B |
61, 8, 38.0 | 4 | 31,530 | B |
50, 1, 38.0 | 4 | 23,690 | B |
50, 8, 38.0 | 4 | 21,180 | B |
61, 1, 38.0 | 4 | 19,540 | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado-Estudillo, J.; Navarro Crespo, R.; Marcos-Fernández, Á.; Caputto, M.D.d.D.; Cruz-Jiménez, G.; Báez, J.E. Experimental Design (24) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH). Polymers 2025, 17, 668. https://doi.org/10.3390/polym17050668
Maldonado-Estudillo J, Navarro Crespo R, Marcos-Fernández Á, Caputto MDdD, Cruz-Jiménez G, Báez JE. Experimental Design (24) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH). Polymers. 2025; 17(5):668. https://doi.org/10.3390/polym17050668
Chicago/Turabian StyleMaldonado-Estudillo, Jaime, Rodrigo Navarro Crespo, Ángel Marcos-Fernández, María Dolores de Dios Caputto, Gustavo Cruz-Jiménez, and José E. Báez. 2025. "Experimental Design (24) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH)" Polymers 17, no. 5: 668. https://doi.org/10.3390/polym17050668
APA StyleMaldonado-Estudillo, J., Navarro Crespo, R., Marcos-Fernández, Á., Caputto, M. D. d. D., Cruz-Jiménez, G., & Báez, J. E. (2025). Experimental Design (24) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH). Polymers, 17(5), 668. https://doi.org/10.3390/polym17050668