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Abstract: A novel copper(II) ion indicator based on polymer conformational change is designed and
its chemo-response to the target analyte is tested in this paper. The word ‘telechelic’ in the title means
that a polymer has two different fluorophores on either end. If one of them is a fluorescent donor
and the other is a fluorescent acceptor, then the extent of Foerster resonance energy transfer (FRET)
will depend on polymer conformation. The sensitivity of these sensors is tunable based on the chain
length and the amount of the receptor on the polymer. This is revealed by the fluorescence response of
30mer, 50mer, and 100mer of poly(N-isopropyl)acrylamide with different amounts of metal chelation
monomers. We also address the change in fluorescence over time due to the untangling of poly(N-
isopropylacrylamide) in water. The fluorescent signal can maintain stability after metal binding.
The photoluminescence results agree with the length calculation of polyelectrolytes. A fluorescent
standard curve is created for the measurement of different concentrations of copper ions. The sensing
limit can reach 10−10 M analytes, which is suitable for the measurement of chemicals in trace amounts
in the environment.

Keywords: free copper ions; RAFT polymerization; FRET; polymer conformational change

1. Introduction

The bioaccumulation of toxic metal ions is chronic, especially in animals at the top
of the food chain. Bioavailable metal ions are the proportion of total metal ions that are
available for incorporation into biota [1]. Bioavailable metal ions are toxic because they are
unbonded ions or ions free of natural ligands [2]. This part of the metal ions is small in
concentration compared with the natural abundance of the total metal ions. Because of this,
total metal ion measurements are not an accurate measure of metal ion toxicity [3].

Among these metal ions, copper(II) is the most common ion in the environment,
especially in seawater. Copper has redox properties and is a structural and catalytic
component for the protein and enzyme molecules involved in metabolic processes [4]. The
toxicity of copper resides in its ability to form free radicals, which cause oxidative stress [5].

A few methods have developed to measure bioavailable metal ions. A well-known
biological method is a biotic ligand model [6,7]. It treats the bonding between the metal
ions and the biological receptor as a metal–ligand system. From this test, the bioavailable
copper(II) ions can range from 10−5.5 M to 10−10 M [8]. However, the measurement of
free metal ions from this model is indirect and the response depends on many biological
factors [9]. Therefore, the concentration of bioavailable copper ions tested by the biotic
ligand model can only be taken as an approximate value for reference.

Direct methods like spectroscopic techniques [10] or voltammetry [11] are good meth-
ods to measure metal ions in trace concentrations. However, because these measurements
respond to total metal rather than bioavailable metal ions, they are of limited value in
assessing toxicity. Also, the equilibrium between free metal ions and natural metal ion
complexes may be disturbed by the measurement, especially in the case of voltammetry.
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There are solution-based technologies that are suitable for the testing of free metal
ions like ion-exchange membranes [12], diffusion gradient membranes [13], or resin [14].
However, these methods largely rely on separation techniques and sample loss in the
separation step may reduce the detection accuracy. Furthermore, the concentration of metal
to be measured is very low, resulting in errors due to contamination. Therefore, we require
a more direct and convenient solution-based technique. A metal ion indicator is a good
option. Like a pH indicator, the concentration of metal ions can easily be derived from a
standard curve of a certain ion. The immediate color change of the indicator is also good
for a quick screen of batch samples by a visual inspection.

One of the issues that has to be addressed to measure uncomplexed metal ions is
sensitivity because free concentrations are often nanomolar and below. Fluorescence is
a method that has the required sensitivity. However, Cu(II) is a metal ion that is not
amenable to fluorescent-sensing because it usually quenches emissions. Some researchers
have utilized this intrinsic property of Cu(II) to design ‘turn-off’ sensors for Cu(II) [15].
However, there are a lot of pathways that lead to fluorescence-quenching, especially in a
complex solution matrix. This introduces undetectable errors in the measurement.

Our approach, based on the measurement of a Forster resonance energy transfer
(FRET) signal, overcomes the quenching problem. FRET is an energy transfer pathway
between two fluorophores [16–18]. If the emission wavelength from one fluorophore
(donor) overlaps with the absorption of another (acceptor), the donor can transfer its energy
to the acceptor. The transfer efficiency is directly related to the distance between these two
fluorophores. The closer these two fluorophores, the higher the FRET efficiency. FRET has
been widely used in the investigation of protein unfolding in biological studies [19]. The
prospect of a sub-nanometer resolution provides a FRET microscope with the ability to
map the kinetics and interactions of proteins [20,21].

We developed a method to sense Cu(II) ions by mixing two strands of fluorophore-
labeled poly(N-isopropylacrylamide) (pNIPAM) [22,23]. One strand was labeled with the
donor fluorophore and the other with the acceptor. Bipyridine monomers that can bind with
Cu(II) were copolymerized with N-isopropylacrylamide. Poly(N-isopropylacrylamide)
undergoes a thermal phase transition at elevated temperatures, which leads to aggregation
and precipitation [24]. The temperature at which the phase transition occurs is defined
as the lower critical solution temperature (LCST). Above pNIPAM’s LCST without Cu(II),
pNIPAM strands associate and we observed FRET, which led to acceptor emissions even
though we chose an excitation wavelength that excited the donor. Adding Cu(II) at a high
enough concentration caused it to complex with bipyridine, introducing a positive charge
into the polymer that caused the chains to separate. This led to much less FRET [22]. The
problem was that if the polymer concentration was too low, then the polymer chains took
a long time to find each other and the response was too slow to be practical. This meant
we did not have the sensitivity we needed to determine free Cu(II) in the environment.
This study involved a ratiometric signal that was insensitive to factors that affected single
intensities. It also demonstrated that polymer conformation-based Cu(II) -sensing solved
the problem of Cu(II)-quenching because the Cu(II) and the fluorophore and Cu(II) were
far apart.

We found that labeling a single strand of polymer with both a donor and an acceptor
led to a change in the extent of FRET when Cu(II) introduced a positive charge into the
polymer, causing it to change conformation. However, we also found that the signals
from the fluorescent-tagged pNIPAM changed over time because of the untangling of the
polymer chain. This ruined the fluorescent measurement. One method we found to solve
the problem was to soak the polymer in a ‘good’ solvent (like tetrahydrofuran (THF)) before
adding it to water. This accelerated the untangling and made the response more stable.

In this paper, we prepared functionalized pNIPAM using radical addition fragmen-
tation transfer (RAFT) [25]. One advantage of RAFT is that the polymer chain is easy to
modify, so we could place the desired functionality on the polymer chain [26,27]. Another is
that the chain length of the polymer can be tuned. A third advantage is that RAFT produces
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polymers with known end groups that can be designed to undergo specific reactions. In this
study, we prepared a RAFT agent that included rhodamine as the acceptor. This enabled us
to prepare a telechelic polymer with one end attached to a FRET acceptor and the other
attached to a FRET donor [28,29].

The problem of untangling was addressed by dialyzing the polymer in THF, a good solvent
for poly(N-isopropylacrylamide) that accelerates untangling. Poly(N-isopropylacrylamide)
was prepared as a backbone and copolymerized with bipyridine, a ligand that strongly
binds Cu(II). Cu(II) binding introduces a charge into the polymer backbone [30]. This
eventually causes a conformation change in the polymer chain that increases the distance
between the donor and acceptor, decreasing the extent of FRET. Our approach retained the
advantages of a ratiometric measurement and was not subject to Cu(II)-quenching while
giving us a signal that did not change with time. We also found that compared with our
previous research, we did not need to elevate the temperature of the LCST of pNIPAM
to make it collapse, which was a significant breakthrough. This meant that the whole
measurement could be conducted at room temperature.

2. Materials and Methods

Azobisisobutyronitrile (AIBN), NIPAM, Rhodamine B, Rhodamine B isothiocyanate,
dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyridine (DMAP), 2-cyano-5-hydroxy-2-
pentanyl dodecyl carbonotrithioate, fluorescein o-acrylate, 1,3-diaminopropane, and triethy-
lamine (TEA) were purchased from Sigma Aldrich at St. Louis, MO, USA Tris(2-carboxyethyl)
phosphine hydrochloride (TCEP) and dioxane were purchased from TCI chemicals at Port-
land, OR, USA. Acetonitrile, Tetrahydrofuran, and hexane were purchased from J. T. Baker
at Phillipsburg, NJ, USA. SpectraPor RC Tubing (cutoff Mw = 3500 Da) was purchased from
Repligen at Waltham, MA, USA for dialysis use. N-((4′-Methyl-[2,2′-bipyridin]-4-yl)methyl)-
N-propylacrylamide (Bpy) was prepared as previously reported [31,32].

2.1. Preparation of the Rhodamine-Tagged Chain Transfer Agent (RCTA)

Steglich esterification (shown in Scheme 1) was conducted to obtain a rhodamine-
tagged chain transfer agent (RCTA)—(9-(2-(((4-cyano-4-(((dodecylsulfanyl)
carbothioyl)sulfanyl)pentyl)oxy)carbonyl)phenyl)-6-(diethylamino)-3H-xanthen-3-ylidene)
(diethyl)azanium [33]. Rhodamine B, DCC, DMAP, and 2-cyano-5-hydroxy-2-pentanyl
dodecyl carbonotrithioate were added to 10.0 mL of dichloromethane (DCM). After stirring
overnight at room temperature, the mixture was purified by a flash column. The desired
product was collected and dried via rotary evaporation.
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2.2. RAFT Polymerization

RAFT polymerization was conducted as described in the literature [25]. To test dif-
ferent factors that could change the ratiometric fluorescent signals, polymers aimed at
different chain lengths and different amounts of bipyridine ligands were prepared, as
listed in Table 1, where 50mer-8%py and 50mer-6%py means that 8% and 6% of bipyridine
monomers were copolymerized within a polymer chain made by 50 NIPAM-repeating
units. We maintained the ratio of NIPAM and the bipyridine ligand constant, and changed
the amount of the RCTA. In this case, polymers with the same NIPAM/Bpy ratio but
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with different chain lengths were made. This ensured that the concentration of bipyridine
remained the same in the solution for different recipes when comparing the FRET signals.

Table 1. Recipe for the telechelic polymer indicator.

RCTA NIPAM AIBN Bpy

100mer-8%py 5.12 mg
(0.00602 mmol)

140 mg
(1.24 mmol)

0.102 mg
(0.000621 mmol)

30.0 mg
(0.102 mmol)

100mer-6%py 5.12 mg
(0.00602 mmol)

140 mg
(1.24 mmol)

0.102 mg
(0.000621 mmol)

22.5 mg
(0.0773 mmol)

50mer-8%py 6.14 mg
(0.00721 mmol)

140 mg
(1.24 mmol)

0.122 mg
(0.000682 mmol)

30.0 mg
(0.102 mmol)

50mer-6%py 6.14 mg
(0.00721 mmol)

140 mg
(1.24 mmol)

0.122 mg
(0.000682 mmol)

22.5 mg
(0.0773 mmol)

30mer-8%py 10.2 mg
(0.0119 mmol)

140 mg
(1.24 mmol)

0.203 mg
(0.00124 mmol)

30.0 mg
(0.102 mmol)

30mer-6%py 10.2 mg
(0.0119 mmol)

140 mg
(1.24 mmol)

0.203 mg
(0.00124 mmol)

22.5 mg
(0.0773 mmol)

NIPAM, RCTA, AIBN, and Bpy (as listed in Table 1) were added into a 100 mL
round-bottom flask with 10.0 mL dry dioxane. The whole system was tightly sealed and
a freeze-pump–thaw process was conducted 3 times to remove oxygen. After that, the
mixture was polymerized at 85 ◦C for 3 days with constant stirring. The desired polymer
was precipitated by adding the solution with a polymer dropwise into 50 mL hexane.
This was followed by centrifuging to remove the polymer from the hexane. The resulting
polymer was washed several times with hexane, then fully dried under a vacuum for
future use.

2.3. Preparation of the Telechelic Polymer Indicator

In total, 0.00200 mmol (mass dependent on the polymer chain length) of the poly-
mer derived from the last step was added to 20.0 mL acetonitrile. Next, 0.0300 mmol
1,3-diaminopropane and 0.0200 mmol TCEP were added to the mixture to reduce the
trithiocarbonate group to a thiol group [34,35]. After stirring for one day at room tempera-
ture, the solution was then dialyzed against 250 mL acetonitrile/water (50 wt.%/50 wt.%)
at room temperature. The external solution was changed 2 times per day for 3 days. Then,
0.00200 mmol fluorescein-o-acrylate and 0.0200 mmol TCEP were added to the mixture to
tag the thiol end with fluorescein. The mixture was stirred at room temperature overnight
and the polymer solution was dialyzed against 250 mL THF [36] at room temperature. The
external waste solution was changed 2 times per day for 3 days. In addition to getting rid
of the small molecule impurity, this ensured that all the polymers were untangled so the
response would not change with time. On the last day of the dialysis, the polymer solution
was dialyzed against 250 mL DI water for future use. In total, 5.00 mL of the solution was
taken out and lyophilized. After being fully dried, this part of the polymer was weighed to
ascertain the concentration in g/L of 5.00 mL of the polymer solution.

2.4. Instrumentation
2.4.1. Fluorescent Measurement

Fluorescence was measured using an FS5 spectrofluorometer from Edinburgh Instru-
ments (Edinburgh, UK). Before the experiment, the dialyzed polymer solution was diluted
into a 0.0100 g/L solution using 0.100 M of a pH = 6 phosphate buffer. Next, 200 µL of the
sample solution and 1800 µL of the solution with the analyte in different concentrations
were mixed for the fluorescent test. The excitation wavelength for all the tests was 493 nm.
At this excitation wavelength, fluorescein had a maximum emission and we were able to
see a rhodamine peak if there was no FRET. The excitation and emission bandwidth of the
measurement was 2.00 nm.
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2.4.2. Nuclear Magnetic Resonance (NMR) Measurement

The polymerized samples were characterized using a 500 MHz Bruker spectrometer
(Billerica, MA, USA). Around 5.00 mg of the samples was added to deuterated chloroform
for tests. The NMR data can be seen in the Supporting Information.

3. Results and Discussion

The structure of the telechelic polymer is shown below. The idea of this design was
to use the repulsion of the ions bonded to the polymer to change the distance between
the two FRET fluorophores at the two ends of the polymer [37]. Once the copper ions
were attached to the copolymerized bipyridine ligands, the polymer chain stretched due to
electrostatic repulsion between positive charges. Therefore, the FRET efficiency decreased.
The emission intensity from the fluorescent donor increased and the intensity from the
acceptor decreased. We measured the ratio of acceptor-to-donor fluorescence. The basic
idea is illustrated below in Figure 1.
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Figure 1. Schematics for copper(II) ion indicator. FRET signal is produced by the conformational
change in the polymer. D and A in the picture respectively mean the FRET donor and acceptor; L is
the ligand that can bind with the free ions. Mn+ is the metal ion analytes. Upon metal ions binds with
the ligands, the repulsion between the metal ions will change the distance between the FRET pairs.

1H-NMR was used to examine the structure of the RCTA and to measure the chain
length. The amount of bipyridine was measured (shown in the Supporting Information).
By calculating the ratio of the peak at around f1 = 7.75 ppm produced by 2 protons on
the rhodamine, f1 = 4.00 ppm produced by 1 proton on the NIPAM, and f1 = 8.60 ppm
produced by 2 protons on the bipyridine, we ascertained whether the chain length and
the amount of the bipyridine reached our desired value. For example, the ratio of the
50mer-8%py was RCTA:bipyridine-monomer:NIPAM = 1:4.3:52, which was close to our
target (1:4:50). Data for the other polymer samples can be seen in Table 2. The NMR spectra
can be seen in Figures S2–S7.

Table 2. Composition determined by 1H-NMR.

Target Composition
(RCTA:Bipyridine-Ligand:NIPAM)

Actual Composition
(RCTA:Bipyridine-Ligand:NIPAM

100mer-8%py 1:8:100 1:7.0:117
100mer-6%py 1:6:100 1:6.0:105
50mer-8%py 1:4:50 1:4.3:64
50mer-6%py 1:3:50 1:2.5:52
30mer-8%py 1:2.4:30 1:2.4:25
30mer-6%py 1:1.8:30 1:1.6:26
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3.1. Fluorescent Response of FRET-Based Copper Ion Indicator

We used fluorescein (emission wavelength = 512 nm) as the fluorescent donor and
rhodamine (excitation wavelength = 540 nm) as the fluorescent acceptor. The Förster critical
distance is the distance between an acceptor and a donor when the transfer efficiency is 50%.
The Förster critical distance between fluorescein and rhodamine is around 6.60 nm [38]. A
molecular dynamic simulation estimated that the gyration radius (RG) for a 30mer pNIPAM
chain was around 1.00 to 1.20 nm [39], much smaller than the Förster critical distance. That
is why we could see a significant acceptor emission peak when we excited the donor.
However, when copper(II) binds to a strand, the chain length is stretched. The chain length
of a 30mer chain could reach 6.4 nm [40] (Shown at Figure 2, calculated by L = Nbcos(θ/2),
where l is the Kuhn length, N is the number of repeating units, b is the bond length, and θ

is the bond angle), which was close to the Förster critical distance, causing the emission of
the acceptor to diminish. This was the fully stretched length a polymer chain could reach
when taking account into the bond length and bond angle [41].
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3.2. FRET Response with Time

The response time of the copper ion indicator was tested by adding 1800 µL of a
10−5 M copper(II) pH = 6 phosphate solution into 200 µL of a 0.0100 g/L pH = 6 30mer-
8%py solution. The fluorescent response was quick and there was a fluorescent change
upon adding the copper ion (shown in Figure 3). The fluorescein/rhodamine peak intensity
(F/R ratio) reached a plateau within 1 s. The fluorescent signal after 10 min was tested and
was the same as that shown in the graph in Figure S8 This indicated that the response of
the polymer sensor was fast and could instantly reach a stable state.

We used THF to solve the untangling issue of pNIPAM that we found in our previous
research. pNIPAM untangles slowly in water, which changes the conformation of the
polymer in a solution and eventually changes the fluorescence. This process can take two
months. A good solvent like THF can untangle pNIPAM in days. We used dialysis against
THF before using it as an indicator material. As can be seen in Figure 3c, we added 1800 µL
of the 10−5 M copper(II) pH = 6 phosphate solution into 200 µL of the 0.0100 g/L pH = 6
30mer-8%py solution, again 30 days after the first measurement. The same signal appeared,
which indicated that the response functionality would not change even over one month.
This proved that our polymer indicator was not influenced by the change in fluorescence
caused by untangling.
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Figure 3. (a) The indicator could respond to copper binding within 1000 ms (excitation
wavelength = 493 nm). (b) F/R ratio versus time in 10 min. There was merely a change after the
first second. (c) When untangling the moiety of the polymer upon copper binding, the signal was
constant even after one month.

3.3. Change in the FRET Signal with the Polymer Chain Length

Fluorescent changes caused by the polymer chain length were tested by adding
1800 µL of the 10−5 M copper(II) pH = 6 phosphate solution into 200 µL of the 0.0100 g/L
pH = 6 30mer-8%py, 50mer-8%py, and 100mer-8%py solutions. As can be seen from the
intensity measurement (Figure 4), a huge intensity shift arose in a polymer chain with
30 repeating units and a polymer chain with 50 repeating units. However, if the polymer
chain length was enlarged to 100mer, only FRET changes occurred. This indicated that



Sensors 2023, 23, 9476 8 of 15

100mer was too long for a FRET transfer. It agreed with the FRET efficiency curve and
that the FRET transfer efficiency would decrease when the distance between the two
fluorophores increased [42]. On the other hand, the rhodamine peak disappeared as the
polymer lengthened. As the rhodamine was excited by FRET, this was further confirmation
that the polymer was performing as we expected.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 16 
 

 

one month. This proved that our polymer indicator was not influenced by the change in 
fluorescence caused by untangling. 

3.3. Change in the FRET Signal with the Polymer Chain Length 
Fluorescent changes caused by the polymer chain length were tested by adding 1800 

μL of the 10−5 M copper(II) pH = 6 phosphate solution into 200 μL of the 0.0100 g/L pH = 
6 30mer-8%py, 50mer-8%py, and 100mer-8%py solutions. As can be seen from the 
intensity measurement (Figure 4), a huge intensity shift arose in a polymer chain with 30 
repeating units and a polymer chain with 50 repeating units. However, if the polymer 
chain length was enlarged to 100mer, only FRET changes occurred. This indicated that 
100mer was too long for a FRET transfer. It agreed with the FRET efficiency curve and 
that the FRET transfer efficiency would decrease when the distance between the two 
fluorophores increased [42]. On the other hand, the rhodamine peak disappeared as the 
polymer lengthened. As the rhodamine was excited by FRET, this was further 
confirmation that the polymer was performing as we expected. 

 
(a) (b) 

 
(c) 

Figure 4. The response change (excitation wavelength = 493 nm) caused by a change in the polymer 
chain length: (a) 30mer-8%py; (b) 50mer-8%py; (c) 100mer-8%py. 

This could be explained by the persistence length of pNIPAM. The polymer chain 
was not always fully stretched in the solution. It behaved more like a worm or random 
coil. In the theory of persistence length, the macromolecule behaves like a flexible elastic 
rod/beam. If the polymer chain length is larger or lower than its persistence length [43], 
the polymer chain acts like a rigid rod and if the polymer chain length is around its 
persistence length, the polymer chain is more like a random coil. The persistence length 
is half the Kuhn length; in this case, the polymer chain was seen as freely joined. The 
persistence length of a 30mer pNIPAM was around 3.20 nm, which was smaller than the 
FRET critical radius of rhodamine and fluorescein. This indicated that it had a very high 
energy transfer efficiency. However, when the polymer chain reached 50mer, its 

Figure 4. The response change (excitation wavelength = 493 nm) caused by a change in the polymer
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This could be explained by the persistence length of pNIPAM. The polymer chain
was not always fully stretched in the solution. It behaved more like a worm or random
coil. In the theory of persistence length, the macromolecule behaves like a flexible elastic
rod/beam. If the polymer chain length is larger or lower than its persistence length [43], the
polymer chain acts like a rigid rod and if the polymer chain length is around its persistence
length, the polymer chain is more like a random coil. The persistence length is half the
Kuhn length; in this case, the polymer chain was seen as freely joined. The persistence
length of a 30mer pNIPAM was around 3.20 nm, which was smaller than the FRET critical
radius of rhodamine and fluorescein. This indicated that it had a very high energy transfer
efficiency. However, when the polymer chain reached 50mer, its persistence length was
5.31 nm per meter and 100mer was 10.6 nm, even larger. Therefore, 30mer and 50mer were
suitable for the FRET measurement because the FRET signal shifted significantly at this
range. We could see that the shift in the 50mer sample was the most significant. However,
as the chain length increased, the sensitivity decreased. When the persistence chain length
reached 10.6nm, we barely saw any FRET changes.

3.4. Change in the FRET Signal with the Amount of Bipyridine on the Chain

Fluorescent changes caused by different amounts of copper ion binding groups were
tested by adding 1800 µL of the 10−5 M copper(II) pH = 6 phosphate solution into 200 µL
of the 0.0100 g/L pH = 6 samples from Table 1. The comparison of the FRET response
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for the polymer with different amounts of bipyridine ligands on the chain is presented
in Figure 5. As is shown in the figure, if the polymer was equipped with 6% bipyridine
ligands, there was hardly any FRET transfer between the two fluorophores. If the bipyridine
ligand percentage was increased to 8%, the polymer wrapped the copper ions more tightly.
Eventually, this caused a greater FRET shift.
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polymers without copper ions (a) 30mer-6%py; (b) 30mer-8%py; (c) 50mer-6%py; (d) 50mer-8%py.

The concept of the electrostatic length was introduced by Odijk [44] and by Skolnick
to describe the electrostatic interaction of polyelectrolytes. They showed the interaction
between charged monomers on polymer backbones by using the equation below [45]:

lp = l0 + lcharge = l0 +
lB f 2

4(κb)2

This equation describes the effects of the charged monomers on the persistence chain length.
In the equation, lp is the persistent length affected by the charge in the polymer chain. l0
is the original persistent length, which we ascertained in the previous section. b is the
bond length. κ is the inverse of the Debye screen length. It describes the screening effect of
counterions around the polymer and it is not affected by the chain length and the amount
of bipyridine monomers on the chain. f is the fraction of the charged monomer. lB is the
Bjerrum length and it describes the repulsion effect caused by the copper ions that are stuck
to the polymer. We did not have the method to obtain lB in the equation, but lB is mainly
controlled by the relative permittivity and the copper ion concentration in all the sample
solutions that were maintained in the same manner. lB did not change too much for these
solutions. We can see from the equation that if we change the amount of bipyridine on
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the chain, the only term that will change is f 2. When the amount of bipyridine monomer
increased from 3 to 4, f 2 changed from 9 to 16, nearly twice the amount. That is why we
observed such a significant change in the signal.

3.5. Copper ion FRET Calibration Curve for 30mer-8%py

To validate the fluorescence transduction of the copper(II) ion binding, the fluorescence
spectra of the indicator were collected using 0.100 M of a pH = 6 phosphate buffer, as shown
in Figure 6. Because copper(II) could quench the fluorescence, the sensor could not detect
free ions in a much higher value. These data were derived by adding 1800 µL of the pH
= 6 phosphate solution with different concentrations of copper(II) (ranging from 10−4 M
to 10−11 M) into 200 µL of the 0.0100 g/L pH = 6 30mer-8%py sample. The error bar was
obtained from three repeated tests for the same sample.
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Figure 6. (a) Fluorescent response (excitation wavelength = 493 nm) to copper ions in different
concentrations. (b) Curve for the change in the ratio of fluorescein peak intensity to rhodamine
peak intensity (F/R ratio derived from (a)) over pCu(II) (−log[Cu2+]). The sharpest shift occurred at
pCu(II) around 7. (c) The F/R ratio at pCu(II) below 7. The F/R ratio reached stability at pCu(II) = 10.

Although the change after adding copper ions was more significant in 50mer-8%py, we
used 30mer-8%py for the calibration curve rather than 50mer-8%py because the rhodamine
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peak at 560 nm for 30mer-8%py was more readable. So, we could obtain a ratio for the peak
intensity of these two fluorophores.

As the concentration of the copper ion decreased, the peak from the FRET donor
decreased and the peak from the FRET acceptor increased, as shown in Figure 6a. In this
case, the F/R ratio decreased. this indicated that the indicator bonded with more and more
free copper ions.

However, the peak intensity for the fluorescent donor and acceptor did not evenly
change as the concentration of the copper(II) ions decreased. To determine the effectiveness
of this method, we plotted the F/R ratio versus pCu(II) (−log[Cu2+]) (Figure 6b). We
observed that the change in the F/R ratio versus pCu(II) was not linear. The change was
small over 10−6 M and below 10−8 M. The sharpest shift occurred at pCu(II) around 7.
This was the most sensitive range for the sensor. The concentration ratio of the bipyridine
monomers and the concentration of copper ions in the equilibrium point in the F/R
ratio versus pCu(II) curves was nearly 1:1, which indicated that in this binding ratio, the
response of the telechelic polymer indicator had the best performance. Based on the Cu(II)-
sensing range that closely corresponded with [Cu(bipy)]2+, multiple Bpy ligands did not
appear to interact with a single metal ion in the indicators because the Bpy was fixed on
the polymer backbone.

When the concentration of the metal ions went beyond 10−6 M, the curve gradually
reached a plateau. One of the possible reasons was that the concentrated copper ions
quenched the fluorescence. Another important reason was that as the concentration of
the metal ion increased, it gradually reached the saturation point. This indicated that
the polymer could not accept more copper ions, which resulted in the change being less
significant. When the concentration of the metal ions went below 10−9 M (Figure 6c), the
F/R ratio changed slower and slower. The F/R ratio reached stability at pCu(II) = 10. The
change in fluorescence at this point was minimal. Below this concentration, the coordination
of the copper ions to the metal ion ligand did not lead to a significant conformational change
detectable in the two fluorophores at the two ends of the polymer.

3.6. Selectivity for other Transition Metals by 50mer-8%py

Other metal ions also interact strongly with bipyridine ligands. Therefore, 1800 µL
of the pH = 6 phosphate solution with 10−5 M of different transition metal ions was
added into 200 µL of the 0.0100 g/L pH = 6 50mer-8%py solution for comparison. The
ratiometric response of the polymer indicator to various metal ions was evaluated, as
shown in Figure 7a. To test the capability of the indicator in a complex ion environment,
1800 µL of the pH = 6 phosphate solution with a mixture of 10−5 M Co2+, Fe3+, and Zn2+

was added into 200 µL of the 0.0100 g/L pH = 6 50mer-8%py solution. Cu(II) not only
had a relatively large formation constant with Bpy, but also the largest response. The
logs of the formation constant for Co(II), Fe(III), and Zn(II) were, separately, 5.8, 4.1, and
5.1 [46], which were lower than that of Cu(II) 8.1. When it appeared on the ratiometric
signal change, the copper ion showed the most significant change in comparison with the
blank sample (B). So, other metal ions could not interfere with the Cu(II) measurements
when at concentrations lower than 10 µM.

Shown in Figure 7b is the selectivity of the sensor when a mixture of different ions
was tested to monitor its response in a multi-ion system. Compared with the curve of the
ionic solution without copper(II), the indicator had a more significant response in terms
of the F/R ratio. However, the ionic mixture interfered with the detection of copper ions.
There were three interfering ions, so the total concentration was three times higher than the
analyte of interest. The telechelic polymer still responded in this condition, which proved
its ability to react against the interference.
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4. Conclusions

This free copper ion indicator worked stably at around 10−7 M. The lowest concen-
tration that could make a change to the F/R ratio observed with bipyridine as our ligand
was ca. 0.1 nanomolar. This concentration level would be adequate when measuring free
copper ions.

Ideally, we wanted the polymer that we used to function as an ‘indicator’. This
required that the concentration of free Cu(II) was higher than the indicator concentration,
so that the reaction with the indicator was only controlled by the equilibrium constant for
the reaction between the indicator and the analyte. In the case of detecting free Cu(II), the
indicator concentration had to be 10 picomolar or lower, a very low concentration even for
measurements using fluorescence. Note also that by ‘indicator’ concentration we mean the
concentration of the ligand. In the telechelic polymer that we used, we had three or four
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bipyridines per one set of fluorophores, so the fluorophore concentration was a factor of
three or four lower than the ‘indicator’ concentration.

The other extreme occurred if we used a very high-affinity ligand in our polymer.
In this case, the observed signal only depended on stoichiometry, i.e., the fraction of
ligands that were attached to Cu(II). This was easier to experimentally realize because
the ligand concentration had to be similar to the analyte concentration. The problem
with this approach was that we perturbed the equilibria under study. A strong ligand
pulls Cu(II) away from weaker ligands and we could not be sure that we were actually
measuring free Cu(II).

We believed that the final solution involved an intermediate-strength ligand at a
relatively high concentration, or 0.10 nanomolar. This concentration was too high for the
indicator to function as a true indicator. Instead, the response to free Cu(II) had to be
determined by calibration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23239476/s1. Figure S1. 1H-NMR for RCTA (the green lines
are the integration of the peaks. The integrated values are shown in the bottom of the figure. They
were used to compare different functional groups on the polymer chain). Figure S2. 1H-NMR
for 30mer-4py; the integrated value for a:b:c was around 1:3.3:52. Because 2 H in the molecule
formed a, 1 formed b, and 2 formed c, the RCTA:bipyridine-monomer:NIPAM ratio = 1:1.6:26
(target was 1:1.8:30). Figure S3. 1H-NMR for 30mer-3py; the integrated value for a:b:c was around
1:4.7:50. Because 2 H in the molecule formed a, 1 formed b, and 2 formed c, the RCTA:bipyridine-
monomer:NIPAM ratio = 1:2.4:25 (target was 1:2.4:30). Figure S4. 1H-NMR for 50mer-4py; the
integrated value for a:b:c = 1:8.5:105. Because 2 H in the molecule formed a, 1 formed b, and 2 formed
c, the RCTA:bipyridine-monomer:NIPAM ratio = 1:4.3:52 (target was 1:4:50). Figure S5. 1H-NMR for
50mer-3py; the integrated value for a:b:c was around 1:5:128. Because 2 H in the molecule formed a,
1 formed b, and 2 formed c, the RCTA:bipyridine-monomer:NIPAM ratio = 1:2.5:64 (target was 1:3:50).
Figure S6. 1H-NMR for 100mer-4py; the integrated value for a:b:c was around 1:14:234. Because 2
H in the molecule formed a, 1 formed b, and 2 formed c, the RCTA:bipyridine-monomer:NIPAM
ratio = 1:7:117 (target was 1:8:100). Figure S7. 1H-NMR for 100mer-3py; the integrated value for
a:b:c was around 1:12:209. Because 2 H in the molecule formed a, 1 formed b, and 2 formed c, the
RCTA:bipyridine-monomer:NIPAM ratio = 1:6:105 (target was 1:6:100). Figure S8. 1000 ms and 10
min after copper(II) binding on the telechelic polymer.
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