Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (561)

Search Parameters:
Keywords = technology constituency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2163 KiB  
Review
The Role of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Livestock and Poultry Gut Health: A Review
by Taojing Yue, Yanan Lu, Wenli Ding, Bowen Xu, Cai Zhang, Lei Li, Fuchun Jian and Shucheng Huang
Metabolites 2025, 15(7), 478; https://doi.org/10.3390/metabo15070478 - 15 Jul 2025
Viewed by 540
Abstract
Background: The gut health of livestock and poultry is of utmost importance as it significantly impacts their growth performance, disease resistance, and product quality. With the increasing restrictions on antibiotic use in animal husbandry, probiotics, prebiotics, synbiotics, and postbiotics (PPSP) have emerged as [...] Read more.
Background: The gut health of livestock and poultry is of utmost importance as it significantly impacts their growth performance, disease resistance, and product quality. With the increasing restrictions on antibiotic use in animal husbandry, probiotics, prebiotics, synbiotics, and postbiotics (PPSP) have emerged as promising alternatives. This review comprehensively summarizes the roles of PPSP in promoting gut health in livestock and poultry. Results: Probiotics, such as Lactobacillus, Bifidobacterium, and Saccharomyces, modulate the gut microbiota, enhance the gut barrier, and regulate the immune system. Prebiotics, including fructooligosaccharides, isomalto-oligosaccharides, galactooligosaccharides, and inulin, selectively stimulate the growth of beneficial bacteria and produce short-chain fatty acids, thereby improving gut health. Synbiotics, combinations of probiotics and prebiotics, have shown enhanced effects in improving gut microbiota and animal performance. Postbiotics, consisting of inanimate microorganisms and their constituents, restore the gut microbiota balance and have anti-inflammatory and antibacterial properties. Additionally, the review looks ahead to the future development of PPSP, emphasizing the importance of encapsulation technology and personalized strategies to maximize their efficacy. Conclusions: Our aim is to provide scientific insights for PPSP to improve the gut health of livestock and poultry. Full article
(This article belongs to the Special Issue Metabolomics Approaches to Nutrition, Intestine and Farm Animal)
Show Figures

Graphical abstract

23 pages, 1341 KiB  
Review
Microbial Fermentation Affects the Structure–Activity Relationship of Bioactive Compounds in Ginseng and Its Applications in Fermentation Products: A Review
by Juan Bai, Zixian Zhu, Wei Luo, Miran Jang, Beibei Pan, Ying Zhu, Jiayan Zhang, Yansheng Zhao and Xiang Xiao
Foods 2025, 14(14), 2473; https://doi.org/10.3390/foods14142473 - 15 Jul 2025
Viewed by 714
Abstract
Microbial fermentation technology has emerged as a pivotal approach for enhancing ginseng efficacy through the transformation of active ingredient molecular structures. This paper reviews the impact of microbial fermentation on the structure–activity relationship of ginseng bioactive compounds and advances in its application. Bibliometric [...] Read more.
Microbial fermentation technology has emerged as a pivotal approach for enhancing ginseng efficacy through the transformation of active ingredient molecular structures. This paper reviews the impact of microbial fermentation on the structure–activity relationship of ginseng bioactive compounds and advances in its application. Bibliometric analysis indicates that Panax species (Panax ginseng, Panax notoginseng) are primarily fermented using lactic acid bacteria and Aspergillus spp., with research predominantly focused on conversion efficiency to rare ginsenosides (Compound K, Rg3, and Rh2). Specifically, this review details the biotransformation pathways of these rare ginsenosides and the resultant bioactivity enhancements. Additionally, it summarizes the effects of other microorganisms, such as fungal fruiting bodies, on additional ginseng constituents like polysaccharides and polyphenols. Microbial fermentation has been successfully implemented in functional products, including ginseng vinegar, wine, and fermented milk. This review subsequently examines these applications, emphasizing fermentation’s potential to enhance product functionality. However, challenges remain in strain screening, process standardization, and analysis of multi-component synergistic mechanisms. In summary, this review synthesizes recent advancements in understanding the mechanisms of microbial fermentation on ginseng and its translational applications in functional foods and pharmaceuticals. Full article
Show Figures

Figure 1

15 pages, 2369 KiB  
Article
Optimization of the Sintering Densification, Microstructure, Mechanical Properties, and Oxidation Resistance of Tib2–Tic–Sic Composite Ceramics via a Two-Step Method
by Fei Han, Wenzhou Sun, Youjun Lu, Junqing Ma and Shidiao Xu
Materials 2025, 18(14), 3297; https://doi.org/10.3390/ma18143297 - 13 Jul 2025
Viewed by 451
Abstract
In this investigation, TiB2–TiC composite powders, synthesized via the boron/carbon thermal reduction process, were employed as precursor materials. SiC, serving as the tertiary constituent, was incorporated to fabricate TiB2–TiC–SiC composite ceramics utilizing spark plasma sintering technology. The present study [...] Read more.
In this investigation, TiB2–TiC composite powders, synthesized via the boron/carbon thermal reduction process, were employed as precursor materials. SiC, serving as the tertiary constituent, was incorporated to fabricate TiB2–TiC–SiC composite ceramics utilizing spark plasma sintering technology. The present study initially elucidates the densification mechanisms and investigates the influence of sintering temperature on the densification behavior, microstructural evolution, and mechanical properties of the resultant ceramics. The experimental findings reveal that the sintering process of TiB2–TiC–SiC ceramics exhibits characteristics consistent with solid-phase sintering. As the sintering temperature escalates, both the relative density and mechanical properties of the ceramics initially improve, reaching a maximum at an optimal sintering temperature of 1900 °C, before subsequently declining. Microstructural examinations conducted at this optimal temperature indicate a homogeneous distribution of the two primary phases, with no evidence of excessive grain growth. Furthermore, this research explores the effects of SiC addition on the mechanical performance and oxidation resistance of TiB2–TiC–SiC composite ceramics. The results demonstrate that the incorporation of SiC effectively suppresses grain growth and promotes the formation of rod-like TiB2 microstructures, thereby enhancing the mechanical attributes of the ceramics. Additionally, the addition of SiC significantly improves the oxidation resistance of the composite ceramics compared to their TiB2–TiC binary counterparts Full article
Show Figures

Figure 1

31 pages, 1909 KiB  
Review
Centella asiatica: Advances in Extraction Technologies, Phytochemistry, and Therapeutic Applications
by Zaw Myo Hein, Prarthana Kalerammana Gopalakrishna, Anil Kumar Kanuri, Warren Thomas, Farida Hussan, Venkatesh R. Naik, Nisha Shantakumari, Muhammad Danial Che Ramli, Mohamad Aris Mohd Moklas, Che Mohd Nasril Che Mohd Nassir and Thirupathirao Vishnumukkala
Life 2025, 15(7), 1081; https://doi.org/10.3390/life15071081 - 9 Jul 2025
Viewed by 1463
Abstract
Centella asiatica (C. asiatica) has attracted significant scientific interest due to its extensive medicinal properties and long-established use in traditional medicine. This review synthesizes recent advances in the technological exploitation of C. asiatica, covering the extraction of bioactive constituents to [...] Read more.
Centella asiatica (C. asiatica) has attracted significant scientific interest due to its extensive medicinal properties and long-established use in traditional medicine. This review synthesizes recent advances in the technological exploitation of C. asiatica, covering the extraction of bioactive constituents to product development. Modern extraction techniques such as supercritical fluid extraction (SFE) and microwave-assisted extraction (MAE) have substantially improved the yield, selectivity, and preservation of key phytochemicals, particularly triterpenoids, saponins, and flavonoids. These compounds are now routinely characterized using advanced analytical platforms, ensuring product quality, consistency, and standardization. Moreover, the use of innovative formulation technologies and advanced delivery systems has facilitated the development of C. asiatica-based products tailored for various therapeutic areas, including pharmaceuticals, nutraceuticals, and cosmeceuticals targeting neuroprotection, wound healing, skin aging, and stress modulation. Alongside these developments, stringent quality control protocols, toxicological evaluations, and adherence to evolving regulatory standards enhance the safety and efficacy of C. asiatica-derived interventions. This review highlights the integration of traditional knowledge with modern science across the domains of extraction, analysis, formulation, and regulation. It serves as a comprehensive resource for researchers, formulators, and regulatory stakeholders aiming to develop high-quality, evidence-based C. asiatica products with improved bioavailability and therapeutic value. Full article
Show Figures

Figure 1

31 pages, 3723 KiB  
Review
Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies
by Chandra Prakash and Rohit Mahar
Foods 2025, 14(14), 2417; https://doi.org/10.3390/foods14142417 - 9 Jul 2025
Viewed by 601
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR [...] Read more.
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR is widely applied for precise quantification of metabolites, authentication of food products, and monitoring of food quality. Low-field 1H-NMR relaxometry is an important technique for investigating the most abundant components of intact foodstuffs based on relaxation times and amplitude of the NMR signals. In particular, information on water compartments, diffusion, and movement can be obtained by detecting proton signals because of H2O in foodstuffs. Saffron adulterations with calendula, safflower, turmeric, sandalwood, and tartrazine have been analyzed using benchtop NMR, an alternative to the high-field NMR approach. The fraudulent addition of Robusta to Arabica coffee was investigated by 1H-NMR Spectroscopy and the marker of Robusta coffee can be detected in the 1H-NMR spectrum. MRI images can be a reliable tool for appreciating morphological differences in vegetables and fruits. In kiwifruit, the effects of water loss and the states of water were investigated using MRI. It provides informative images regarding the spin density distribution of water molecules and the relationship between water and cellular tissues. 1H-NMR spectra of aqueous extract of kiwifruits affected by elephantiasis show a higher number of small oligosaccharides than healthy fruits do. One of the frauds that has been detected in the olive oil sector reflects the addition of hazelnut oils to olive oils. However, using the NMR methodology, it is possible to distinguish the two types of oils, since, in hazelnut oils, linolenic fatty chains and squalene are absent, which is also indicated by the 1H-NMR spectrum. NMR has been applied to detect milk adulterations, such as bovine milk being spiked with known levels of whey, urea, synthetic urine, and synthetic milk. In particular, T2 relaxation time has been found to be significantly affected by adulteration as it increases with adulterant percentage. The 1H spectrum of honey samples from two botanical species shows the presence of signals due to the specific markers of two botanical species. NMR generates large datasets due to the complexity of food matrices and, to deal with this, chemometrics (multivariate analysis) can be applied to monitor the changes in the constituents of foodstuffs, assess the self-life, and determine the effects of storage conditions. Multivariate analysis could help in managing and interpreting complex NMR data by reducing dimensionality and identifying patterns. NMR spectroscopy followed by multivariate analysis can be channelized for evaluating the nutritional profile of food products by quantifying vitamins, sugars, fatty acids, amino acids, and other nutrients. In this review, we summarize the importance of NMR spectroscopy in chemical profiling and quality assessment of food products employing magnetic resonance technologies and multivariate statistical analysis. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

36 pages, 1925 KiB  
Review
Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers
by Zhichen Lun, Xiaohong Wu, Jiajun Dong and Bin Wu
Foods 2025, 14(13), 2350; https://doi.org/10.3390/foods14132350 - 2 Jul 2025
Viewed by 1259
Abstract
Nowadays, the development of the food industry and economic recovery have driven escalating consumer demands for high-quality, nutritious, and safe food products, and spectroscopic technologies are increasingly prominent as essential tools for food quality inspection. Concurrently, the rapid rise of artificial intelligence (AI) [...] Read more.
Nowadays, the development of the food industry and economic recovery have driven escalating consumer demands for high-quality, nutritious, and safe food products, and spectroscopic technologies are increasingly prominent as essential tools for food quality inspection. Concurrently, the rapid rise of artificial intelligence (AI) has created new opportunities for food quality detection. As a critical branch of AI, deep learning synergizes with spectroscopic technologies to enhance spectral data processing accuracy, enable real-time decision making, and address challenges from complex matrices and spectral noise. This review summarizes six cutting-edge nondestructive spectroscopic and imaging technologies, near-infrared/mid-infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy, hyperspectral imaging (spanning the UV, visible, and NIR regions, to simultaneously capture both spatial distribution and spectral signatures of sample constituents), terahertz spectroscopy, and nuclear magnetic resonance (NMR), along with their transformative applications. We systematically elucidate the fundamental principles and distinctive merits of each technological approach, with a particular focus on their deep learning-based integration with spectral fusion techniques and hybrid spectral-heterogeneous fusion methodologies. Our analysis reveals that the synergy between spectroscopic technologies and deep learning demonstrates unparalleled superiority in speed, precision, and non-invasiveness. Future research should prioritize three directions: multimodal integration of spectroscopic technologies, edge computing in portable devices, and AI-driven applications, ultimately establishing a high-precision and sustainable food quality inspection system spanning from production to consumption. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

37 pages, 2135 KiB  
Review
Neuroprotective Mechanisms of Red Algae-Derived Bioactive Compounds in Alzheimer’s Disease: An Overview of Novel Insights
by Tianzi Wang, Wenling Shi, Zijun Mao, Wei Xie and Guoqing Wan
Mar. Drugs 2025, 23(7), 274; https://doi.org/10.3390/md23070274 - 30 Jun 2025
Viewed by 553
Abstract
Alzheimer’s disease (AD) is characterized by β-amyloid plaques, neurofibrillary tangles, neuroinflammation, and oxidative stress—pathological features that pose significant challenges for the development of therapeutic interventions. Given these challenges, this review comprehensively evaluates the neuroprotective mechanisms of bioactive compounds derived from red algae, [...] Read more.
Alzheimer’s disease (AD) is characterized by β-amyloid plaques, neurofibrillary tangles, neuroinflammation, and oxidative stress—pathological features that pose significant challenges for the development of therapeutic interventions. Given these challenges, this review comprehensively evaluates the neuroprotective mechanisms of bioactive compounds derived from red algae, including polysaccharides and phycobiliproteins, which are considered a promising source of natural therapeutics for AD. Red algal constituents exhibit neuroprotective activities through multiple mechanisms. Sulfated polysaccharides (e.g., carrageenan, porphyran) suppress NF-κB-mediated neuroinflammation, modulate mitochondrial function, and enhance brain-derived neurotrophic factor (BDNF) expression. Phycobiliproteins (phycoerythrin, phycocyanin) and peptides derived from their degradation scavenge reactive oxygen species (ROS) and activate antioxidant pathways (e.g., Nrf2/HO-1), thus mitigating oxidative damage. Carotenoids (lutein, zeaxanthin) improve cognitive function through the inhibition of acetylcholinesterase and pro-inflammatory cytokines (TNF-α, IL-1β), while phenolic compounds (bromophenols, diphlorethol) provide protection by targeting multiple pathways involved in dopaminergic system modulation and Nrf2 pathway activation. Emerging extraction technologies—including microwave- and enzyme-assisted methods—have been shown to optimize the yield and maintain the bioactivity of these compounds. However, the precise identification of molecular targets and the standardization of extraction techniques remain critical research priorities. Overall, red algae-derived compounds hold significant potential for multi-mechanism AD interventions, providing novel insights for the development of therapeutic strategies with low toxicity. Full article
(This article belongs to the Special Issue Marine-Derived Bioactive Compounds for Neuroprotection)
Show Figures

Figure 1

55 pages, 16837 KiB  
Review
A Comprehensive Review of Plasma Cleaning Processes Used in Semiconductor Packaging
by Stephen Sammut
Appl. Sci. 2025, 15(13), 7361; https://doi.org/10.3390/app15137361 - 30 Jun 2025
Viewed by 734
Abstract
Semiconductor device fabrication is conducted through highly precise manufacturing processes. An essential component of the semiconductor package is the lead frame on which the silicon dies are assembled. Impurities such as oxides or organic matter on the surfaces have an impact on the [...] Read more.
Semiconductor device fabrication is conducted through highly precise manufacturing processes. An essential component of the semiconductor package is the lead frame on which the silicon dies are assembled. Impurities such as oxides or organic matter on the surfaces have an impact on the process yield. Plasma cleaning is a vital process in semiconductor manufacturing, employed to enhance production yield through precise and efficient surface preparation essential for device fabrication. This paper explores the various facets of plasma cleaning, with a particular emphasis on its application in the cleaning of lead frames used in semiconductor packaging. To provide comprehensive context, this paper also reviews the critical role of plasma in advanced and emerging packaging technologies. This study investigates the fundamental physics governing plasma generation, the design of plasma systems, and the composition of the plasma medium. A central focus of this work is the comparative analysis of different plasma systems in terms of their effectiveness in removing organic contaminants and oxide residues from substrate surfaces. By utilizing reactive species generated within the plasma—such as oxygen radicals, hydrogen ions, and other chemically active constituents—these systems enable a non-contact, damage-free cleaning method that offers significant advantages over conventional wet chemical processes. Additionally, the role of non-reactive species, such as argon, in sputtering processes for surface preparation is examined. Sputtering is the ejection of individual atoms from a target surface due to momentum transfer from an energetic particle (usually an ion). Sputtering is therefore a physical process driven by momentum transfer. Energetic ions, such as argon (Ar+), are accelerated from the plasma to bombard a target surface. Upon impact, these ions transfer sufficient kinetic energy to atoms within the material’s lattice to overcome their surface binding energy, resulting in their physical ejection. This paper also provides a comparative assessment of various plasma sources, including direct current, dielectric barrier discharge, radio frequency, and microwave-based systems, evaluating their suitability and efficiency for lead frame cleaning applications. Furthermore, it addresses critical parameters affecting plasma cleaning performance, such as gas chemistry, power input, pressure regulation, and substrate handling techniques. The ultimate aim of this paper is to provide a concise yet comprehensive resource that equips technical personnel with the essential knowledge required to make informed decisions regarding plasma cleaning technologies and their implementation in semiconductor manufacturing. This paper provides various tables which provide the reader with comparative assessments of the various plasma sources and gases used. Scoring mechanisms are also introduced and utilized in this paper. The scores achieved by both the sources and the plasma gases are then summarized in this paper’s conclusions. Full article
Show Figures

Figure 1

22 pages, 5737 KiB  
Article
Geophysical Log Responses and Predictive Modeling of Coal Quality in the Shanxi Formation, Northern Jiangsu, China
by Xuejuan Song, Meng Wu, Nong Zhang, Yong Qin, Yang Yu, Yaqun Ren and Hao Ma
Appl. Sci. 2025, 15(13), 7338; https://doi.org/10.3390/app15137338 - 30 Jun 2025
Viewed by 279
Abstract
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal [...] Read more.
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal quality prediction. By integrating scanning electron microscopy (SEM), X-ray analysis, and optical microscopy with interdisciplinary methodologies spanning mathematics, mineralogy, and applied geophysics, this research analyzes the coal quality and mineral composition of the Shanxi Formation coal seams in northern Jiangsu, China. A predictive model linking geophysical logging responses to coal quality parameters was established to delineate relationships between subsurface geophysical data and material properties. The results demonstrate that the Shanxi Formation coals are gas coal (a medium-metamorphic bituminous subclass) characterized by low sulfur content, low ash yield, low fixed carbon, high volatile matter, and high calorific value. Mineralogical analysis identifies calcite, pyrite, and clay minerals as the dominant constituents. Pyrite occurs in diverse microscopic forms, including euhedral and semi-euhedral fine grains, fissure-filling aggregates, irregular blocky structures, framboidal clusters, and disseminated particles. Systematic relationships were observed between logging parameters and coal quality: moisture, ash content, and volatile matter exhibit an initial decrease, followed by an increase with rising apparent resistivity (LLD) and bulk density (DEN). Conversely, fixed carbon and calorific value display an inverse trend, peaking at intermediate LLD/DEN values before declining. Total sulfur increases with density up to a threshold before decreasing, while showing a concave upward relationship with resistivity. Negative correlations exist between moisture, fixed carbon, calorific value lateral resistivity (LLS), natural gamma (GR), short-spaced gamma-gamma (SSGG), and acoustic transit time (AC). In contrast, ash yield, volatile matter, and total sulfur correlate positively with these logging parameters. These trends are governed by coalification processes, lithotype composition, reservoir physical properties, and the types and mass fractions of minerals. Validation through independent two-sample t-tests confirms the feasibility of the neural network model for predicting coal quality parameters from geophysical logging data. The predictive model provides technical and theoretical support for advancing intelligent coal mining practices and optimizing efficiency in coal chemical industries, enabling real-time subsurface characterization to facilitate precision resource extraction. Full article
Show Figures

Figure 1

27 pages, 2869 KiB  
Review
Literature Reviews of Topology Optimal Design Methods and Applications in Magnetic Devices
by Jiaqi Wu, Ziyan Ren and Dianhai Zhang
Energies 2025, 18(13), 3295; https://doi.org/10.3390/en18133295 - 24 Jun 2025
Viewed by 306
Abstract
With the evolution of magnetic devices toward structural innovation and high reliability, the traditional design methods, such as size optimization and shape optimization, are limited by preset structural forms, making it challenging to generate novel structures and topologies. Topology-optimized design methods can achieve [...] Read more.
With the evolution of magnetic devices toward structural innovation and high reliability, the traditional design methods, such as size optimization and shape optimization, are limited by preset structural forms, making it challenging to generate novel structures and topologies. Topology-optimized design methods can achieve an optimal distribution of constituent materials of magnetic devices by optimizing the objective performance subject to certain constraints, and can provide greater freedom for designers. Based on the above background, this paper firstly investigates the principles of deterministic topology optimization methods, and introduces the latest specific applications in magnetic devices. It also demonstrates the advantages of topology optimization technology in enhancing operating performance, fostering structural innovation, and improving material utilization in magnetic devices. To manage uncertainties in design and manufacturing processes of magnetic devices, this paper analyzes uncertainty topology optimization methods, respectively, reliability and robustness-based topology optimization algorithms. To facilitate manufacturing, this paper summarizes the filter strategy for the new structure obtained by topology optimization. Finally, the problems faced by the topology optimization method in the field of magnetic devices are discussed, and a future development direction is projected. Full article
Show Figures

Figure 1

12 pages, 1052 KiB  
Article
Study on Effect of Germination on Flavonoid Content and Nutritional Value of Different Varieties of Chickpeas
by Jiyuan Xue, Jia Yang and Yongqi Yin
Foods 2025, 14(13), 2157; https://doi.org/10.3390/foods14132157 - 20 Jun 2025
Viewed by 360
Abstract
Chickpeas (Cicer arietinum L.) were popular for their high nutritional profile and abundance of bioactive constituents, making them highly sought after in the consumer market. This investigation evaluated the impact of germination on the levels of total phenolics, total flavonoids, and other [...] Read more.
Chickpeas (Cicer arietinum L.) were popular for their high nutritional profile and abundance of bioactive constituents, making them highly sought after in the consumer market. This investigation evaluated the impact of germination on the levels of total phenolics, total flavonoids, and other bioactive compounds, as well as free amino acids, soluble proteins, dietary fiber, and starch, in two chickpea sprout cultivars. The results demonstrated that germination significantly enhanced the concentrations of total flavonoids and phenolics in chickpeas. Compared to ungerminated seeds, the total flavonoid content in Xinying No. 1 and Xinying No. 2 sprouts increased by 3.95-fold and 3.25-fold, respectively, while total phenolic content increased by 2.47-fold and 2.38-fold. Germination also significantly augmented free amino acid, soluble protein, and total dietary fiber content while reducing resistant starch and insoluble dietary fiber. Concurrently, the bioaccessibility of essential nutrients was substantially improved, as indicated by enhanced solubility. This research provided valuable insights for optimizing the nutritional quality and bioactive compound content of chickpeas through sprouting technology. These results provided critical insights for optimizing the nutritional and functional properties of chickpeas via sprouting and established a scientific basis for the development of functional foods from germinated chickpeas, underscoring their potential to support dietary health and wellness. Full article
Show Figures

Figure 1

20 pages, 8100 KiB  
Article
Characterization of Red Sandstone and Black Crust to Analyze Air Pollution Impacts on a Cultural Heritage Building: Red Fort, Delhi, India
by Gaurav Kumar, Lucia Rusin, Pavan Kumar Nagar, Sanjay Kumar Manjul, Michele Back, Alvise Benedetti, Bhola Ram Gurjar, Chandra Shekhar Prasad Ojha, Mukesh Sharma and Eleonora Balliana
Heritage 2025, 8(6), 236; https://doi.org/10.3390/heritage8060236 - 19 Jun 2025
Viewed by 1371
Abstract
Urban air pollution poses significant risks to cultural heritage buildings, particularly in polluted megacities like Delhi, India. The Red Fort, a UNESCO World Heritage Site and a symbol of India’s rich history, is highly susceptible to degradation caused by air pollutants. Despite its [...] Read more.
Urban air pollution poses significant risks to cultural heritage buildings, particularly in polluted megacities like Delhi, India. The Red Fort, a UNESCO World Heritage Site and a symbol of India’s rich history, is highly susceptible to degradation caused by air pollutants. Despite its great importance as an Indian and world heritage site, no studies have focused on characterizing its constituent materials or the degradation phenomena taking place. This study was developed in the framework of the MAECI (Italian Ministry of Foreign Affairs) and the Department of Science and Technology under the Ministry of Science and Technology, India, project: Indo—Italian Centre of Excellence for Restoration and Assessment of Environmental Impacts on Cultural Heritage Monuments. To understand their composition and degradation, Vindhyan sandstone and black crust samples were studied. Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) indicated that the red sandstone predominantly consisted of quartz and microcline, while the black crusts mainly comprised gypsum, bassanite, weddellite, quartz, and microcline. The analysis attributed the formation of gypsum to exogenous sources, such as construction activities and cement factory emissions. This pioneering study provides a basis for further research into the impacts of air pollution on Indian patrimony and promotes conservation strategies. Full article
(This article belongs to the Special Issue Deterioration and Conservation of Materials in Built Heritage)
Show Figures

Figure 1

17 pages, 2030 KiB  
Review
Haploid Production in Cannabis sativa: Recent Updates, Prospects, and Perspectives
by S.M. Ahsan, Md. Injamum-Ul-Hoque, Nayan Chandra Howlader, Md. Mezanur Rahman, Md Mahfuzur Rahman, Md Azizul Haque and Hyong Woo Choi
Biology 2025, 14(6), 701; https://doi.org/10.3390/biology14060701 - 15 Jun 2025
Viewed by 992
Abstract
Cannabis sativa L. is a dioecious species known to produce over 1600 chemical constituents, including more than 180 cannabinoids classified into 11 structural groups. These bioactive compounds are predominantly synthesised in the glandular trichomes of female inflorescences. However, sex determination in C. sativa [...] Read more.
Cannabis sativa L. is a dioecious species known to produce over 1600 chemical constituents, including more than 180 cannabinoids classified into 11 structural groups. These bioactive compounds are predominantly synthesised in the glandular trichomes of female inflorescences. However, sex determination in C. sativa is influenced by both genetic and environmental factors, often leading to the development of male flowers on female plants. This unintended fertilisation reduces cannabinoid yield and increases genetic heterogeneity and challenges in medical cannabis production. Haploid and doubled haploid (DH) technologies offer a promising solution by rapidly generating homozygous lines from gametophytic (e.g., unpollinated ovaries and ovules) or sporophytic tissues (e.g., anthers and microspores) via in vitro culture or chromosome reduction during hybridisation. In land plants, the life cycle alternates between a diploid sporophyte and a haploid gametophyte generation, both capable of mitotic division to form multicellular bodies. A single genome regulates this phase transition and encodes the molecular, genetic, and epigenetic mechanisms that precisely control the developmental processes unique to each generation. While the application of haploid technology in C. sativa remains limited, through recent progress in haploid induction (HI) and CRISPR-based genome editing, the direct modification of haploid gametes or embryos enables the creation of null homozygous lines following chromosome doubling, improving genetic uniformity. Understanding the molecular mechanisms of spontaneous chromosome doubling may further facilitate the development of elite cannabis genotypes. Ultimately, enhancing the efficiency of DH production and optimising genome editing approaches could significantly increase the speed of genetic improvement and cultivar development in Cannabis sativa. Full article
(This article belongs to the Collection Crop Improvement Now and Beyond)
Show Figures

Figure 1

29 pages, 109956 KiB  
Review
In Silico Development of SARS-CoV-2 Non-Covalent Mpro Inhibitors: A Review
by Islam Alagawani and Feng Wang
Appl. Sci. 2025, 15(12), 6544; https://doi.org/10.3390/app15126544 - 10 Jun 2025
Viewed by 585
Abstract
Coronaviruses (CoVs) have recently emerged as significant causes of respiratory disease outbreaks, with the novel coronavirus pneumonia of 2019, known as COVID-19, being highly infectious and triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding virus–host interactions and molecular targets in host [...] Read more.
Coronaviruses (CoVs) have recently emerged as significant causes of respiratory disease outbreaks, with the novel coronavirus pneumonia of 2019, known as COVID-19, being highly infectious and triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding virus–host interactions and molecular targets in host cell death signalling is crucial for inhibitor development. Among the promising targets for inhibitor development is the main protease (Mpro), which is essential for viral replication. While current research has focused mainly on covalent inhibitors, growing attention is being given to non-covalent inhibitors due to their potential for lower toxicity and improved resistance to viral mutations. This literature review provides an in-depth analysis of recent in silico approaches used to identify and optimise non-covalent inhibitors of SARS-CoV-2 Mpro. It focuses on molecular docking and robust molecular dynamics (MD) simulation technologies to discover novel scaffolds with better binding affinities. The article summarises recent studies that pre-screened several potential non-covalent inhibitors, including natural constituents like alkaloids, flavonoids, terpenoids, diarylheptanoids, and anthraquinones, using in silico methods. The in silico approach, pivotal to developing small molecules of Mpro non-covalent inhibitors, provides an efficient avenue to guide future research efforts toward developing high-performance Mpro inhibitors for SARS-CoV-2 Mpro, representing the latest advancements in drug design. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

16 pages, 10401 KiB  
Article
Biomarker Discovery and Molecular Docking Reveal Marsdenia tenacissima Fermentation Product’s Anti-Lung Cancer Components
by Runtian Li, Lintao Li, Runzhi Li, Haiyang Wu and Guifang Dou
Curr. Issues Mol. Biol. 2025, 47(6), 427; https://doi.org/10.3390/cimb47060427 - 6 Jun 2025
Viewed by 508
Abstract
In traditional Chinese medicine, Marsdenia tenacissima is employed to prevent and treat lung cancer. The anti-tumor properties are further amplified by the fermentation product of Ganoderma lucidum and Marsdenia tenacissima (MGF). Nevertheless, the efficacy of the chemical components in combating lung cancer and [...] Read more.
In traditional Chinese medicine, Marsdenia tenacissima is employed to prevent and treat lung cancer. The anti-tumor properties are further amplified by the fermentation product of Ganoderma lucidum and Marsdenia tenacissima (MGF). Nevertheless, the efficacy of the chemical components in combating lung cancer and the potential therapeutic targets for treating the disease remain ambiguous. UPLC-Q-TOF/MS was used to identify 19 components, all of which are unique C21 steroidal saponins found in MGF. The analysis of network pharmacology indicated that the active targets of these components were significantly concentrated in lung cancer and had a strong connection with cell proliferation. The bioinformatics analysis was conducted on data from TCGA and DisGeNET to identify a total of 28 biomarkers. Furthermore, our findings showed that the 19 targets connected to the active ingredients of Marsdenia tenacissima demonstrated significant enrichment in both the EGFR and apoptosis signaling pathways. Molecular docking technology was utilized to confirm the binding interactions of the primary constituents with the designated target. Full article
(This article belongs to the Special Issue Natural Compounds: An Adjuvant Strategy in Cancer Management)
Show Figures

Figure 1

Back to TopTop