Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers
Abstract
1. Introduction
2. Classification and Principles of Deep Learning Algorithms
2.1. Deep Regression and Classification Tasks
2.1.1. Deep Neural Networks
2.1.2. Convolutional Neural Networks
2.1.3. Recurrent Neural Networks
2.1.4. Transformer
2.1.5. Capsule Networks
2.2. Clustering Tasks
2.2.1. Autoencoder
2.2.2. Deep Embedded Clustering
3. Deep Learning Model and Spectral Data Fusion Techniques
3.1. Principles and Characteristics of Spectral Technology
Techniques | Samples | Applications | Spectral Feature Type | Methods | Reference |
---|---|---|---|---|---|
NIR | Citrus | Prediction of sugar content | MSC, SNV (472–1156 nm) | ENM | [82] |
Citrus | Prediction of SSC and vitamin C content | MSC, SNV (560–1000 nm) | CNN | [83] | |
Crown pear | Prediction of SSC | SG, SNV (610–960 nm) | MLP-CNN-TCN | [84] | |
Durian | Prediction of nutritional components | SNV, 2nd Der (860–1760 nm) | DNN | [85] | |
Ligusticum chuanxiong | Identification of geographic origin | SG, MSC (e.g., 2439–2500 nm) | CNN | [86] | |
Matsutake | Identification of geographic origin | SNV (900–1700 nm) | CNN | [87] | |
Oil palm | Prediction of free fatty acid content | Higuchi fractal dimension (1000–1500 nm) | LSTM and GRU | [88] | |
Panax quinquefolius | Identification of geographic origin | SNV, min-max scaling (900–1650 nm) | AGOTNet | [89] | |
Perilla | Prediction of mineral content in seeds | SNV, min-max scaling (400–2500 nm) | SVR, ANN, RFR, and CNN | [90] | |
Porphyra yezoensis | Detection of phycobiliproteins | SNV, 1st Der (900–1650 nm) | CNN | [91] | |
NIR | Potato | Prediction of starch content | SNV, 1st Der (940–1650 nm) | CNN | [92] |
Procambarus clarkii | Assessment of multiple freshness | e.g., SG, SNV (940–2500 nm) | CNN | [93] | |
Vine tea | Detection of tps and dmy content | SNV, 1st Der, 2nd Der (900–1700 nm) | CNN-LSTM | [94] | |
Watermelon | Prediction of SSC | Mean Centralization (900–1700 nm) | CNN | [52] | |
RS | Corn oil | Quantification of ochratoxin | SG (20–2000 cm−1, 737–1455 cm−1) | CNNs, PLSR, RFR, and GPR | [95] |
Dairy products | Classification of species | Normalization, specific ranges (e.g., 890–980 cm−1) | SVM, ELM, and CNN | [96] | |
Edible oils | Prediction of antioxidants | SG, air-PLS (1200–1800 cm−1) | CNN | [97] | |
Green tea | Identification and classification of acetamiprid and thiacloprid residues | SG, air-PLS (300–2000 cm−1) | CNN, BP, and AlexNet | [98] | |
Pork | Prediction of gel strength and whiteness in pork paste | Labspec 6 (400–3200 cm−1) | CNN-LSTM | [99] | |
HSI | Bok choy | Identification of pests | NDVI, PPC (e.g., 420–440 nm) | DNN | [100] |
Chicken | Classification of blood-related defects in the chicken’s chest | IFBA (e.g., 420–600 nm, 950–970 nm) | CNN | [101] | |
Coriander | Classification and prediction of low-temperature damage | Bilinear downsampling, Bayesian wavelet denoising, median filtering (900–1700 nm) | CNN | [102] | |
Corn seeds | Identification of freezing damage on the embryo and endosperm sides | SNV (450–979 nm) | DCNN | [103] | |
Eggs | Detection of cracks, dirt, and blood spots | Otsu’s thresholding method (400–1000 nm, 690–780 nm) | DNN and CNN | [104] | |
Maize | Distinction of corn kernels | Orthogonal signal correction (e.g., 935–990 nm) | CNN | [105] | |
Maize | Identification of fungal species | WDR, min-max Norm. (996–2501 nm) | MCRM-CNN | [106] | |
Ophiopogonis radix | Identification of geographic origin | WDR, SG (400–1000 nm) | M3DC-Transformer | [107] | |
HSI | Peanuts | Classification of aflatoxin contamination | PCA (292–865 nm, 400–2500 nm) | CNN | [108] |
Peanuts | Detection of aflatoxin B1 | ConvAE (415–799 nm) | LSTM | [109] | |
Potato | Prediction of anthocyanin content | SG, SNV, detrending (365–1025 nm) | CNN | [110] | |
Red meat | Prediction of PUFA content | Raw spectrum (400–1000 nm) | AE-GAN | [81] | |
Rice seeds | Prediction of anthocyanin content | SG, 1st Der, 2nd Der (425–1690 nm) | DCGAN and CNN | [111] | |
Salmon | Identification of geographic origin | SG, WDR (400–1000 nm) | CNN-BiGRU | [112] | |
Sorghum | Prediction of sorghum protein content and moisture content | Raw spectrum (886–1735.34 nm) | CLNet | [113] | |
Soybean | Classification of lodging rating and soybean yield forecast | WDR (450–950 nm) | PCL | [114] | |
Strawberry | Classification and identification of strawberry ripeness | WDR, sequential feature selection algorithm (370–1015 nm) | SVM and CNN | [115] | |
Surimi | Prediction of multiple quality indicators | WDR, 1st Der, 2nd Der (400–1700 nm) | CNN-LSTM | [116] | |
Sweet potato | Prediction of SSC | WDR, MSC, SNV, SG (400–1000 nm) | CNN | [117] | |
Wheat | Identification of species | WDR (397–1004 nm) | DLFM | [118] | |
FS | Almonds | Classification of aflatoxin contamination | Image cropping, color space (375 nm, 435 nm) | CNN | [119] |
Dark tea | Classification of brands and aging periods | Background and scatter correction (230–530 nm, 244.73–827.81 nm) | CNN | [120] | |
Olive oil | Prediction of five chemical quality indicators | Background subtraction, normalization (650–750 nm, 500–800 nm) | CNN | [121] | |
THz | Rice seedlings | Prediction of nitrogen content in roots | CLAHE, PCA (0.1–3.5 THz) | CNN, GA-BPNN, and SSA-SVR | [122] |
Sunflower seeds | Identification and classification of seeds | Background subtraction, normalization (0.1–3 THz) | CNN-Transformer | [123] | |
Wheat | Classification of wheat varieties | SNV (0.2–1 THz) | CNN | [124] | |
NMR | Honey | Identification of adulterant sugars | PH adjustment and internal standard addition (5.3–5.5 ppm) | LR, DNN, and LGBM | [125] |
3.1.1. Near-Infrared/Mid-Infrared Spectroscopy
3.1.2. Raman Spectroscopy
3.1.3. Hyperspectral Imaging
3.1.4. Fluorescence Spectroscopy
3.1.5. Terahertz Spectroscopy and Nuclear Magnetic Resonance Spectroscopy
3.2. Modeling Methods
3.2.1. Modularization
3.2.2. Phased and Fusion Modeling
3.3. Multi-Source Spectral Information Fusion
3.3.1. Spectral Fusion
3.3.2. Spectral-Heterogeneous Data Fusion
4. Recent Advances in the Integration of Spectral Analysis and Deep Learning
4.1. Qualitative Detection
4.1.1. Food Traceability Detection
4.1.2. Food Adulteration Detection
4.1.3. Food Classification Detection
4.2. Quantitative Detection
4.2.1. Food Heavy Metal Content Detection
4.2.2. Food Harmful Toxin Content Detection
4.2.3. Food Nutrient Content Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Florsheim, E.B.; Sullivan, Z.A.; Khoury-Hanold, W.; Medzhitov, R. Food allergy as a biological food quality control system. Cell 2021, 184, 1440–1454. [Google Scholar] [CrossRef]
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Grace, D. Burden of foodborne disease in low-income and middle-income countries and opportunities for scaling food safety interventions. Food Secur. 2023, 15, 1475–1488. [Google Scholar] [CrossRef]
- Haider, A.; Iqbal, S.Z.; Bhatti, I.A.; Alim, M.B.; Waseem, M.; Iqbal, M.; Mousavi Khaneghah, A. Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13360. [Google Scholar] [CrossRef] [PubMed]
- Spink, J.; Embarek, P.B.; Savelli, C.J.; Bradshaw, A. Global perspectives on food fraud: Results from a WHO survey of members of the international food safety authorities network (INFOSAN). npj Sci. Food 2019, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Onyeaka, H.; Anyogu, A.; Odeyemi, O.A.; Ukwuru, M.U.; Eze, U.; Isaac-Bamgboye, F.J.; Anumudu, C.K.; Akinwunmi, O.O.; Sotayo, O.P.; Jeff-Agboola, Y.A. Navigating food fraud: A survey of nigerian consumer knowledge and attitudes. Foods 2024, 13, 3270. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Parashar, A.; Parewa, H.P.; Vyas, L. An alarming decline in the nutritional quality of foods: The biggest challenge for future generations’ health. Foods 2024, 13, 877. [Google Scholar] [CrossRef] [PubMed]
- García-Salirrosas, E.E.; Escobar-Farfán, M.; Veas-González, I.; Esponda-Perez, J.A.; Gallardo-Canales, R.; Ruiz-Andia, R.; Fernandez-Daza, V.M.; Zabalaga-Davila, R.F. Purchase intention of healthy foods: The determinant role of brand image in the market of a developing country. Foods 2024, 13, 3242. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, F.; Wei, L.; Huang, Y.; Wen, X.; Wang, D.; Cheng, G.; Zhao, R.; Lin, Y.; Yang, H.; et al. Rapid and precise differentiation and authentication of agricultural products via deep learning-assisted multiplex SERS fingerprinting. Anal. Chem. 2024, 96, 4682–4692. [Google Scholar] [CrossRef]
- Shen, D.; Zhang, M.; Mujumdar, A.S.; Ma, Y. Consumer-oriented smart dynamic detection of fresh food quality: Recent advances and future prospects. Crit. Rev. Food Sci. Nutr. 2024, 64, 11281–11301. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Thinking About the Future of Food Safety; FAO: Rome, Italy, 2022. [Google Scholar]
- Wang, B.; Deng, J.; Jiang, H. Markov transition field combined with convolutional neural network improved the predictive performance of near-infrared spectroscopy models for determination of aflatoxin B1 in maize. Foods 2022, 11, 2210. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Yao, K.; Xu, M. A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging. Food Chem. 2023, 409, 135251. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Ren, J.; Zhao, Y. Principles, Developments and applications of laser-induced breakdown spectroscopy in agriculture: A review. Artif. Intell. Agric. 2020, 4, 127–139. [Google Scholar] [CrossRef]
- Han, Y.; Tian, Y.; Li, Q.; Yao, T.; Yao, J.; Zhang, Z.; Wu, L. Advances in detection technologies for pesticide residues and heavy metals in rice: A comprehensive review of spectroscopy, chromatography, and biosensors. Foods 2025, 14, 1070. [Google Scholar] [CrossRef]
- Xue, Y.; Jiang, H. Monitoring of chlorpyrifos residues in corn oil based on raman spectral deep-learning model. Foods 2023, 12, 2402. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Grossmann, L. Tenderness in meat and meat alternatives: Structural and processing fundamentals. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70033. [Google Scholar] [CrossRef]
- Deng, J.; Chen, Z.; Jiang, H.; Chen, Q. High-precision detection of dibutyl hydroxytoluene in edible oil via convolutional autoencoder compressed fourier-transform near-infrared spectroscopy. Food Control 2025, 167, 110808. [Google Scholar] [CrossRef]
- Li, X.; Zang, M.; Li, D.; Zhang, K.; Zhang, Z.; Wang, S. Meat food fraud risk in chinese markets 2012–2021. npj Sci. Food 2023, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yang, F.; Cheng, J.; Wang, S.; Fu, L. Nondestructive identification of soybean protein in minced chicken meat based on hyperspectral imaging and VGG16-SVM. Food Compos. Anal. 2024, 125, 105713. [Google Scholar] [CrossRef]
- Ding, Y.; Yan, Y.; Li, J.; Chen, X.; Jiang, H. Classification of tea quality levels using near-infrared spectroscopy based on CLPSO-SVM. Foods 2022, 11, 1658. [Google Scholar] [CrossRef]
- Qi, H.; Li, H.; Chen, L.; Chen, F.; Luo, J.; Zhang, C. Hyperspectral imaging using a convolutional neural network with transformer for the soluble solid content and pH prediction of cherry tomatoes. Foods 2024, 13, 251. [Google Scholar] [CrossRef]
- Iyer, P.; Robb, D. Cold chain optimisation models: A systematic literature review. Comput. Ind. Eng. 2025, 204, 110972. [Google Scholar] [CrossRef]
- Anjali; Jena, A.; Bamola, A.; Mishra, S.; Jain, I.; Pathak, N.; Sharma, N.; Joshi, N.; Pandey, R.; Kaparwal, S.; et al. State-of-the-art non-destructive approaches for maturity index determination in fruits and vegetables: Principles, applications, and future directions. Food Prod. Process. Nutr. 2024, 6, 56. [Google Scholar] [CrossRef]
- Dutta, S.J.; Chakraborty, G.; Chauhan, V.; Singh, L.; Sharanagat, V.S.; Gahlawat, V.K. Development of a predictive model for determination of urea in milk using silver nanoparticles and UV–Vis spectroscopy. LWT 2022, 168, 113893. [Google Scholar] [CrossRef]
- Squeo, G.; Cruz, J.; De Angelis, D.; Caponio, F.; Amigo, J.M. Considerations about the gap between research in near-infrared spectroscopy and official methods and recommendations of analysis in foods. Curr. Opin. Food Sci. 2024, 59, 101203. [Google Scholar] [CrossRef]
- Yao, K.; Sun, J.; Cheng, J.; Xu, M.; Chen, C.; Zhou, X. Nondestructive detection of s-ovalbumin content in eggs using portable NIR spectrometer and MPA-CARS. J. Food Process Eng. 2023, 46, e14186. [Google Scholar] [CrossRef]
- Liu, T.; He, J.; Yao, W.; Jiang, H.; Chen, Q. Determination of aflatoxin B1 value in corn based on fourier transform near-infrared spectroscopy: Comparison of optimization effect of characteristic wavelengths. LWT 2022, 164, 113657. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, H.; Zou, X.; Meng, G.; Wu, N. Raman spectroscopy for food quality assurance and safety monitoring: A review. Curr. Opin. Food Sci. 2022, 47, 100910. [Google Scholar] [CrossRef]
- Guan, T.; Xu, Z.; Wang, J.; Liu, Y.; Shen, X.; Li, X.; Sun, Y.; Lei, H. Multiplex optical bioassays for food safety analysis: Toward on-site detection. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1627–1656. [Google Scholar] [CrossRef]
- Kolašinac, S.M.; Pećinar, I.; Gajić, R.; Mutavdžić, D.; Dajić Stevanović, Z.P. Raman spectroscopy in the characterization of food carotenoids: Challenges and prospects. Foods 2025, 14, 953. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Z.; Deng, J.; Ding, Z.; Chen, Q. Quantitative detection of heavy metal Cd in vegetable oils: A nondestructive method based on raman spectroscopy combined with chemometrics. J. Food Sci. 2024, 89, 8054–8065. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lin, C. Laser-induced breakdown spectroscopy. Nat. Rev. Methods Primers 2025, 5, 17. [Google Scholar]
- Tian, Y.; Sun, J.; Zhou, X.; Yao, K.; Tang, N. Detection of soluble solid content in apples based on hyperspectral technology combined with deep learning algorithm. J. Food Process. Preserv. 2022, 46, e16414. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, G.; Abdulla, W.; Sun, J. Advancing fraud detection in New Zealand mānuka honey: Integrating hyperspectral Imaging and GANomaly-based one-class classification. Food Biosci. 2024, 60, 104428. [Google Scholar] [CrossRef]
- Olaniyi, E.O.; Kucha, C. Advances in precision systems based on machine vision for meat quality detection. Food Eng. Rev. 2025. [Google Scholar] [CrossRef]
- Sun, J.; Nirere, A.; Dusabe, K.D.; Yuhao, Z.; Adrien, G. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms. J. Food Sci. 2024, 89, 4403–4418. [Google Scholar] [CrossRef]
- Nirere, A.; Sun, J.; Kama, R.; Atindana, V.A.; Nikubwimana, F.D.; Dusabe, K.D.; Zhong, Y. Nondestructive detection of adulterated wolfberry (Lycium chinense) fruits based on hyperspectral imaging technology. J. Food Process Eng. 2023, 46, e14293. [Google Scholar] [CrossRef]
- Nirere, A.; Sun, J.; Atindana, V.A.; Hussain, A.; Zhou, X.; Yao, K. A comparative analysis of hybrid SVM and LS-SVM classification algorithms to identify dried wolfberry fruits quality based on hyperspectral imaging technology. J. Food Process. Preserv. 2022, 46, e16320. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, F.; Liu, P. The application of hyperspectral imaging for wheat biotic and abiotic stress analysis: A review. Comput. Electron. Agric. 2024, 221, 109008. [Google Scholar] [CrossRef]
- Zhong, Y.; Sun, J.; Yao, K.; Cheng, J.; Du, X. Detection of rice (with husk) moisture content based on hyperspectral imaging technology combined with MSLPP–ESMA–SVR model. J. Food Saf. 2024, 44, e13112. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wang, K.; Lin, H.; Wang, L.; Cao, L.; Sui, J. Spectral data fusion in nondestructive detection of food products: Strategies, recent applications, and future perspectives. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13301. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Sun, J.; Huang, X.; Zhang, X.; Tian, X.; Wang, W.; Sun, J.; Luan, Y. Application of hyperspectral imaging as a nondestructive technology for identifying tomato maturity and quantitatively predicting lycopene content. Foods 2023, 12, 2957. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Solomon Adade, S.Y.-S.; Rong, Y.; Zhao, S.; Han, Z.; Gong, Y.; Chen, X.; Yu, J.; Huang, C.; Lin, H. Online system for monitoring the degree of fermentation of oolong tea using integrated visible–near-infrared spectroscopy and image-processing technologies. Foods 2024, 13, 1708. [Google Scholar] [CrossRef]
- Chen, C.P.J.; White, R.R.; Wright, R. Common pitfalls in evaluating model performance and strategies for avoidance in agricultural studies. Comput. Electron. Agric. 2025, 234, 110126. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Lin, T.; Ying, Y. Food and agro-product quality evaluation based on spectroscopy and deep learning: A review. Trends Food Sci. Technol. 2021, 112, 431–441. [Google Scholar] [CrossRef]
- Paul, N.; Sunil, G.C.; Horvath, D.; Sun, X. Deep learning for plant stress detection: A comprehensive review of technologies, challenges, and future directions. Comput. Electron. Agric. 2025, 229, 109734. [Google Scholar] [CrossRef]
- Jensen, A.; Brown, P.; Groves, K.; Morshed, A. Next generation crop protection: A systematic review of trends in modelling approaches for disease prediction. Comput. Electron. Agric. 2025, 234, 110245. [Google Scholar] [CrossRef]
- Das, P.; Altemimi, A.B.; Nath, P.C.; Katyal, M.; Kesavan, R.K.; Rustagi, S.; Panda, J.; Avula, S.K.; Nayak, P.K.; Mohanta, Y.K. Recent advances on artificial intelligence-based approaches for food adulteration and fraud detection in the food industry: Challenges and opportunities. Food Chem. 2025, 468, 142439. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, J.; Yao, Y.; Hu, D.; Ying, Y.; Guo, J.; Xie, L. Knowledge-guided temperature correction method for soluble solids content detection of watermelon based on Vis/NIR spectroscopy. Artif. Intell. Agric. 2025, 15, 88–97. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Dai, C. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging. Meat Sci. 2023, 201, 109196. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Chen, T.; Zhang, X.; Taha, M.F.; Yang, N.; Mao, H.; Shi, Q. Cucumber downy mildew disease prediction using a CNN-LSTM approach. Agriculture 2024, 14, 1155. [Google Scholar] [CrossRef]
- Grazina, L.; Mafra, I.; Monaci, L.; Amaral, J.S. Mass spectrometry-based approaches to assess the botanical authenticity of dietary supplements. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3870–3909. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Tian, Y.; Dai, C. A decision fusion method based on hyperspectral imaging and electronic nose techniques for moisture content prediction in frozen-thawed pork. LWT 2022, 165, 113778. [Google Scholar] [CrossRef]
- Cui, J.; Wu, C.; Pan, S.; Li, K.; Liu, S.; Lv, Y.; Wang, S.; Luo, R. Determining the geographical origins of goji berries using the twin-tower model for multi-feature. Comput. Electron. Agric. 2024, 227, 109571. [Google Scholar] [CrossRef]
- Zhang, J.; Ai, Y.; Liang, H.; Zhang, D.; Liu, Y.; Li, L.; Qi, S.; Ma, H.; Zhao, S.; Xue, J.; et al. A salt-tolerance evaluation system for chinese cabbage using multispectral image data fusion and fine-tuned, pruned convolutional-lstm-resnet networks. Comput. Electron. Agric. 2025, 231, 110005. [Google Scholar] [CrossRef]
- Zhu, F.; Zhou, Z.; Shen, Y.; He, M.; Jiang, J.; Qiao, X.; Peng, J.; He, Y. A 3D spectral compensation method on close-range hyperspectral imagery of plant canopies. Comput. Electron. Agric. 2025, 231, 109955. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, C.; Zhong, Y.; Luo, Z. Applications of near-infrared spectroscopy for nondestructive quality analysis of fish and fishery products. Foods 2024, 13, 3992. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.K.; Mishra, R. Towards sustainable agriculture: Harnessing AI for global food security. Artif. Intell. Agric. 2024, 12, 72–84. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Wang, Q.; Sun, D.-W. Applications of machine learning techniques for enhancing nondestructive food quality and safety detection. Crit. Rev. Food Sci. Nutr. 2023, 63, 1649–1669. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Georgouli, K.; Martinez-Del Rincon, J.; Koidis, A. Challenges in the use of AI-driven non-destructive spectroscopic tools for rapid food analysis. Foods 2024, 13, 846. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, Y.; Wang, Y.; Zhu, H.; Song, D.; Shen, C.; Luo, Y. Enhancing optical non-destructive methods for food quality and safety assessments with machine learning techniques: A survey. J. Agric. Food Res. 2025, 19, 101734. [Google Scholar] [CrossRef]
- Luo, N.; Xu, D.; Xing, B.; Yang, X.; Sun, C. Principles and applications of convolutional neural network for spectral analysis in food quality evaluation: A review. J. Food Compos. Anal. 2024, 128, 105996. [Google Scholar] [CrossRef]
- Eh Teet, S.; Hashim, N. Recent advances of application of optical imaging techniques for disease detection in fruits and vegetables: A review. Food Control 2023, 152, 109849. [Google Scholar] [CrossRef]
- Gao, X.; Li, S.; He, Y.; Yang, Y.; Tian, Y. Spectrum imaging for phenotypic detection of greenhouse vegetables: A review. Comput. Electron. Agric. 2024, 225, 109346. [Google Scholar] [CrossRef]
- Patel, D.; Bhise, S.; Kapdi, S.S.; Bhatt, T. Non-destructive hyperspectral imaging technology to assess the quality and safety of food: A review. Food Prod. Process. Nutr. 2024, 6, 69. [Google Scholar] [CrossRef]
- Lolli, V.; Caligiani, A. How NMR contributes to food authentication: Current trends and perspectives. Curr. Opin. Food Sci. 2024, 58, 101200. [Google Scholar] [CrossRef]
- Ozel, B.; Oztop, M.H. A quick look to the use of time domain nuclear magnetic resonance relaxometry and magnetic resonance imaging for food quality applications. Curr. Opin. Food Sci. 2021, 41, 122–129. [Google Scholar] [CrossRef]
- Gu, H.; Hu, L.; Dong, Y.; Chen, Q.; Wei, Z.; Lv, R.; Zhou, Q. Evolving trends in fluorescence spectroscopy techniques for food quality and safety: A review. J. Food Compos. Anal. 2024, 131, 106212. [Google Scholar] [CrossRef]
- Fodor, M.; Matkovits, A.; Benes, E.L.; Jókai, Z. The role of near-infrared spectroscopy in food quality assurance: A review of the past two decades. Foods 2024, 13, 3501. [Google Scholar] [CrossRef]
- Buvé, C.; Saeys, W.; Rasmussen, M.A.; Neckebroeck, B.; Hendrickx, M.; Grauwet, T.; Van Loey, A. Application of multivariate data analysis for food quality investigations: An example-based review. Food Res. Int. 2022, 151, 110878. [Google Scholar] [CrossRef]
- Kang, Z.; Zhao, Y.; Chen, L.; Guo, Y.; Mu, Q.; Wang, S. Advances in machine learning and hyperspectral imaging in the food supply chain. Food Eng. Rev. 2022, 14, 596–616. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.U.; Raziq, A.; Shrestha, B.; Nguyen, K.-A.; Liou, Y.-A. The role of spectro-temporal remote sensing in vegetation classification: A comprehensive review integrating machine learning and bibliometric analysis. Comput. Electron. Agric. 2025, 234, 110184. [Google Scholar] [CrossRef]
- Zhou, D.-X. Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 2020, 48, 787–794. [Google Scholar] [CrossRef]
- Castillo-Girones, S.; Munera, S.; Martínez-Sober, M.; Blasco, J.; Cubero, S.; Gómez-Sanchis, J. Artificial neural networks in agriculture, the core of artificial intelligence: What, when, and why. Comput. Electron. Agric. 2025, 230, 109938. [Google Scholar] [CrossRef]
- Ding, H.; Hou, H.; Wang, L.; Cui, X.; Yu, W.; Wilson, D.I. Application of convolutional neural networks and recurrent neural networks in food safety. Foods 2025, 14, 247. [Google Scholar] [CrossRef]
- Zhu, D.; Han, J.; Liu, C.; Zhang, J.; Qi, Y. Vis-NIR and NIR hyperspectral imaging combined with convolutional neural network with attention module for flaxseed varieties identification. J. Food Compos. Anal. 2025, 137, 106880. [Google Scholar] [CrossRef]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Proceedings of the NIPS 2017 Advances in Neural Information Processing Systems Conference, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Cui, J.; Li, K.; Lv, Y.; Liu, S.; Cai, Z.; Luo, R.; Zhang, Z.; Wang, S. Development of a new hyperspectral imaging technology with autoencoder-assisted generative adversarial network for predicting the content of polyunsaturated fatty acids in red meat. Comput. Electron. Agric. 2024, 220, 108842. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Hong, S.-J.; Kim, E.; Lee, C.-H.; Kim, G. Application of ensemble neural-network method to integrated sugar content prediction model for citrus fruit using Vis/NIR spectroscopy. J. Food Eng. 2023, 338, 111254. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, Y.; Liu, P.; Xie, L.; Ying, Y. Enhanced prediction of soluble solids content and vitamin C content in citrus using visible and near-infrared spectroscopy combined with one-dimensional convolutional neural network. J. Food Compos. Anal. 2025, 139, 107131. [Google Scholar] [CrossRef]
- Qi, H.; Shen, C.; Chen, G.; Zhang, J.; Chen, F.; Li, H.; Zhang, C. Rapid and non-destructive determination of soluble solid content of crown pear by visible/near-infrared spectroscopy with deep learning regression. J. Food Compos. Anal. 2023, 123, 105585. [Google Scholar] [CrossRef]
- Posom, J.; Saenphon, C.; Ditcharoen, S.; Pitak, L.; Sirisomboon, P.; Maraphum, K. Deep neural networks (DNNs) chemical compositions estimation of fresh durian in-line via near infrared spectroscopy. J. Food Compos. Anal. 2025, 142, 107410. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.; Liu, C.; Zhou, L.; Tang, L.; Wei, H.; Fan, K.; Wang, A.; Tang, Y. Rapid and non-destructive geographical origin identification of chuanxiong slices using near-infrared spectroscopy and convolutional neural networks. Agriculture 2024, 14, 1281. [Google Scholar] [CrossRef]
- Lin, H.; Pan, T.; Li, Y.; Chen, S.; Li, G. Development of analytical method associating near-infrared spectroscopy with one-dimensional convolution neural network: A case study. J. Food Meas. Charact. 2021, 15, 2963–2973. [Google Scholar] [CrossRef]
- Nanda, M.A.; Amaru, K.; Rosalinda, S.; Novianty, I.; Sholihah, W.; Mindara, G.P.; Faricha, A.; Park, T. Higuchi fractal dimension and deep learning on near-infrared spectroscopy for determination of free fatty acid (FFA) content in oil palm fruit. J. Agric. Food Res. 2024, 18, 101437. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Zhu, Q.; Qin, Y.; Zhai, D.; Lian, F.; Li, P. Non-destructive geographical traceability of american ginseng using near-infrared spectroscopy combined with a novel deep learning model. J. Food Compos. Anal. 2024, 136, 106736. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, S.; Jain, A.; Kumar, A.; Bhardwaj, R.; Pandey, R.; Riar, A. Comparative analysis of deep learning and machine learning-based models for simultaneous prediction of minerals in perilla (Perilla frutescens L.) seeds using near-infrared reflectance spectroscopy. J. Food Compos. Anal. 2024, 136, 106824. [Google Scholar] [CrossRef]
- Shen, Z.; Sun, W.; Pan, M.; Zhou, X.; Quan, H.; Zhang, W.; Qian, J.; Zeng, M.; Hu, Y.; Wang, P. Rapid identification of phycobiliproteins in Porphyra yezoensis using near-infrared combined with convolutional neural network. J. Food Compos. Anal. 2024, 136, 106746. [Google Scholar] [CrossRef]
- Arefi, A.; Sturm, B.; Hoffmann, T. Explainability of deep convolutional neural networks when it comes to NIR spectral data: A case study of starch content estimation in potato tubers. Food Control 2025, 169, 110979. [Google Scholar] [CrossRef]
- Han, Q.; Lu, J.; Zhu, J.; Lin, L.; Zheng, Z.; Jiang, S. Non-destructive detection of freshness in crayfish (Procambarus clarkii) based on near-infrared spectroscopy combined with deep learning. Food Control 2025, 168, 110858. [Google Scholar] [CrossRef]
- Hu, Y.; Sheng, W.; Adade, S.Y.-S.S.; Wang, J.; Li, H.; Chen, Q. Comparison of machine learning and deep learning models for detecting quality components of vine tea using smartphone-based portable near-infrared device. Food Control 2025, 174, 111244. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, X.; Rong, Y.; Wei, W.; Wu, S.; Jiao, T.; Chen, Q. Label-free detection of trace level zearalenone in corn oil by surface-enhanced raman spectroscopy (SERS) coupled with deep learning models. Food Chem. 2023, 414, 135705. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-X.; Qing, C.-C.; Wang, X.-Q.; Zhu, M.-J.; Zhang, B.-Y.; Zhang, Z.-Y. Discriminative feature analysis of dairy products based on machine learning algorithms and raman spectroscopy. Curr. Res. Food Sci. 2024, 8, 100782. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Niu, Y.; Gao, S.; Zhao, Z.; Ma, R.; Liu, H.; Zhang, Y. Detection of antioxidants in edible oil by two-dimensional correlation spectroscopy combined with convolutional neural network. J. Food Compos. Anal. 2023, 119, 105262. [Google Scholar] [CrossRef]
- Li, D.; Ezra, M.T.; Li, H.; Chen, Y.; Si, C.; Luo, X. Quantitative analysis of acetamiprid and thiacloprid in green tea using enhanced SERS and neural networks. J. Food Compos. Anal. 2025, 137, 106901. [Google Scholar] [CrossRef]
- Li, H.; Sheng, W.; Adade, S.Y.-S.S.; Nunekpeku, X.; Chen, Q. Investigation of heat-induced pork batter quality detection and change mechanisms using raman spectroscopy coupled with deep learning algorithms. Food Chem. 2024, 461, 140798. [Google Scholar] [CrossRef]
- Nguyen, D.; Tan, A.; Lee, R.; Lim, W.F.; Hui, T.F.; Suhaimi, F. Early detection of infestation by mustard aphid, vegetable thrips and two-spotted spider mite in bok choy with deep neural network (DNN) classification model using hyperspectral imaging data. Comput. Electron. Agric. 2024, 220, 108892. [Google Scholar] [CrossRef]
- Duan, L.; Bao, J.; Yang, H.; Gao, L.; Zhang, X.; Li, S.; Wang, H. Classification of chicken carcass breast blood-related defects using hyperspectral imaging combined with convolutional neural networks. Foods 2024, 13, 3745. [Google Scholar] [CrossRef]
- Pipatsart, N.; Meenune, M.; Hoonlor, A.; Niamsiri, N.; Punyasuk, N.; Mairhofer, S.; Lertsiri, S. Application of short-wave infrared hyperspectral imaging combined with machine learning on chilling injury detection in fresh coriander. Food Control 2025, 172, 111176. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, L. Application of hyperspectral imaging and deep convolutional neural network for freezing damage identification on embryo and endosperm side of single corn seed. Foods 2025, 14, 659. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Hsu, S.-H.; Ko, C.-Y.; Hsu, K.-H. Real-time defect and freshness inspection on chicken eggs using hyperspectral imaging. Food Control 2023, 150, 109716. [Google Scholar] [CrossRef]
- Van Puyenbroeck, E.; Wouters, N.; Leblicq, T.; Saeys, W. Detection of kernels in maize forage using hyperspectral imaging. Comput. Electron. Agric. 2024, 225, 109336. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Zeng, S.; Yang, W.; Chen, Y. Hyperspectral imaging coupled with deep learning model for visualization and detection of early bruises on apples. J. Food Compos. Anal. 2024, 134, 106489. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, Y.; Wei, Y.; Wang, T.; Mei, Y.; Ren, H.; Xu, H.; Mao, X.; Huang, L. Geographical origin discrimination of ophiopogonis radix using hyperspectral imaging with multi-scale 3D convolution and transformer. Comput. Electron. Agric. 2025, 233, 110152. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, H.; Deng, L.; Han, Z. A Cumulative learning method for pixel-level hyperspectral detection of aflatoxins on peanuts using convolutional neural network. J. Food Compos. Anal. 2025, 141, 107356. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, Y.; Zhao, L.; Yang, R.; Han, Z. Pixel-level spectral reconstruction and compressed projection based on deep learning in detecting aflatoxin B1. Comput. Electron. Agric. 2025, 232, 110071. [Google Scholar] [CrossRef]
- Wang, F.; Li, Q.; Deng, W.; Wang, C.; Han, L. Detection of anthocyanins in potatoes using micro-hyperspectral images based on convolutional neural networks. Foods 2024, 13, 2096. [Google Scholar] [CrossRef]
- Bao, X.; Huang, D.; Yang, B.; Li, J.; Opeyemi, A.T.; Wu, R.; Weng, H.; Cheng, Z. Combining deep convolutional generative adversarial networks with visible-near infrared hyperspectral reflectance to improve prediction accuracy of anthocyanin content in rice seeds. Food Control 2025, 174, 111218. [Google Scholar] [CrossRef]
- Zou, Z.; Yuan, D.; Wu, Q.; Wang, Q.; Li, M.; Zhen, J.; Xu, C.; Yin, S.; Cui, Q.; Zhou, M.; et al. Salmon origin traceability based on hyperspectral imaging data fusion strategy and improved deep learning method. Food Control 2024, 166, 110740. [Google Scholar] [CrossRef]
- Hu, X.; Dai, M.; Li, A.; Liang, Y.; Lu, W.; Zeng, J.; Peng, J.; Tian, J.; Chen, M. CLNet: A fusion network capturing spectral features and wavelength relationships for predicting sorghum protein and moisture content. J. Food Compos. Anal. 2025, 142, 107412. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, Y.; Wang, L.; Zhou, L.; Fei, S.; Han, S.; Xiao, S.; Che, Y.; Yan, L.; Xu, Y.; et al. Bridging the gap between hyperspectral imaging and crop breeding: Soybean yield prediction and lodging classification with prototype contrastive learning. Comput. Electron. Agric. 2025, 230, 109859. [Google Scholar] [CrossRef]
- Gao, Z.; Shao, Y.; Xuan, G.; Wang, Y.; Liu, Y.; Han, X. Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artif. Intell. Agric. 2020, 4, 31–38. [Google Scholar] [CrossRef]
- Xia, Y.; Xiao, X.; Yao-Say Solomon Adade, S.; Xi, Q.; Wu, J.; Xu, Y.; Chen, Q.; Chen, Q. Physicochemical properties and gel quality monitoring of surimi during thermal processing using hyperspectral imaging combined with deep learning. Food Control 2025, 175, 111258. [Google Scholar] [CrossRef]
- Ahmed, M.T.; Monjur, O.; Kamruzzaman, M. Deep learning-based hyperspectral image reconstruction for quality assessment of agro-product. J. Food Eng. 2024, 382, 112223. [Google Scholar] [CrossRef]
- Han, L.; Tian, J.; Huang, Y.; He, K.; Liang, Y.; Hu, X.; Xie, L.; Yang, H.; Huang, D. Hyperspectral imaging combined with dual-channel deep learning feature fusion model for fast and non-destructive recognition of brew wheat varieties. J. Food Compos. Anal. 2024, 125, 105785. [Google Scholar] [CrossRef]
- Bertani, F.R.; Mencattini, A.; Gambacorta, L.; De Ninno, A.; Businaro, L.; Solfrizzo, M.; Gerardino, A.; Martinelli, E. Aflatoxins detection in almonds via fluorescence imaging and deep neural network approach. J. Food Compos. Anal. 2024, 125, 105850. [Google Scholar] [CrossRef]
- Tan, X.; He, J.; Li, H.; Jiang, J.; He, Z.; Guo, J.; Qiu, B. Utilizing excitation-emission matrix fluorescence spectroscopy and convolutional neural networks for dark tea brand and aging period identification. J. Food Compos. Anal. 2024, 133, 106458. [Google Scholar] [CrossRef]
- Venturini, F.; Sperti, M.; Michelucci, U.; Gucciardi, A.; Martos, V.M.; Deriu, M.A. Extraction of physicochemical properties from the fluorescence spectrum with 1D convolutional neural networks: Application to olive oil. J. Food Eng. 2023, 336, 111198. [Google Scholar] [CrossRef]
- Luo, H.; Wan, X.; Chen, Z.; Jiang, K.; Yu, Y.; Lu, W. Root phenotype detection of rice seedling under nitrogen conditions based on terahertz imaging technique. Comput. Electron. Agric. 2024, 226, 109369. [Google Scholar] [CrossRef]
- Ge, H.; Guo, C.; Jiang, Y.; Zhang, Y.; Zhou, W.; Wang, H. Research on non-destructive quality detection of sunflower seeds based on terahertz imaging technology. Foods 2024, 13, 2830. [Google Scholar] [CrossRef]
- Chen, F.; Shen, Y.; Li, G.; Ai, M.; Wang, L.; Ma, H.; He, W. Classification of wheat grain varieties using terahertz spectroscopy and convolutional neural network. J. Food Compos. Anal. 2024, 129, 106060. [Google Scholar] [CrossRef]
- Rachineni, K.; Rao Kakita, V.M.; Awasthi, N.P.; Shirke, V.S.; Hosur, R.V.; Chandra Shukla, S. Identifying type of sugar adulterants in honey: Combined application of NMR spectroscopy and supervised machine learning classification. Curr. Res. Food Sci. 2022, 5, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Nadimi, M.; Paliwal, J. Recent applications of near-infrared spectroscopy in food quality analysis. Foods 2024, 13, 2633. [Google Scholar] [CrossRef]
- Deng, J.; Jiang, H.; Chen, Q. Characteristic wavelengths optimization improved the predictive performance of near-infrared spectroscopy models for determination of aflatoxin B1 in maize. J. Cereal Sci. 2022, 105, 103474. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, J.; Lin, L.; Zhang, J.; Zhu, J.; Yao, L.; Wang, S.; Du, J.; Wu, Z. Mid-infrared spectra feature extraction and visualization by convolutional neural network for sugar adulteration identification of honey and real-world application. LWT 2021, 140, 110856. [Google Scholar] [CrossRef]
- Yao, K.; Sun, J.; Cheng, J.; Xu, M.; Chen, C.; Zhou, X.; Dai, C. Development of simplified models for non-destructive hyperspectral imaging monitoring of s-ovalbumin content in eggs during storage. Foods 2022, 11, 2024. [Google Scholar] [CrossRef]
- Yao, K.; Sun, J.; Chen, C.; Xu, M.; Zhou, X.; Cao, Y.; Tian, Y. Non-destructive detection of egg qualities based on hyperspectral imaging. J. Food Eng. 2022, 325, 111024. [Google Scholar] [CrossRef]
- Shi, L.; Sun, J.; Zhang, B.; Wu, Z.; Jia, Y.; Yao, K.; Zhou, X. Simultaneous detection for storage condition and storage time of yellow peach under different storage conditions using hyperspectral imaging with multi-target characteristic selection and multi-task model. J. Food Compos. Anal. 2024, 135, 106647. [Google Scholar] [CrossRef]
- Wang, S.; Sun, J.; Fu, L.; Xu, M.; Tang, N.; Cao, Y.; Yao, K.; Jing, J. Identification of red jujube varieties based on hyperspectral imaging technology combined with CARS-IRIV and SSA-SVM. J. Food Process Eng. 2022, 45, e14137. [Google Scholar] [CrossRef]
- Yang, F.; Sun, J.; Cheng, J.; Fu, L.; Wang, S.; Xu, M. Detection of starch in minced chicken meat based on hyperspectral imaging technique and transfer learning. J. Food Process Eng. 2023, 46, e14304. [Google Scholar] [CrossRef]
- Hao, J.; Dong, F.; Li, Y.; Wang, S.; Cui, J.; Liu, S.; Lv, Y. Quantification of polycyclic aromatic hydrocarbons in roasted tan lamb using fluorescence hyperspectral imaging technology. J. Food Compos. Anal. 2023, 124, 105646. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Zhou, X. Nondestructive detection and visualization of protein oxidation degree of frozen-thawed pork using fluorescence hyperspectral imaging. Meat Sci. 2022, 194, 108975. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Zhang, J.; Zhang, H.; Zhang, Y.; Yin, J.; Zhan, B.; Liu, X.; Luo, W. Qualitative and quantitative analysis of nanfeng mandarin quality based on hyperspectral imaging and deep learning. Food Control 2025, 167, 110831. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Q.; Yan, L.; Cao, X.; Chen, Y.; Wei, Y.; Wang, F.; Xing, H. Hyperspectral imaging combined with spectral-imagery feature fusion convolutional neural network to discriminate different geographical origins of wolfberries. J. Food Compos. Anal. 2024, 132, 106259. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Cheng, J.; Sun, J.; Shi, L.; Dai, C. An effective method fusing electronic nose and fluorescence hyperspectral imaging for the detection of pork freshness. Food Biosci. 2024, 59, 103880. [Google Scholar] [CrossRef]
- Long, Y.; Tang, X.; Fan, S.; Zhang, C.; Zhang, B.; Huang, W. Identification of mould varieties infecting maize kernels based on raman hyperspectral imaging technique combined with multi-channel residual module convolutional neural network. J. Food Compos. Anal. 2024, 125, 105727. [Google Scholar] [CrossRef]
- Zhao, X.; Ning, W.; Chen, R.; Wang, H.; Zhang, G.; Bi, J.; Hou, H. Rapid non-destructive detection of pork freshness using visible-near infrared spectroscopy based on convolutional neural network hybrid models. J. Food Compos. Anal. 2025, 140, 107199. [Google Scholar] [CrossRef]
- Xu, M.; Sun, J.; Cheng, J.; Yao, K.; Wu, X.; Zhou, X. Non-destructive prediction of total soluble solids and titratable acidity in kyoho grape using hyperspectral imaging and deep learning algorithm. Int. J. Food Sci. Technol. 2023, 58, 9–21. [Google Scholar] [CrossRef]
- Yue, J.; Wang, J.; Zhang, Z.; Li, C.; Yang, H.; Feng, H.; Guo, W. Estimating crop leaf area index and chlorophyll content using a deep learning-based hyperspectral analysis method. Comput. Electron. Agric. 2024, 227, 109653. [Google Scholar] [CrossRef]
- Fu, L.; Sun, J.; Wang, S.; Xu, M.; Yao, K.; Cao, Y.; Tang, N. Identification of maize seed varieties based on stacked sparse autoencoder and near-infrared hyperspectral imaging technology. J. Food Process Eng. 2022, 45, e14120. [Google Scholar] [CrossRef]
- Ding, Y.; Zeng, R.; Jiang, H.; Guan, X.; Jiang, Q.; Song, Z. Classification of tea quality grades based on hyperspectral imaging spatial information and optimization models. J. Food Meas. Charact. 2024, 18, 9098–9112. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Yan, B.; Wang, X.; Zhang, Z.; Wang, S.; Yang, J. Integration of hyperspectral imaging and deep learning for discrimination of fumigated lilies and prediction of quality indicator contents. Foods 2025, 14, 825. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Zhao, X.; Yun, X.; Borjigin, G.; Dong, T. Identification of geographical origin of beef by visible-near infrared hyperspectral recovery from color images. J. Food Compos. Anal. 2024, 135, 106622. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Wang, S.; Fu, L. Hyperspectral technique combined with stacking and blending ensemble learning method for detection of cadmium content in oilseed rape leaves. J. Sci. Food Agric. 2023, 103, 2690–2699. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Xu, M.; Zhou, X. Nondestructive detection of lipid oxidation in frozen pork using hyperspectral imaging technology. J. Food Compos. Anal. 2023, 123, 105497. [Google Scholar] [CrossRef]
- Joshi, P.; Pahariya, P.; Al-Ani, M.F.; Choudhary, R. Monitoring and prediction of sensory shelf-life in strawberry with ultraviolet-visible-near-infrared (UV-VIS-NIR) spectroscopy. Appl. Food Res. 2022, 2, 100123. [Google Scholar] [CrossRef]
- Zhu, C.; Jiang, H.; Chen, Q. High precisive prediction of aflatoxin B1 in pressing peanut oil using raman spectra combined with multivariate data analysis. Foods 2022, 11, 1565. [Google Scholar] [CrossRef]
- Ma, L.; Yang, X.; Xue, S.; Zhou, R.; Wang, C.; Guo, Z.; Wang, Y.; Cai, J. “Raman plus X” dual-modal spectroscopy technology for food analysis: A review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70102. [Google Scholar] [CrossRef]
- David, M.; Berghian-Grosan, C.; Magdas, D.A. Honey differentiation using infrared and raman spectroscopy analysis and the employment of machine-learning-based authentication models. Foods 2025, 14, 1032. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Huang, W.; Sattar, H.; Guo, L. Laser-induced breakdown spectroscopy–visible and near-infrared spectroscopy fusion based on deep learning network for identification of adulterated polygonati rhizoma. Foods 2024, 13, 2306. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Cheng, J.; Xu, M.; Yao, K. A method for freshness detection of pork using two-dimensional correlation spectroscopy images combined with dual-branch deep learning. J. Food Compos. Anal. 2024, 129, 106144. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Dai, C. Generalized and hetero two-dimensional correlation analysis of hyperspectral imaging combined with three-dimensional convolutional neural network for evaluating lipid oxidation in pork. Food Control 2023, 153, 109940. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Liu, Y.; Chen, T.; Li, X.; Sui, Y.; Zhang, L.; Dang, J.; Yu, H. Early identification of heat and UV-B stress in wheat based on the combination of hyperspectral technology and gas detection method. Comput. Electron. Agric. 2025, 231, 109971. [Google Scholar] [CrossRef]
- Ji, W.; Wang, J.; Xu, B.; Zhang, T. Apple grading based on multi-dimensional view processing and deep learning. Foods 2023, 12, 2117. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, S.; Wang, H.; Liang, J.; Zhao, Q.; Cheng, K.; Imran, M.; Xue, J.; Mao, Z. Revolutionizing food science with mass spectrometry imaging: A comprehensive review of applications and challenges. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13398. [Google Scholar] [CrossRef] [PubMed]
- Zhong, P.; Wei, X.; Li, X.; Wei, X.; Wu, S.; Huang, W.; Koidis, A.; Xu, Z.; Lei, H. Untargeted metabolomics by liquid chromatography-mass spectrometry for food authentication: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2455–2488. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Tian, Q.; Tian, J. A novel spectral index for estimating leaf water content using infrared atmospheric window edge bands. Comput. Electron. Agric. 2025, 233, 110170. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, J.; Chen, Q.; Jiang, H. Near-infrared spectroscopy based on colorimetric sensor array coupled with convolutional neural network detecting zearalenone in wheat. Food Chem. X 2024, 22, 101322. [Google Scholar] [CrossRef]
- Xu, P.; Fu, L.; Xu, K.; Sun, W.; Tan, Q.; Zhang, Y.; Zha, X.; Yang, R. Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques. J. Food Compos. Anal. 2023, 119, 105254. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, W.; Li, J.; Zhang, X.; Rao, Y.; Chen, H.; Xiong, J.; Chen, X.; Wang, X.; Jin, X. Analyzing different phenotypic methods of soybean leaves under the high temperature stress with near-infrared spectroscopy, microscopic image, and multispectral image. Comput. Electron. Agric. 2025, 234, 110281. [Google Scholar] [CrossRef]
- Bleasdale, A.J.; Whyatt, J.D. Classifying early apple scab infections in multispectral imagery using convolutional neural networks. Artif. Intell. Agric. 2025, 15, 39–51. [Google Scholar] [CrossRef]
- Xun, Z.; Wang, X.; Xue, H.; Zhang, Q.; Yang, W.; Zhang, H.; Li, M.; Jia, S.; Qu, J.; Wang, X. Deep machine learning identified fish flesh using multispectral imaging. Curr. Res. Food Sci. 2024, 9, 100784. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Guo, W.; Yi, X.; Jiang, Q.; Hu, X.; Peng, J.; Tian, J. Hyperspectral imaging combined with convolutional neural network for pu’er ripe tea origin recognition. J. Food Compos. Anal. 2025, 139, 107093. [Google Scholar] [CrossRef]
- Deng, G.; Li, J.; Liu, H.; Wang, Y. Rapid determination of geographical authenticity of Gastrodia elata f. Glauca using fourier transform infrared spectroscopy and deep learning. Food Control 2025, 167, 110810. [Google Scholar] [CrossRef]
- Li, P.; Tang, S.; Chen, S.; Tian, X.; Zhong, N. Hyperspectral imaging combined with convolutional neural network for accurately detecting adulteration in atlantic salmon. Food Control 2023, 147, 109573. [Google Scholar] [CrossRef]
- Li, S.; Shao, X.; Guo, Z.; Wang, H.; Lu, F.; Darwish, I.A.; Sun, X.; Guo, Y. Novel detection method for aspergillus flavus contamination in maize kernels based on spatial-spectral features using short-wave infrared hyperspectral imaging. J. Food Compos. Anal. 2025, 140, 107219. [Google Scholar] [CrossRef]
- Zhu, J.; Li, H.; Rao, Z.; Ji, H. Identification of slightly sprouted wheat kernels using hyperspectral imaging technology and different deep convolutional neural networks. Food Control 2023, 143, 109291. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Gong, R.; Wang, T.; Huang, Y. Improving fruit variety classification using near-infrared spectroscopy and deep learning techniques. J. Food Compos. Anal. 2025, 140, 107243. [Google Scholar] [CrossRef]
- Lu, Y.; Tao, Z.; Nie, L.; Guo, X.; Pan, T.; Chen, R.; Li, T.; Kong, W.; Liu, F. Quantitative elemental mapping of heavy metals translocation and accumulation in hyperaccumulator plant using laser-induced breakdown spectroscopy with interpretable deep learning. Comput. Electron. Agric. 2025, 230, 109907. [Google Scholar] [CrossRef]
- Deng, J.; Ni, L.; Bai, X.; Jiang, H.; Xu, L. Simultaneous analysis of mildew degree and aflatoxin b1 of wheat by a multi-task deep learning strategy based on microwave detection technology. LWT 2023, 184, 115047. [Google Scholar] [CrossRef]
- Deng, J.; Zhao, X.; Luo, W.; Bai, X.; Xu, L.; Jiang, H. Microwave detection technique combined with deep learning algorithm facilitates quantitative analysis of heavy metal Pb residues in edible oils. J. Food Sci. 2024, 89, 6005–6015. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, Z.; Bai, X.; Deng, J.; Zhao, X.; Jiang, H. Determination of aflatoxin B1 in peanuts based on millimetre wave. Food Chem. 2025, 464, 141867. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pathak, H.; Bhadauria, S.; Sudan, J. Aflatoxin contamination in food crops: Causes, detection, and management: A review. Food Prod. Process. Nutr. 2021, 3, 17. [Google Scholar] [CrossRef]
Method | Type | Key Features | Advantages | Limitations | Typical Applications |
---|---|---|---|---|---|
DNN | Reg/Cls | FC, nonlinear activations, deep architecture | Learns complex nonlinear mappings, good for structured numerical data | Prone to overfitting, needs large data, high params | Concentration quantification, type identification |
CNN | Cls/Reg for Visual Tasks | FC, Convolutional layers, pooling | Efficient for spectral images, captures spatial-spectral features, parameter sharing | Poor for 1D spectra, weak global spectral dependency | Land cover classification, anomaly detection |
RNN | Cls/Reg for Sequential Tasks | Recurrent connections, memory cells, temporal dependencies | Captures temporal spectral changes, handles variable-length spectral sequences | Slow training for long sequences, low parallelism | Chemical monitoring, trend prediction |
Transformer | Reg/Cls | Self-attention, parallel processing, Enc-Dec Arch | Processes long-range spectral dependencies, parallel training, multi-task adaptability | High memory for high-D spectra, requires massive labeled data | Cross-modal retrieval, spectrum generation |
CapsNets | Reg/Cls | CapsVecs encode entities, spatial relations, mag/dir encode continuous values | Encodes spectral spatial hierarchies, robust to spectral shifts, joint multi-task analysis | Complex training for spectra, limited engineering adoption | Protein interaction detection |
AE | RL/DR | Enc-Dec Arch, unsupervised latent representation learning | Extracts compact spectral features, suited for unsupervised clustering, spectral anomaly detection | Needs post-processing, reconstruction limits performance | Spectrum dimensionality reduction, spectral denoising |
DEC | Clustering | Autoencoder, clustering layer, end-to-end cluster | Improves clustering accuracy, supports regression indirectly, fits high-D data | Requires hyper-tuning, high complexity | Disease spectral subtype identification |
Mode Name | Principle | Application Scenarios |
---|---|---|
Diffuse reflectance | Measure scattered light from the sample surface | Commonly used for solids or opaque samples |
Transmittance | Measure light passing through the sample | Suitable for semi-transparent or thin samples |
Specular reflectance | Capture light reflected at the incident angle | Useful for analyzing smooth surface properties |
Directional transmittance | Measure transmitted light in a specific direction | Enhancing quantification of internal microstructure |
Model | Application Domain | Spectral Technique | Performance | Key Advantages |
---|---|---|---|---|
InceptionV3 | Potato starch content estimation in tubers | NIR | R2 = 0.82, RPD = 2.37 | Multi-scale, performance boost, region focus |
S-IFCNN | Wolfberry geographical origin discrimination | Vis–NIR–HSI | ACC = 91.99% | Noise robustness, high efficiency |
HFA-Net | Quantitative detection of pork freshness | F-HSI, e-nose fusion | R2 = 0.9373, RPD = 3.5454 | End-to-end fusion, parallel execution |
MCRM-CNN | Identification of mould varieties infecting maize kernels | Raman HSI | ACC = 100% | Nonlinear feature extraction, noise suppression |
SAE-LSSVM | Prediction of TSS and TA in Kyoho grape | Vis–NIR–HSI | TSS: R2 = 0.9237, RPD = 3.25 TA: R2 = 0.9216, RPD = 3.21 | Size compensation, high generalization |
LACNet | Estimating crop LAI and LCC | Vis–NIR–SWIR–HSI | LAI: R2 = 0.777 LCC: R2 = 0.765 | Deep-shallow feature fusion, interpretability |
SSAE-CS-SVM | Maize seed variety identification | NIR–HSI | ACC = 95.81% | Noise robustness, online detection potential |
FP-YOLOv5 | Early bruise detection on apples | SWIR–HSI | mAP = 98.2% | Real-time detection, enhanced contrast, lightweight model |
CNN-Transformer | SSC and pH prediction of cherry tomatoes | NIR–HSI | SSC: R2 = 0.83 pH: R2 = 0.60 | Interpretability, noise robustness |
CLNet | Prediction of protein and moisture content in sorghum grains | NIR–SWIR–HSI | Protein: R2 = 0.987, RPD = 7.1949 Moisture: R2 = 0.9983, RPD = 24.3681 | High robustness, real-time potential |
CNN-LSTM | Monitoring of gel strength, WHC, and whiteness in surimi | Vis–NIR–HSI | Gel strength & whiteness: R2 > 0.92, WHC: R2 > 0.55 | Multi-indicator prediction, noise robustness |
CNN-LSTM | Discrimination of sulfur-fumigated lilies & prediction of nutrient contents | Vis–NIR–SWIR–HSI | Sulfur fumigation discrimination ACC = 97.3% Polysaccharides: R2 = 0.769, total phenols: R2 = 0.699, SO2: R2 = 0.755 | High-dimensional data handling, noise robustness, potential for real-time deployment |
Tran-MPRNet, CNN | Geographical origin identification of beef | Vis–NIR–HSI | Tran-MPRNet: R2 = 0.973, CNN: ACC = 91.01%, mobile app validation: ACC = 91.67% | Real-time mobile deployment, small-data robustness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lun, Z.; Wu, X.; Dong, J.; Wu, B. Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers. Foods 2025, 14, 2350. https://doi.org/10.3390/foods14132350
Lun Z, Wu X, Dong J, Wu B. Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers. Foods. 2025; 14(13):2350. https://doi.org/10.3390/foods14132350
Chicago/Turabian StyleLun, Zhichen, Xiaohong Wu, Jiajun Dong, and Bin Wu. 2025. "Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers" Foods 14, no. 13: 2350. https://doi.org/10.3390/foods14132350
APA StyleLun, Z., Wu, X., Dong, J., & Wu, B. (2025). Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers. Foods, 14(13), 2350. https://doi.org/10.3390/foods14132350