Study on Effect of Germination on Flavonoid Content and Nutritional Value of Different Varieties of Chickpeas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Determination of Contents of Total Flavonoids and Total Phenols
2.3. Determination of Antioxidant Capacity
2.4. Determination of Free Amino Acid Content and Soluble Protein Content
2.5. Determination of Resistant Starch Content
2.6. Determination of Dietary Fiber Content
2.7. Statistical Analysis
3. Results
3.1. Effect of Germination Treatment on the Morphology of Sprouts
3.2. Effect of Germination Treatment on the Content of Total Flavonoids and Total Phenolic Content
3.3. Effects of Germination Treatment on the Content of Soluble Proteins
3.4. Effects of Germination Treatment on the Content of Free Amino Acids
3.5. Effects of Germination Treatment on Antioxidant Capacity
3.6. Effects of Germination Treatment on the Content of Resistant Starch
3.7. Effects of Germination Treatment on the Content of Dietary Fiber
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linares-Castañeda, A.; Corzo-Ríos, L.J.; Cedillo-Olivos, A.E.; Sánchez-Chino, X.M.; Mora-Escobedo, R.; Jiménez-Martínez, C. Enhancing the nutritional composition and phenolic compound content of sprouted chickpeas using sucrose and chitosan as Elicitors. Molecules 2025, 30, 1775. [Google Scholar] [CrossRef] [PubMed]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Gupta, K.; Sharma, A.; Das, M.; Ansari, I.A.; Dwivedi, P.D. Health Risks and Benefits of Chickpea (Cicer arietinum L.) Consumption. J. Agric. Food Chem. 2017, 65, 6–22. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, X.; Zheng, J.; Jia, Q.; Wang, X.; Xie, Z.; Ma, H. Mechanisms underlying the therapeutic effects of isoflavones isolated from chickpea sprouts in treating osteoporosis based on network pharmacology. Biochem. Biophys. Res. Commun. 2023, 671, 26–37. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Z.; Gao, Y.; Huang, X.; Zou, Y.; Yang, T. Effects of Germination on the Nutritional Properties, Phenolic Profiles, and Antioxidant Activities of Buckwheat. J. Food Sci. 2015, 80, H1111–H1119. [Google Scholar] [CrossRef]
- Ma, H.; Bian, Z.; Wang, S. Effects of Different Treatments on the Germination, Enzyme Activity, and Nutrient Content of Buckwheat. Food Sci. Technol. Res. 2020, 26, 319–328. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, N.; Wang, S.; Wang, J.; Peng, W. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front. Nutr. 2023, 10, 1168361. [Google Scholar] [CrossRef]
- Sleiman, H.K.; de Oliveira, J.M.; Langoni de Freitas, G.B. Isoflavones alter male and female fertility in different development windows. Biomed. Pharmacother. 2021, 140, 111448. [Google Scholar] [CrossRef]
- Hillman, G.G.; Singh-Gupta, V. Soy isoflavones sensitize cancer cells to radiotherapy. Free Radic. Biol. Med. 2011, 51, 289–298. [Google Scholar] [CrossRef]
- Gan, R.-Y.; Lui, W.-Y.; Wu, K.; Chan, C.-L.; Dai, S.-H.; Sui, Z.-Q.; Corke, H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 2017, 59, 1–14. [Google Scholar] [CrossRef]
- Ghavidel, R.A.; Prakash, J. The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT Food Sci. Technol. 2007, 40, 1292–1299. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A Comprehensive Review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.-B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Kandar, C.C.; Pal, D. Relation Between Seed Life Cycle and Cell Proliferation. Metabolic Changes in Seed Germination. In Seeds: Anti-Proliferative Storehouse for Bioactive Secondary Metabolites; Springer: Singapore, 2024; pp. 49–79. [Google Scholar] [CrossRef]
- Abdel-Aty, A.M.; Salama, W.H.; Fahmy, A.S.; Mohamed, S.A. Impact of germination on antioxidant capacity of garden cress: New calculation for determination of total antioxidant activity. Sci. Hortic. 2019, 246, 155–160. [Google Scholar] [CrossRef]
- Geraldo, R.; Santos, C.S.; Pinto, E.; Vasconcelos, M.W. Widening the Perspectives for Legume Consumption: The Case of Bioactive Non-nutrients. Front. Plant Sci. 2022, 13, 772054. [Google Scholar] [CrossRef]
- Chinma, C.E.; Abu, J.O.; Adedeji, O.E.; Aburime, L.C.; Joseph, D.G.; Agunloye, G.F.; Adebo, J.A.; Oyeyinka, S.A.; Njobeh, P.B.; Adebo, O.A. Nutritional composition, bioactivity, starch characteristics, thermal and microstructural properties of germinated pigeon pea flour. Food Biosci. 2022, 49, 101900. [Google Scholar] [CrossRef]
- Romano, A.; De Luca, L.; Romano, R. Effects of germination time on the structure, functionality, flavour attributes, and in vitro digestibility of green Altamura lentils (Lens culinaris Medik.) flour. Food Funct. 2024, 15, 3539–3551. [Google Scholar] [CrossRef] [PubMed]
- Sofi, S.A.; Rafiq, S.; Singh, J.; Mir, S.A.; Sharma, S.; Bakshi, P.; McClements, D.J.; Mousavi Khaneghah, A.; Dar, B.N. Impact of germination on structural, physicochemical, techno-functional, and digestion properties of desi chickpea (Cicer arietinum L.) flour. Food Chem 2023, 405, 135011. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.M.; Zahran, A.S.; Metwalli, A.A.; Awad, E.M.; Ebiad, H.; Al-Tamimi, J. Changes in antioxidants and nutritional properties during germination of soybean. J. King Saud Univ.-Sci. 2024, 36, 103527. [Google Scholar] [CrossRef]
- Gunathunga, C.; Senanayake, S.; Jayasinghe, M.; Brennan, C.S.; Truong, T.; Marapana, U.; Chandrapala, J. Bioactive compounds and digestible starch variability of rice, maize, green gram, and soy grains with different levels of germination. Int. J. Food Sci. Technol. 2024, 59, 9273–9286. [Google Scholar] [CrossRef]
- Yılmaz, T.N.; Polat Kaya, H.; Sakarya, F.B.; Andaç, A.E.; Korkmaz, F.; Ozkan, G.; Tuncel, N.B.; Capanoglu, E. The effect of germination on antinutritional components, in vitro starch and protein digestibility, content, and bioaccessibility of Phenolics and Antioxidants of Some Pulses. Food Sci Nutr 2025, 13, e70103. [Google Scholar] [CrossRef] [PubMed]
- Setia, R.; Dai, Z.; Nickerson, M.T.; Sopiwnyk, E.; Malcolmson, L.; Ai, Y. Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Res. Int. 2019, 122, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Quan, X.; Yin, Y.; Ding, X.; Yang, Z.; Zhu, J.; Fang, W. Enrichment of Flavonoids in Short-Germinated Black Soybeans (Glycine max L.) Induced by Slight Acid Treatment. Foods 2024, 13, 868. [Google Scholar] [CrossRef]
- Mencin, M.; Jamnik, P.; Mikulič Petkovšek, M.; Veberič, R.; Terpinc, P. Enzymatic treatments of raw, germinated and fermented spelt (Triticum spelta L.) seeds improve the accessibility and antioxidant activity of their phenolics. LWT 2022, 169, 114046. [Google Scholar] [CrossRef]
- Xue, J.; Hu, M.; Yang, J.; Fang, W.; Yin, Y. Optimization of Ultraviolet-B Treatment for Enrichment of Total Flavonoids in Buckwheat Sprouts Using Response Surface Methodology and Study on Its Metabolic Mechanism. Foods 2024, 13, 3928. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Kowalska, S.; Szłyk, E.; Jastrzębska, A. Simple extraction procedure for free amino acids determination in selected gluten-free flour samples. Eur. Food Res. Technol. 2022, 248, 507–517. [Google Scholar] [CrossRef]
- Vershinina, Y.S.; Mitin, I.V.; Garmay, A.V.; Sugakov, G.K.; Veselova, I.A. Simple and Robust Approach for Determination of Total Protein Content in Plant Samples. Foods 2025, 14, 358. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Yan, W.; Ma, M.; Sui, Z.; Corke, H. Parboiling stage and drying method affect the physicochemical properties and in vitro digestibility of starch-based rice flour. Int. J. Biol. Macromol. 2025, 308, 142285. [Google Scholar] [CrossRef]
- Reed, R.C.; Bradford, K.J.; Khanday, I. Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity 2022, 128, 450–459. [Google Scholar] [CrossRef]
- Dong, N.-Q.; Lin, H.-X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, S.; Abay, F.; Ayimut, K.M.; Assefa, D.; Chala, A.; Mahroof, R.; Harvey, J.; Subramanyam, B. Evaluating different hermetic storage technologies to arrest mold growth, prevent mycotoxin accumulation and preserve germination quality of stored chickpea in Ethiopia. J. Stored Prod. Res. 2020, 85, 101526. [Google Scholar] [CrossRef]
- López-Barrios, L.; Antunes-Ricardo, M.; Gutiérrez-Uribe, J.A. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chem. 2016, 203, 417–424. [Google Scholar] [CrossRef]
- Bera, I.; O’Sullivan, M.; Flynn, D.; Shields, D.C. Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules 2023, 28, 3204. [Google Scholar] [CrossRef]
- Kohli, V.; Singha, S. Protein digestibility of soybean: How processing affects seed structure, protein and non-protein components. Discov. Food 2024, 4, 7. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Younis, H.A.; Abdelshafy, A.M.; Osman, A.I.; Eletmany, M.R.; Hafouda, M.A.; Chen, W. Plant starch extraction, modification, and green applications: A review. Environ. Chem. Lett. 2024, 22, 2483–2530. [Google Scholar] [CrossRef]
- Cheng, S.; Langrish, T.A.G. A Review of the Treatments to Reduce Anti-Nutritional Factors and Fluidized Bed Drying of Pulses. Foods 2025, 14, 681. [Google Scholar] [CrossRef] [PubMed]
- Xing, B.; Teng, C.; Sun, M.; Zhang, Q.; Zhou, B.; Cui, H.; Ren, G.; Yang, X.; Qin, P. Effect of germination treatment on the structural and physicochemical properties of quinoa starch. Food Hydrocoll. 2021, 115, 106604. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Zou, X.; Dai, K.; Zhang, M.; Zhang, R.; Jia, X.; Dong, L.; Ma, Q.; Liang, S.; Wang, Z.; Deng, M.; et al. Dietary fiber from sweet potato residue with different processing methods: Physicochemical, functional properties, and bioactivity in vitro. LWT 2024, 206, 116581. [Google Scholar] [CrossRef]
- Benítez, V.; Cantera, S.; Aguilera, Y.; Mollá, E.; Esteban, R.M.; Díaz, M.F.; Martín-Cabrejas, M.A. Impact of germination on starch, dietary fiber and physicochemical properties in non-conventional legumes. Food Res. Int. 2013, 50, 64–69. [Google Scholar] [CrossRef]
Amino Acid Content (μmol/g DW) | XY1 | XY2 | ||||
---|---|---|---|---|---|---|
Seed | Soaked | Germinated | Seed | Soaked | Germinated | |
Val | 715.72 ± 7.63 Ab | 335.14 ± 101.78 Ab | 2354.43 ± 144.48 Ba | 247.26 ± 3.26 Bb | 239.65 ± 14.38 Ab | 5129.14 ± 56.00 Aa |
Met | 60.63 ± 2.08 Ac | 71.07 ± 1.99 Bb | 308.72 ± 1.44 Ba | 56.7 ± 0.23 Ac | 118.26 ± 0.76 Ab | 683.61 ± 7.75 Aa |
lle | 81.91 ± 3.07 Bb | 47.07 ± 8.04 Bc | 793.95 ± 16.47 Ba | 108.92 ± 0.73 Ab | 115.46 ± 6.05 Ab | 2062.53 ± 247.90 Aa |
Leu | 73.02 ± 1.28 Ac | 181.21 ± 5.98 Bb | 583.14 ± 26.12 Ba | 76.75 ± 9.05 Ab | 222.89 ± 10.15 Ab | 1148.99 ± 271.93 Aa |
Phe | 115.31 ± 3.61 Bc | 312.4 ± 9.59 Bb | 436.71 ± 45.98 Ba | 139.99 ± 1.31 Ab | 504.89 ± 9.58 Ab | 1059.97 ± 166.72 Aa |
Lys | 1814.50 ± 29.46 Ab | 1516.45 ± 136.31 Ab | 3457.08 ± 49.93 Ba | 701.89 ± 3.98 Bb | 1250.89 ± 18.31 Bb | 7686.47 ± 554.26 Aa |
Total essential amino acid | 2239.43 ± 302.24 Bb | 2529.02 ± 114.74 Ab | 19,645.08 ± 665.80 Aa | 3939.62 ± 212.41 Ab | 3085.31 ± 1046.05 Ab | 10,244.49 ± 1285.59 Ba |
Asp | 1054.63 ± 13.82 Ab | 23.42 ± 2.93 Ac | 2402.4 ± 7.27 Aa | 792.48 ± 93.60 Bb | 11.27 ± 1.06 Bc | 1208.10 ± 143.55 Ba |
Ser | ND | 457.92 ± 8.14 Ab | 4904.33 ± 150.16 Ba | 74.75 ± 6.45 Ab | 413.25 ± 48.09 Ab | 10,382.98 ± 650.28 Aa |
Glu | 10,833.52 ± 624.17 Aa | 10,431.10 ± 338.78 Aa | 9807.53 ± 1505.84 Ba | 5629.04 ± 2.62 Bc | 7691.25 ± 50.08 Bb | 19,219.68 ± 659.12 Aa |
Gly | 1065.52 ± 54.81 Aa | 982.33 ± 13.69 Aa | 559.01 ± 22.05 Bb | 671.85 ± 1.47 Bc | 994.84 ± 5.62 Ab | 1210.34 ± 47.32 Aa |
Tyr | 105.64 ± 7.48 Ac | 263.34 ± 6.05 Bb | 352.48 ± 37.68 Aa | 91.79 ± 1.19 Ab | 318.03 ± 10.20 Ab | 460.39 ± 146.98 Aa |
Ala | 983.88 ± 67.96 Ac | 1186.25 ± 7.25 Ab | 2994.6 ± 66.17 Ba | 736.93 ± 2.30 Bb | 738.25 ± 8.02 Bb | 5556.06 ± 670.87 Aa |
Cys | 674.27 ± 19.19 Aa | 612.92 ± 46.18 Aa | 207.42 ± 9.38 Bb | 497.5 ± 12.23 Bb | 581.09 ± 3.70 Ba | 241.58 ± 0.01 Ac |
His | 224.87 ± 7.69 Ab | 231.1 ± 6.26 Ab | 1776.47 ± 29.68 Ba | 140.33 ± 2.02 Bb | 231.48 ± 0.04 Ab | 3844.21 ± 316.55 Aa |
Arg | 29,654.38 ± 756.66 Aa | 27,775.51 ± 1335.55 Aa | 17,435.18 ± 736.59 Bb | 14,154.8 ± 39.81 Bc | 16,419.55 ± 368.58 Bb | 27,360.95 ± 974.99 Aa |
Total amino acid content | 45,686.01 ± 1741.07 Aa | 45,420.2 ± 167.93 Aa | 46,331.96 ± 2664.37 Ba | 24,058.23 ± 64.46 Bc | 30,244.27 ± 207.67 Bb | 90,248.94 ± 376.82 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Yang, J.; Yin, Y. Study on Effect of Germination on Flavonoid Content and Nutritional Value of Different Varieties of Chickpeas. Foods 2025, 14, 2157. https://doi.org/10.3390/foods14132157
Xue J, Yang J, Yin Y. Study on Effect of Germination on Flavonoid Content and Nutritional Value of Different Varieties of Chickpeas. Foods. 2025; 14(13):2157. https://doi.org/10.3390/foods14132157
Chicago/Turabian StyleXue, Jiyuan, Jia Yang, and Yongqi Yin. 2025. "Study on Effect of Germination on Flavonoid Content and Nutritional Value of Different Varieties of Chickpeas" Foods 14, no. 13: 2157. https://doi.org/10.3390/foods14132157
APA StyleXue, J., Yang, J., & Yin, Y. (2025). Study on Effect of Germination on Flavonoid Content and Nutritional Value of Different Varieties of Chickpeas. Foods, 14(13), 2157. https://doi.org/10.3390/foods14132157