Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,305)

Search Parameters:
Keywords = technological measures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 672 KiB  
Systematic Review
Assessing and Understanding Educators’ Experiences of Synchronous Hybrid Learning in Universities: A Systematic Review
by Hannah Clare Wood, Michael Detyna and Eleanor Jane Dommett
Educ. Sci. 2025, 15(8), 987; https://doi.org/10.3390/educsci15080987 (registering DOI) - 2 Aug 2025
Abstract
The rise in online learning, accelerated by the COVID-19 pandemic, has led to greater use of synchronous hybrid learning (SHL) in higher education. SHL allows simultaneous teaching of in-person and online learners through videoconferencing tools. Previous studies have identified various benefits (e.g., flexibility) [...] Read more.
The rise in online learning, accelerated by the COVID-19 pandemic, has led to greater use of synchronous hybrid learning (SHL) in higher education. SHL allows simultaneous teaching of in-person and online learners through videoconferencing tools. Previous studies have identified various benefits (e.g., flexibility) and challenges (e.g., student engagement) to SHL. Whilst systematic reviews have emerged on this topic, few studies have considered the experiences of staff. The aim of this review was threefold: (i) to better understand how staff experiences and perceptions are assessed, (ii) to understand staff experiences in terms of the benefits and challenges of SHL and (iii) to identify recommendations for effective teaching and learning using SHL. In line with the PRISMA guidance, we conducted a systematic review across four databases, identifying 14 studies for inclusion. Studies were conducted in nine different countries and covered a range of academic disciplines. Most studies adopted qualitative methods, with small sample sizes. Measures used were typically novel and unvalidated. Four themes were identified relating to (i) technology, (ii) redesigning teaching and learning, (iii) student engagement and (iv) staff workload. In terms of recommendations, ensuring adequate staff training and ongoing classroom support were considered essential. Additionally, active and collaborative learning were considered important to address issues with interactivity. Whilst these findings largely aligned with previous work, this review also identified limited reporting in research in this area, and future studies are needed to address this. Full article
(This article belongs to the Section Higher Education)
Show Figures

Figure 1

31 pages, 9769 KiB  
Review
Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges
by Enrique Delgado-Alvarado, Enrique A. Morales-Gonzalez, José Amir Gonzalez-Calderon, Ma. Cristina Irma Peréz-Peréz, Jesús Delgado-Maciel, Mariana G. Peña-Juarez, José Hernandez-Hernandez, Ernesto A. Elvira-Hernandez, Maximo A. Figueroa-Navarro and Agustin L. Herrera-May
Technologies 2025, 13(8), 336; https://doi.org/10.3390/technologies13080336 (registering DOI) - 2 Aug 2025
Abstract
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and [...] Read more.
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and harm marine ecosystems. This ocean energy can be harnessed through hybrid nanogenerators that combine triboelectric nanogenerators, electromagnetic generators, piezoelectric nanogenerators, and pyroelectric generators. These nanogenerators have advantages such as high-power density, robust design, easy operating principle, and cost-effective fabrication. However, the performance of these nanogenerators can be affected by the wear of their main components, reduction of wave frequency and amplitude, extreme corrosion, and sea storms. To address these challenges, future research on hybrid nanogenerators must improve their mechanical strength, including materials and packages with anti-corrosion coatings. Herein, we present recent advances in the performance of different hybrid nanogenerators to harvest ocean energy, including various transduction mechanisms. Furthermore, this review reports potential applications of hybrid nanogenerators to power devices in marine infrastructure or serve as self-powered MIoT monitoring sensor networks. This review discusses key challenges that must be addressed to achieve the commercial success of these nanogenerators, regarding design strategies with advanced simulation models or digital twins. Also, these strategies must incorporate new materials that improve the performance, reliability, and integration of future nanogenerator array systems. Thus, optimized hybrid nanogenerators can represent a promising technology for ocean energy harvesting with application in the maritime industry. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 (registering DOI) - 2 Aug 2025
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

14 pages, 654 KiB  
Article
A Conceptual Framework for User Trust in AI Biosensors: Integrating Cognition, Context, and Contrast
by Andrew Prahl
Sensors 2025, 25(15), 4766; https://doi.org/10.3390/s25154766 (registering DOI) - 2 Aug 2025
Abstract
Artificial intelligence (AI) techniques have propelled biomedical sensors beyond measuring physiological markers to interpreting subjective states like stress, pain, or emotions. Despite these technological advances, user trust is not guaranteed and is inadequately addressed in extant research. This review proposes the Cognition–Context–Contrast (CCC) [...] Read more.
Artificial intelligence (AI) techniques have propelled biomedical sensors beyond measuring physiological markers to interpreting subjective states like stress, pain, or emotions. Despite these technological advances, user trust is not guaranteed and is inadequately addressed in extant research. This review proposes the Cognition–Context–Contrast (CCC) conceptual framework to explain the trust and acceptance of AI-enabled sensors. First, we map cognition, comprising the expectations and stereotypes that humans have about machines. Second, we integrate task context by situating sensor applications along an intellective-to-judgmental continuum and showing how demonstrability predicts tolerance for sensor uncertainty and/or errors. Third, we analyze contrast effects that arise when automated sensing displaces familiar human routines, heightening scrutiny and accelerating rejection if roll-out is abrupt. We then derive practical implications such as enhancing interpretability, tailoring data presentations to task demonstrability, and implementing transitional introduction phases. The framework offers researchers, engineers, and clinicians a structured conceptual framework for designing and implementing the next generation of AI biosensors. Full article
(This article belongs to the Special Issue AI in Sensor-Based E-Health, Wearables and Assisted Technologies)
Show Figures

Figure 1

17 pages, 2410 KiB  
Article
Microstructural Characterisation of Bi-Ag-Ti Solder Alloy and Evaluation of Wettability on Ceramic and Composite Substrates Joined via Indirect Electron Beam Heating in Vacuum
by Mikulas Sloboda, Roman Kolenak, Tomas Melus, Peter Gogola, Matej Pasak, Daniel Drimal and Jaromir Drapala
Materials 2025, 18(15), 3634; https://doi.org/10.3390/ma18153634 (registering DOI) - 1 Aug 2025
Abstract
This paper examines the wettability and interactions between ceramic and composite materials soldered with Bi-based solder containing 11 wt.% of silver and 3 wt.% titanium using indirect electron beam soldering technology. The Bi11Ag3Ti solder, with a melting point of 402 °C, consisted of [...] Read more.
This paper examines the wettability and interactions between ceramic and composite materials soldered with Bi-based solder containing 11 wt.% of silver and 3 wt.% titanium using indirect electron beam soldering technology. The Bi11Ag3Ti solder, with a melting point of 402 °C, consisted of a bismuth matrix containing silver lamellae. Titanium, acting as an active element, positively influenced the interaction between the solder and the joined materials. SiC and Ni-SiC substrates were soldered at temperatures of 750 °C, 850 °C, and 950 °C. Measurements of wettability angles indicated that the lowest value (20°) was achieved with SiC substrates at 950 °C. A temperature of 750 °C appeared to be the least suitable for both substrates and was entirely unsuitable for Ni-SiC. It was also observed that the Bi11Ag3Ti solder wetted the SiC substrates more effectively than Ni-SiC substrates. The optimal working temperature for this solder was determined to be 950 °C. The shear strength of the joints soldered with the Bi11Ag3Ti alloy was 23.5 MPa for the Al2O3/Ni-SiC joint and 9 MPa for the SiC/Ni-SiC joint. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
28 pages, 2448 KiB  
Article
ATENEA4SME: Industrial SME Self-Evaluation of Energy Efficiency
by Antonio Ferraro, Giacomo Bruni, Marcello Salvio, Milena Marroccoli, Antonio Telesca, Chiara Martini, Federico Alberto Tocchetti and Antonio D’Angola
Energies 2025, 18(15), 4094; https://doi.org/10.3390/en18154094 (registering DOI) - 1 Aug 2025
Abstract
Promoting energy efficiency in the Italian production sector is significantly hampered by the lack of knowledge, the scarcity and the limited distribution of tools for supporting energy audits in small and medium-sized enterprises (SMEs) in a wide range of Italian economic sectors (industry, [...] Read more.
Promoting energy efficiency in the Italian production sector is significantly hampered by the lack of knowledge, the scarcity and the limited distribution of tools for supporting energy audits in small and medium-sized enterprises (SMEs) in a wide range of Italian economic sectors (industry, tertiary sector, transport). The Advanced Tool for ENErgy Audit for SMEs, ATENEA4SME, is intended to help SMEs promote energy-efficiency projects, supports energy audits and self-evaluation of energy consumption. The tool uses an original mathematical model that takes into account the results of questionnaires and a multi-criteria analysis to generate recommendations for energy efficiency investments. This article will give a thorough explanation of the tool, emphasizing and outlining the sections as well as the procedures to get the ultimate summary of the energy usage of the enterprises under investigation and the potential for energy saving. From a technological and financial perspective, the tool helps to remove obstacles to the development of energy-efficiency measures. In this article, the IT and methodological structure of the tool will therefore be extensively described, and its operation for the context of SMEs will be illustrated, with application cases. Ample space will be allocated to the dissemination campaign and the replicability of the tool for all economic sectors of the industrial and tertiary sectors. Full article
Show Figures

Figure 1

27 pages, 21019 KiB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 (registering DOI) - 1 Aug 2025
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

16 pages, 1465 KiB  
Article
Investigation of the Effects of Laser Welding Process Parameters on Weld Forming Quality Based on Orthogonal Experimental Design and Image Processing
by Yuewei Ai, Ning Sun, Shibo Han, Yang Zhang and Chang Lei
Materials 2025, 18(15), 3627; https://doi.org/10.3390/ma18153627 (registering DOI) - 1 Aug 2025
Abstract
Image processing has been widely adopted as an effective technology for analyzing weld forming quality which is greatly affected by the welding process parameters. In this paper, an L25(53) orthogonal experiment is designed to investigate the effects of welding [...] Read more.
Image processing has been widely adopted as an effective technology for analyzing weld forming quality which is greatly affected by the welding process parameters. In this paper, an L25(53) orthogonal experiment is designed to investigate the effects of welding process parameters on the weld forming quality in laser welding of aluminum alloy. The weld characteristics including the weld width (WW), weld penetration (PD), weld area (WA) and weld porosity (WP) under the conditions of the different welding process parameters consisting of the laser power (LP), welding speed (WS) and defocus distance (DD) are extracted from the laser welding experiment based on image processing. The effectiveness of the weld characteristics extraction method is verified by comparing the extracted results with the measured results. It is found that the WW, PD and WA are all significantly influenced by the LP among the three welding process parameters while the influences of the three process parameters on the WP are insignificant. The DD has a significant influence on the PD and the WS has a significant influence on the WA. The corresponding significance of influence is lower than the significance of influence of LP. The analysis results are conducive to the optimization of laser welding process parameters and improvement of welding quality. Full article
(This article belongs to the Special Issue Advanced Computational Methods in Manufacturing Processes)
30 pages, 1293 KiB  
Article
Obstacles and Drivers of Sustainable Horizontal Logistics Collaboration: Analysis of Logistics Providers’ Behaviour in Slovenia
by Ines Pentek and Tomislav Letnik
Sustainability 2025, 17(15), 7001; https://doi.org/10.3390/su17157001 (registering DOI) - 1 Aug 2025
Abstract
The logistics industry faces challenges from evolving consumer expectations, technological advances, sustainability demands, and market disruptions. Logistics collaboration is in theory perceived as one of the most promising solutions to solve these issues, but here are still a lot of challenges that needs [...] Read more.
The logistics industry faces challenges from evolving consumer expectations, technological advances, sustainability demands, and market disruptions. Logistics collaboration is in theory perceived as one of the most promising solutions to solve these issues, but here are still a lot of challenges that needs to be better understood and addressed. While vertical collaboration among supply chain actors is well advanced, horizontal collaboration among competing service providers remains under-explored. This study developed a novel methodology based on the COM-B behaviour-change framework to better understand the main challenges, opportunities, capabilities and drivers that would motivate competing companies to exploit the potential of horizontal logistics collaboration. A survey was designed and conducted among 71 logistics service providers in Slovenia, chosen for its fragmented market and low willingness to collaborate. Statistical analysis reveals cost reduction (M = 4.21/5) and improved vehicle utilization (M = 4.29/5) as the primary motivators. On the other hand, maintaining company reputation (M = 4.64/5), fair resource sharing (M = 4.20/5), and transparency of logistics processes (M = 4.17/5) all persist as key enabling conditions. These findings underscore the pivotal role of behavioural drivers and suggest strategies that combine economic incentives with targeted trust-building measures. Future research should employ experimental designs in diverse national contexts and integrate vertical–horizontal approaches to validate causal pathways and advance theory. Full article
Show Figures

Figure 1

30 pages, 2537 KiB  
Review
The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges
by Kang Tang, Bingbing Luo, Dian Chen, Chengshuo Wang, Long Chen, Feiliang Li, Yuan Cao and Chunsheng Wang
World Electr. Veh. J. 2025, 16(8), 429; https://doi.org/10.3390/wevj16080429 (registering DOI) - 1 Aug 2025
Abstract
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus [...] Read more.
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus on HIs related to capacity degradation and internal resistance increase. However, due to the complexity of lithium-ion battery degradation mechanisms, the relationships between these mechanisms and health indicators remain insufficiently explored. This paper provides a comprehensive review of core methodologies for SOH estimation, with a particular emphasis on the classification and extraction of health indicators, direct measurement techniques, model-based and data-driven SOH estimation approaches, and emerging trends in battery management system applications. The findings indicate that capacity, internal resistance, and temperature-related indicators significantly impact SOH estimation accuracy, while machine learning models demonstrate advantages in multi-source data fusion. Future research should further explore composite health indicators and aging mechanisms of novel battery materials, and improve the interpretability of predictive models. This study offers theoretical support for the intelligent management and lifespan optimization of lithium-ion batteries. Full article
Show Figures

Figure 1

23 pages, 1706 KiB  
Article
Community-Based Halal Tourism and Information Digitalization: Sustainable Tourism Analysis
by Immas Nurhayati, Syarifah Gustiawati, Rofiáh Rofiáh, Sri Pujiastuti, Isbandriyati Mutmainah, Bambang Hengky Rainanto, Sri Harini and Endri Endri
Tour. Hosp. 2025, 6(3), 148; https://doi.org/10.3390/tourhosp6030148 (registering DOI) - 1 Aug 2025
Abstract
This study employs a mixed method. In-depth interviews and observational studies are among the data collection approaches used in qualitative research. The quantitative method measures the weight of respondents’ answers to the distributed questionnaire. The questionnaire, containing 82 items, was distributed to 202 [...] Read more.
This study employs a mixed method. In-depth interviews and observational studies are among the data collection approaches used in qualitative research. The quantitative method measures the weight of respondents’ answers to the distributed questionnaire. The questionnaire, containing 82 items, was distributed to 202 tourists to collect their perceptions based on the 4A tourist components. The results indicate that tourists’ perceptions of attractions, accessibility, and ancillary services are generally positive. In contrast, perceptions of amenity services are less favorable. Using the scores from IFAS, EFAS, and the I-E matrix, the total weighted scores for IFAS and EFAS are 2.68 and 2.83, respectively. The appropriate strategy for BTV is one of aggressive growth in a position of strengths and opportunities. The study highlights key techniques, including the application of information technology in service and promotion, the strengthening of community and government roles, the development of infrastructure and facilities, the utilization of external resources, sustainable innovation, and the encouragement of local governments to issue regulations for halal tourism villages. By identifying drivers and barriers from an economic, environmental, social, and cultural perspective, the SWOT analysis results help design strategies that can make positive contributions to the development of sustainable, community-based halal tourism and digital information in the future. Full article
Show Figures

Figure 1

36 pages, 1921 KiB  
Article
Policy Synergies for Advancing Energy–Environmental Productivity and Sustainable Urban Development: Empirical Evidence from China’s Dual-Pilot Energy Policies
by Si Zhang and Xiaodong Zhu
Sustainability 2025, 17(15), 6992; https://doi.org/10.3390/su17156992 (registering DOI) - 1 Aug 2025
Abstract
Achieving synergies between government-led and market-based policy instruments is critical to advancing Energy–Environmental Productivity and Sustainable Urban Development. This study investigates the effects of China’s dual-pilot energy policies (New Energy Demonstration Cities (NEDCs) and Energy Consumption Permit Trading (ECPT)) on urban environmental productivity [...] Read more.
Achieving synergies between government-led and market-based policy instruments is critical to advancing Energy–Environmental Productivity and Sustainable Urban Development. This study investigates the effects of China’s dual-pilot energy policies (New Energy Demonstration Cities (NEDCs) and Energy Consumption Permit Trading (ECPT)) on urban environmental productivity (UEP) across 279 prefecture-level cities from 2006 to 2023. Utilizing a Non-Radial Directional Distance Function (NDDF) approach, combined with Difference-in-Differences (DID) estimation and spatial econometric models, the analysis reveals that these synergistic policies significantly enhance both comprehensive and net measures of UEP. Mechanism analysis highlights the roles of industrial restructuring, technological innovation, and energy transition in driving these improvements, while heterogeneity analysis indicates varying effects across different city types. Spatial spillover analysis further demonstrates that policy impacts extend beyond targeted cities, contributing to broader regional gains in UEP. These findings offer important insights for the design of integrated energy and environmental policies and support progress toward key Sustainable Development Goals (SDG 7, SDG 11, and SDG 12). Full article
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 (registering DOI) - 1 Aug 2025
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

21 pages, 5466 KiB  
Article
Evaluation of Bending Stress and Shape Recovery Behavior Under Cyclic Loading in PLA 4D-Printed Lattice Structures
by Maria Pia Desole, Annamaria Gisario and Massimiliano Barletta
Appl. Sci. 2025, 15(15), 8540; https://doi.org/10.3390/app15158540 (registering DOI) - 31 Jul 2025
Abstract
This study aims to analyze the bending behavior of polylactic acid (PLA) structures made by fusion deposition modeling (FDM) technology. The investigation analyzed chiral structures such as lozenge and clepsydra, as well as geometries with wavy patterns such as roller and Es, in [...] Read more.
This study aims to analyze the bending behavior of polylactic acid (PLA) structures made by fusion deposition modeling (FDM) technology. The investigation analyzed chiral structures such as lozenge and clepsydra, as well as geometries with wavy patterns such as roller and Es, in addition to a honeycomb structure. All geometries have a relative density of 50%. After being subjected to three-point bending tests, the capacity to spring back with respect to the bending angle and the shape recovery of the structures were measured. The roller and lozenge structures demonstrated the best performance, with shape recovery assessed through three consecutive hot water immersion cycles. The lozenge structure exhibits 25% higher energy absorption than the roller, but the latter ensures better replicability and shape stability. Additionally, the roller absorbs 15% less energy than the lozenge, which experiences a 27% decrease in absorption between the first and second cycle. This work provides new insights into the bending-based energy absorption and recovery behavior of PLA metamaterials, relevant for applications in adaptive and energy-dissipating systems. Full article
Show Figures

Figure 1

15 pages, 3152 KiB  
Article
Advanced Modeling of GaN-on-Silicon Spiral Inductors
by Simone Spataro, Giuseppina Sapone, Marcello Giuffrida and Egidio Ragonese
Electronics 2025, 14(15), 3079; https://doi.org/10.3390/electronics14153079 (registering DOI) - 31 Jul 2025
Abstract
In this paper, the accuracy of basic and advanced spiral inductor models for gallium nitride (GaN) integrated inductors is evaluated. Specifically, the experimental measurements of geometrically scaled circular spiral inductors, fabricated in a radio frequency (RF) GaN-on silicon technology, are exploited to estimate [...] Read more.
In this paper, the accuracy of basic and advanced spiral inductor models for gallium nitride (GaN) integrated inductors is evaluated. Specifically, the experimental measurements of geometrically scaled circular spiral inductors, fabricated in a radio frequency (RF) GaN-on silicon technology, are exploited to estimate the errors of two lumped geometrically scalable models, i.e., a simple π-model with seven components and an advanced model with thirteen components. The comparison is performed by using either the standard performance parameters, such as inductance (L), quality factor (Q-factor), and self-resonance frequency (SRF), or the two-port scattering parameters (S-parameters). The comparison reveals that despite a higher complexity, the developed advanced model achieves a significant reduction in SRF percentage errors in a wide range of geometrical parameters, while enabling an accurate estimation of two-port S-parameters. Indeed, the correct evaluation of both SRF and two-port S-parameters is crucial to exploit the model in an actual circuit design environment by properly setting the inductor geometrical parameters to optimize RF performance. Full article
Show Figures

Figure 1

Back to TopTop