Advanced Modeling of GaN-on-Silicon Spiral Inductors
Abstract
1. Introduction
2. RF GaN Technology
3. Inductor Lumped Model Descriptions
3.1. Lumped π-Model
3.2. Advanced Lumped Model
4. Model Validation and Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eblabla, A.; Li, X.; Wallis, D.J.; Guiney, I.; Elgaid, K. High-performance MMIC inductors for GaN-on-low-resistivity silicon for microwave applications. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 99–101. [Google Scholar] [CrossRef]
- Montesdeoca, M.S.M.; Angulo, S.M.; Duarte, D.M.; Del Pino, J.; García, J.A.G.Y.; Khemchandani, S.L. An analytical scalable lumped-element model for GaN on Si inductors. IEEE Access 2020, 8, 52863–52871. [Google Scholar] [CrossRef]
- Chander, S.; Bansal, K.; Gupta, S.; Gupta, M. Design and analysis of high performance air-bridge spiral circular inductors for GaN MMICs up to Ku band. In Proceedings of the 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2017; pp. 734–736. [Google Scholar]
- Chander, S.; Bansal, K.; Gupta, S.; Gupta, M. Design and analysis of spiral circular inductors for GaN based low noise amplifier (MMICs). In Proceedings of the 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), Bhubaneswar, India, 18–20 December 2015; pp. 292–294. [Google Scholar]
- Wang, H.-S.; He, W.-L.; Wang, R.-D.; Zhang, M.-H. A double-π equivalent circuit model for GaN on-chip inductors. In Proceedings of the IEEE International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, China, 25–28 October 2016; pp. 811–815. [Google Scholar]
- Spataro, S.; Sapone, G.; Giuffrida, M.; Ragonese, E. A geometrically scalable lumped model for spiral inductors in radio frequency GaN Technology on Silicon. Electronics 2024, 13, 2665. [Google Scholar] [CrossRef]
- Huo, X.; Chan, P.C.H.; Chen, K.J.; Luong, H.C. A physical model for on-chip spiral inductors with accurate substrate modeling. IEEE Trans. Electron Devices 2006, 53, 2942–2949. [Google Scholar] [CrossRef]
- Sia, C.B.; Ong, B.H.; Chan, K.W.; Yeo, K.S.; Ma, J.G.; Do, M.A. Physical layout design optimization of integrated spiral inductors for silicon-based RFIC applications. IEEE Trans. Electron Devices 2005, 52, 2559–2567. [Google Scholar] [CrossRef]
- El-Gharniti, O.; Kerherve, E.; Begueret, J.-B. Modeling and characterization of on-chip transformers for silicon RFIC. IEEE Trans. Microw. Theory Tech. 2007, 55, 607–615. [Google Scholar] [CrossRef]
- Scuderi, A.; Biondi, T.; Ragonese, E.; Palmisano, G. A lumped scalable model for silicon integrated spiral inductors. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 1203–1209. [Google Scholar] [CrossRef]
- Krishna, S.R.; Narayana, J.L.; Reddy, L.P. A neural network inverse modeling approach for the design of spiral inductor. Int. J. Comput. Sci. Eng. Technol. (IJCSET) 2012, 2, 54–60. [Google Scholar]
- Dervenis, N.; Alexandridis, G.; Stafylopatis, A. Neural network specialists for inverse spiral inductor design. In Proceedings of the 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), Volos, Greece, 5–7 November 2018; pp. 60–64. [Google Scholar]
- Abi, S.; Bouyghf, H.; Raihani, A.; Benhala, B. Swarm intelligence optimization techniques for an optimal RF integrated spiral inductor design. In Proceedings of the International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco, 29–30 November 2018; pp. 1–7. [Google Scholar]
- Guillod, T.; Papamanolis, P.; Kolar, J.W. Artificial neural network (ANN) based fast and accurate inductor modeling and design. IEEE Open J. Power Electron. 2020, 1, 284–299. [Google Scholar] [CrossRef]
- Lee, D.; Shin, G.; Lee, S.; Kim, K.; Oh, T.-H.; Song, H.-J. Neural-network-based automated synthesis of transformer matching circuits for RF amplifier design. IEEE Trans. Microw. Theory Tech. 2022, 70, 4726–4739. [Google Scholar] [CrossRef]
- Yin, S.; Wang, R.; Zhang, J.; Liu, X.; Wang, Y. Automatic design for W-band front-end system via bottom-up sizing and layout generation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2024, 43, 705–715. [Google Scholar] [CrossRef]
- Karahan, E.A.; Liu, Z.; Gupta, A.; Xu, X.; Hsu, S.L.; Zheng, J.; Sun, G.; Zhang, Z.; Xu, H.; Vaddiraju, S.; et al. Deep-learning enabled generalized inverse design of multi-port radio-frequency and sub-terahertz passives and integrated circuits. Nat. Commun. 2024, 15, 10734. [Google Scholar] [CrossRef] [PubMed]
- Vandendaele, W.; Leurquin, C.; Lavieville, R.; Jaud, M.A.; Viey, A.G.; Gwoziecki, R.; Mohamad, B.; Nowak, E.; Constant, A.; Iucolano, F. Reliability of GaN MOSc-HEMTs: From TDDB to threshold voltage instabilities (Invited). In Proceedings of the IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 26–30 March 2023; pp. 1–8. [Google Scholar]
- Scandurra, A.; Testa, M.; Franzò, G.; Greco, G.; Roccaforte, F.; Castagna, M.E.; Calabretta, C.; Severino, A.; Iucolano, F.; Bruno, E.; et al. Isolation of bidimensional electron gas in AlGaN/GaN heterojunction using Ar ion implantation. Mater. Sci. Semicond. Process. 2023, 168, 107871. [Google Scholar] [CrossRef]
- Santhakumar, R.; Pei, Y.; Mishra, U.K.; York, R.A. Monolithic millimeter-wave distributed amplifiers using AlGaN/GaN HEMTs. In Proceedings of the IEEE MTT-S Int. Microwave Symposium Digest, Atlanta, GA, USA, 15–20 June 2008; pp. 1063–1066. [Google Scholar]
- Korndorfer, F.; Muhlhaus, V. Lumped modeling of integrated MIM capacitors for RF applications. In Proceedings of the Microwave Measurement Conference (ARFTG), Austin, TX, USA, 8–9 December 2016; pp. 1–4. [Google Scholar]
- Bevilacqua, A. Fundamentals of integrated transformers: From principles to applications. IEEE Solid-State Circuits Mag. 2020, 12, 86–100. [Google Scholar] [CrossRef]
- Long, J.R. Monolithic transformers for silicon RF IC design. IEEE J. Solid-State Circuits 2000, 35, 1368–1382. [Google Scholar] [CrossRef]
- Tripoli, D.; Maiellaro, G.; Pavone, S.C.; Ragonese, E. A low-phase-noise and area-efficient quad-core VCO based on stacked two-port inductors. IEEE Access 2024, 12, 87065–87076. [Google Scholar] [CrossRef]
- Tripoli, D.; Maiellaro, G.; Pavone, S.C.; Ragonese, E. Interstacked Transformer Quad-Core VCOs. Electronics 2024, 13, 927. [Google Scholar] [CrossRef]
- Papotto, G.; Nocera, C.; Finocchiaro, A.; Parisi, A.; Cavarra, A.; Castorina, A.; Ragonese, E.; Palmisano, G. A 27-mW W-band radar receiver with effective TX leakage suppression in 28-nm FD-SOI CMOS. IEEE Trans. Microw. Theory Tech. 2021, 69, 4132–4141. [Google Scholar] [CrossRef]
- Keysight. N5224B PNA Microwave Network Analyzer. 2025. Available online: https://www.keysight.com/us/en/product/N5224B/pna-microwave-network-analyzer-900-hz-10-mhz-43-5-ghz.html (accessed on 23 July 2025).
- Form Factor. Cascade Summit 200 mm Manual Probe System. 2025. Available online: https://www.formfactor.com/product/probe-systems/200-mm-systems/summit/ (accessed on 23 July 2025).
- Davidson, A.; Jones, K.; Strid, E. LRM and LRRM calibrations with automatic determination of load inductance. In Proceedings of the 36th ARFTG Conference Digest, Monterey, CA, USA, 29–30 November 1990; pp. 57–63. [Google Scholar]
- Shang, X.; Ding, J.; Ridler, N.; Buck, C.; Geen, M. Calibration Techniques for Millimetre-wave On-wafer S-parameter Measurements. In Proceedings of the ARMMS RF & Microwave Society Conference, Wyboston, UK, 18–19 November 2019; Available online: https://www.armms.org/media/uploads/xiaobang-shang---armms-nov-2019.pdf (accessed on 23 July 2025).
- Biondi, T.; Scuderi, A.; Ragonese, E.; Palmisano, G. Characterization and modeling of silicon integrated spiral inductors for high-frequency applications. Analog. Integr. Circuits Signal Process. 2007, 51, 89–100. [Google Scholar] [CrossRef]
- Kuhn, W.B.; Ibrahim, N.M. Analysis of current crowding effects in multiturn spiral inductors. IEEE Trans. Microw. Theory Tech. 2001, 49, 31–38. [Google Scholar] [CrossRef]
- Kuhn, W.B. Loss mechanisms and quality factor improvement for inductors in high-resistivity SOI processes. In Proceedings of the IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Santa Clara, CA, USA, 16–18 January 2012; pp. 29–32. [Google Scholar]
- Kuhn, W.B.; He, S.; Mojarrad, M. Modeling spiral inductors in SOS processes. IEEE Trans. Electron Devices 2004, 51, 677–683. [Google Scholar] [CrossRef]
- Mohan, S.S.; del Mar Hershenson, M.; Boyd, S.P.; Lee, T.H. Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits 1999, 34, 1419–1424. [Google Scholar] [CrossRef]
- Mohan, S.S. The Design, Modeling and Optimization of on Chip Inductor and Transformer Circuit. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1999. [Google Scholar]
- Kuhn, W.B.; Ibrahim, N.M. Approximate analytical modeling of current crowding effects in multi-turn spiral inductors. In Proceedings of the 2000 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 11–16 June 2000; pp. 405–408. [Google Scholar]
- Craninckx, J.; Steyaert, M.S.J. A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors. IEEE J. Solid State Circuits 1997, 32, 736–744. [Google Scholar] [CrossRef]
- Long, J.R.; Copeland, M.A. The modeling, characterization, and design of monolithic inductors for silicon RF IC’s. IEEE J. Solid-State Circuits 1997, 32, 357–369. [Google Scholar] [CrossRef]
- Kapur, S.; Long, D.E. Modeling of integrated RF passive devices. In Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 19–22 September 2010; pp. 1–8. [Google Scholar]
Performance Parameters | Lumped Components | Fitting Parameters | Scalable Equations |
---|---|---|---|
SRF1 | L, CP1, CS | k, kS, β2 | (1), (2), (3), (12), (13), (14) |
Q-factor | L, RS, RP | α2, k, kS, kP | (1), (2), (12), (13), (17), (18) |
|S11| | All | k, kS, kP | All |
|S21| | All | α2, k, kS, kP | All |
Performance Parameters | k | kS | α2 | β2 | kP | Unit |
---|---|---|---|---|---|---|
ΔSRF1 | 2.5 | 1.7 | - | −1.2 | - | % |
ΔQMAX | 0.7 | 0.5 | 15.6 | −0.8 | −0.6 | % |
Δ|S11|@ SRF1 | −0.83 | −0.78 | 0.03 | −0.03 | −0.17 | dB |
Δ|S21|@ SRF1 | 0.16 | 0.15 | 0.04 | 0.01 | −0.15 | dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spataro, S.; Sapone, G.; Giuffrida, M.; Ragonese, E. Advanced Modeling of GaN-on-Silicon Spiral Inductors. Electronics 2025, 14, 3079. https://doi.org/10.3390/electronics14153079
Spataro S, Sapone G, Giuffrida M, Ragonese E. Advanced Modeling of GaN-on-Silicon Spiral Inductors. Electronics. 2025; 14(15):3079. https://doi.org/10.3390/electronics14153079
Chicago/Turabian StyleSpataro, Simone, Giuseppina Sapone, Marcello Giuffrida, and Egidio Ragonese. 2025. "Advanced Modeling of GaN-on-Silicon Spiral Inductors" Electronics 14, no. 15: 3079. https://doi.org/10.3390/electronics14153079
APA StyleSpataro, S., Sapone, G., Giuffrida, M., & Ragonese, E. (2025). Advanced Modeling of GaN-on-Silicon Spiral Inductors. Electronics, 14(15), 3079. https://doi.org/10.3390/electronics14153079