A Conceptual Framework for User Trust in AI Biosensors: Integrating Cognition, Context, and Contrast
Abstract
1. Introduction
2. Understanding Sensor Trust: A Conceptual Gap
Positioning CCC in the Trust-in-Automation Landscape
3. Cognition: Stereotypes and Trust in Humans Versus Machines
Expectation of Superior Performance and Quick Distrust
4. Context: Task Demonstrability and Its Influence on Trust of Biomedical Sensors
4.1. Moral and Ethical Overlays
4.2. Implications for Trust and Sensor Acceptance
5. Contrast: Effects of Shifting to Sensor-Based Systems
6. CCC Operationalized: Practical Steps for Improving Sensor Acceptance
7. Limitations, Boundary Conditions, and Validation
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cieśluk, K.; Sadowska, D.; Krzepota, J. Assessing Changes in Reaction Time Following RAMP Warm-Up and Short-Term Repeated Volleyball Specific Exercise in Young Players. Sensors 2025, 25, 125. [Google Scholar] [CrossRef]
- Delgado-Terán, J.D.; Hilbrants, K.; Mahmutović, D.; Silva de Lima, A.L.; van Wezel, R.J.A.; Heida, T. Ankle Sensor-Based Detection of Freezing of Gait in Parkinson’s Disease in Semi-Free Living Environments. Sensors 2025, 25, 1895. [Google Scholar] [CrossRef]
- Brugnone, F.; Randazzo, L.; Calabrese, S. Use of Low-Cost Sensors to Study Atmospheric Particulate Matter Concentrations: Limitations and Benefits Discussed through the Analysis of Three Case Studies in Palermo, Sicily. Sensors 2024, 24, 6621. [Google Scholar] [CrossRef]
- Mardanshahi, A.; Sreekumar, A.; Yang, X.; Barman, S.K.; Chronopoulos, D. Sensing Techniques for Structural Health Monitoring: A State-of-the-Art Review on Performance Criteria and New-Generation Technologies. Sensors 2025, 25, 1424. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-H.; Hong, J.-X.; Lu, S.-D. Fault Diagnosis of Lithium Battery Modules via Symmetrized Dot Pattern and Convolutional Neural Networks. Sensors 2025, 25, 94. [Google Scholar] [CrossRef] [PubMed]
- Rojas, A.N.; Mosquera, F.C. Advances and Challenges Associated with Low-Cost Pulse Oximeters in Home Care Programs: A Review. Sensors 2024, 24, 6284. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.-F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Mahato, K.; Saha, T.; Ding, S.; Sandhu, S.S.; Chang, A.-Y.; Wang, J. Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 2024, 7, 735–750. [Google Scholar] [CrossRef]
- Li, X.; Zhou, H.-P.; Zhou, Z.-J.; Du, N.; Zhong, E.-H.; Zhai, K.; Liu, N.; Zhou, L. Artificial intelligence-powered remote monitoring of patients with chronic obstructive pulmonary disease. Chin. Med. J. (Engl.) 2021, 134, 1546–1548. [Google Scholar] [CrossRef]
- Lee, K.-S.; Park, H.-J.; Kim, J.E.; Kim, H.J.; Chon, S.; Kim, S.; Jang, J.; Kim, J.-K.; Jang, S.; Gil, Y.; et al. Compressed Deep Learning to Classify Arrhythmia in an Embedded Wearable Device. Sensors 2022, 22, 1776. [Google Scholar] [CrossRef]
- Kadian, S.; Kumari, P.; Shukla, S.; Narayan, R. Recent advancements in machine learning enabled portable and wearable biosensors. Talanta Open 2023, 8, 100267. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Pal, S.; Lee, S.-S. From machine learning to deep learning: Advances of the recent data-driven paradigm shift in medicine and healthcare. Curr. Res. Biotechnol. 2024, 7, 100164. [Google Scholar] [CrossRef]
- Devine, J.K.; Schwartz, L.P.; Hursh, S.R. Technical, Regulatory, Economic, and Trust Issues Preventing Successful Integration of Sensors into the Mainstream Consumer Wearables Market. Sensors 2022, 22, 2731. [Google Scholar] [CrossRef]
- Liu, L.; Pu, Y.; Fan, J.; Yan, Y.; Liu, W.; Luo, K.; Wang, Y.; Zhao, G.; Chen, T.; Puiu, P.D.; et al. Wearable Sensors, Data Processing, and Artificial Intelligence in Pregnancy Monitoring: A Review. Sensors 2024, 24, 6426. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-B.; Kim, Y.J.; Jung, J.-Y.; Kim, K.G. Classification of Grades of Subchondral Sclerosis from Knee Radiographic Images Using Artificial Intelligence. Sensors 2025, 25, 2535. [Google Scholar] [CrossRef]
- Lynn, T.; Wood, C. Smart Streets as a Cyber-Physical Social Platform: A Conceptual Framework. Sensors 2023, 23, 1399. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.; Reza, H.; Salameh, K.; Kashani Zadeh, H.; Vasefi, F. Toward an Intelligent Blockchain IoT-Enabled Fish Supply Chain: A Review and Conceptual Framework. Sensors 2023, 23, 5136. [Google Scholar] [CrossRef]
- Lee, J.E.; See, K.A. Trust in Automation: Designing for Appropriate Reliance. Hum. Factors J. Hum. Factors Ergon. Soc. 2004, 46, 50–80. [Google Scholar] [CrossRef]
- Hoff, K.A.; Bashir, M. Trust in automation integrating empirical evidence on factors that influence trust. Hum. Factors J. Hum. Factors Ergon. Soc. 2015, 57, 407–434. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, P.; Wiegmann, D.A. Similarities and differences between human–human and human–automation trust: An integrative review. Theor. Issues Ergon. Sci. 2007, 8, 277–301. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Firmino de Souza, D.; Sousa, S.; Kristjuhan-Ling, K.; Dunajeva, O.; Roosileht, M.; Pentel, A.; Mõttus, M.; Can Özdemir, M.; Gratšjova, Ž. Trust and Trustworthiness from Human-Centered Perspective in Human–Robot Interaction (HRI)—A Systematic Literature Review. Electronics 2025, 14, 1557. [Google Scholar] [CrossRef]
- Dietvorst, B.J.; Simmons, J.P.; Massey, C. Algorithm aversion: People erroneously avoid algorithms after seeing them err. J. Exp. Psychol. Gen. 2015, 144, 114–126. [Google Scholar] [CrossRef]
- Sundar, S.S.; Kim, J. Machine Heuristic: When We Trust Computers More than Humans with Our Personal Information. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Muir, B.M. Trust in automation: Part I. Theoretical issues in the study of trust and human intervention in automated systems. Ergonomics 1994, 37, 1905–1922. [Google Scholar] [CrossRef]
- Snene, M.; Graf, C.; Vayne-Bossert, P.; Pautex, S. Pain Assessment for Patients with Dementia and Communication Impairment: Feasibility Study of the Usage of Artificial Intelligence-Enabled Wearables. Sensors 2024, 24, 6298. [Google Scholar] [CrossRef]
- Papalamprakopoulou, Z.; Stavropoulos, D.; Moustakidis, S.; Avgerinos, D.; Efremidis, M.; Kampaktsis, P.N. Artificial intelligence-enabled atrial fibrillation detection using smartwatches: Current status and future perspectives. Front. Cardiovasc. Med. 2024, 11, 1432876. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Sundar, S.S. Machine heuristic: Concept explication and development of a measurement scale. J. Comput.-Mediat. Commun. 2024, 29, zmae019. [Google Scholar] [CrossRef]
- Merritt, S.M.; Unnerstall, J.L.; Lee, D.; Huber, K. Measuring individual differences in the perfect automation schema. Hum. Factors J. Hum. Factors Ergon. Soc. 2015, 57, 740–753. [Google Scholar] [CrossRef]
- Weizenbaum, J. Computer Power and Human Reason: From Judgement to Calculation; W. H. Freeman: San Francisco, CA, USA, 1976; 300p. [Google Scholar]
- Dijkstra, J.J.; Liebrand, W.B.G.; Timminga, E. Persuasiveness of expert systems. Behav. Inf. Technol. 1998, 17, 155–163. [Google Scholar] [CrossRef]
- Hussein, A.; Moullin, J.; Stafford, A.; Hughes, J.; Quested, E. Identification of Barriers and Facilitators to the Use of a New Pain Assessment Mobile Health Application by Family Carers of People with Dementia: A Qualitative Study. Ageing Int. 2024, 50, 5. [Google Scholar] [CrossRef]
- Bruner, J.; Tagiuri, R. The perception of people. In The Handbook of Social Psychology; Lindzey, G., Aronson, E., Eds.; Addison-Wesley Pub. Co.: Reading, MA, USA, 1954; Volume 2, p. 634. [Google Scholar]
- Lee, J.; Moray, N. Trust, control strategies and allocation of function in human-machine systems. Ergonomics 1992, 35, 1243–1270. [Google Scholar] [CrossRef]
- Logg, J.M.; Minson, J.A.; Moore, D.A. Algorithm appreciation: People prefer algorithmic to human judgment. Organ. Behav. Hum. Decis. Process. 2019, 151, 90–103. [Google Scholar] [CrossRef]
- Dawes, R.M. The robust beauty of improper linear models in decision making. Am. Psychol. 1979, 34, 571–582. [Google Scholar] [CrossRef]
- Lee, E.-J. Minding the source: Toward an integrative theory of human–machine communication. Hum. Commun. Res. 2024, 50, 184–193. [Google Scholar] [CrossRef]
- Dzindolet, M.T.; Beck, H.P.; Pierce, L.G.; Dawe, L.A. A Framework of Automation Use; Army Research Lab: Aberdeen Proving Ground, MD, USA, 2001. [Google Scholar]
- Kim, S.; Zhong, Y.; Wang, J.; Kim, H.-S. Exploring Technology Acceptance of Healthcare Devices: The Moderating Role of Device Type and Generation. Sensors 2024, 24, 7921. [Google Scholar] [CrossRef]
- Dzindolet, M.T.; Peterson, S.A.; Pomranky, R.A.; Pierce, L.G.; Beck, H.P. The role of trust in automation reliance. Int. J. Hum.-Comput. Stud. 2003, 58, 697–718. [Google Scholar] [CrossRef]
- Prahl, A.; Van Swol, L. Understanding algorithm aversion: When is advice from automation discounted? J. Forecast. 2017, 36, 691–702. [Google Scholar] [CrossRef]
- Rempel, J.K.; Holmes, J.G.; Zanna, M.P. Trust in close relationships. J. Pers. Soc. Psychol. 1985, 49, 95–112. [Google Scholar] [CrossRef]
- Campanella, S.; Altaleb, A.; Belli, A.; Pierleoni, P.; Palma, L. A Method for Stress Detection Using Empatica E4 Bracelet and Machine-Learning Techniques. Sensors 2023, 23, 3565. [Google Scholar] [CrossRef] [PubMed]
- Leuzzi, G.; Recenti, F.; Giardulli, B.; Scafoglieri, A.; Testa, M. Exploring digital health: A qualitative study on adults’ experiences with health apps and wearables. Int. J. Qual. Stud. Health Well-Being 2024, 20, 2447096. [Google Scholar] [CrossRef]
- Laughlin, P.R.; Ellis, A.L. Demonstrability and social combination processes on mathematical intellective tasks. J. Exp. Soc. Psychol. 1986, 22, 177–189. [Google Scholar] [CrossRef]
- Bonner, B.L.; Shannahan, D.; Bain, K.; Coll, K.; Meikle, N.L. The Theory and Measurement of Expertise-Based Problem Solving in Organizational Teams: Revisiting Demonstrability. Organ. Sci. 2022, 33, 1452–1469. [Google Scholar] [CrossRef]
- Cunningham, S.M. The major dimensions of perceived risk. Risk Tak. Inf. Handl. Consum. Behav. 1967, 82–108. [Google Scholar]
- Kuosmanen, E.; Visuri, A.; Risto, R.; Hosio, S. Comparing Consumer Grade Sleep Trackers for Research Purposes: A Field Study. Front. Comput. Sci. 2022, 4, 971793. Available online: https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2022.971793/full (accessed on 30 May 2025). [CrossRef]
- Alzghaibi, H. Perspectives of people with diabetes on AI-integrated wearable devices: Perceived benefits, barriers, and opportunities for self-management. Front. Med. 2025, 12, 1563003. Available online: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1563003/full (accessed on 30 May 2025). [CrossRef]
- Prahl, A.; Swol, L.V. Out with the Humans, in with the Machines?: Investigating the Behavioral and Psychological Effects of Replacing Human Advisors with a Machine. Hum.-Mach. Commun. 2021, 2, 209–234. Available online: https://stars.library.ucf.edu/hmc/vol2/iss1/11 (accessed on 30 May 2025). [CrossRef]
- Cortese, A.J.P. Ethnic Ethics: The Restructuring of Moral Theory; SUNY Press: New York, NY, 1990; 218p. [Google Scholar]
- Dawes, R.M.; Faust, D.; Meehl, P.E. Clinical versus actuarial judgment. Science 1989, 243, 1668–1674. [Google Scholar] [CrossRef] [PubMed]
- Diel, S.; Gutheil, N.; Richter, F.; Buck, C. My Data, My Choice?! The Difference Between Fitness and Stress Data Monitoring on Employees’ Perception of Privacy. 2022. Available online: http://hdl.handle.net/10125/79833 (accessed on 10 July 2025).
- Hoesterey, S.; Onnasch, L. The effect of risk on trust attitude and trust behavior in interaction with information and decision automation. Cogn. Technol. Work 2023, 25, 15–29. [Google Scholar] [CrossRef]
- Saylam, B.; İncel, Ö.D. Quantifying Digital Biomarkers for Well-Being: Stress, Anxiety, Positive and Negative Affect via Wearable Devices and Their Time-Based Predictions. Sensors 2023, 23, 8987. [Google Scholar] [CrossRef]
- Eng, P.H.; Liu, R.L. Will Intelligent Technologies Replace Humans in the Future? An Exploratory Study for Likelihood of Intelligent Technologies to Replace Humans in the Future. In Current and Future Trends on Intelligent Technology Adoption; Al-Sharafi, M.A., Al-Emran, M., Tan, G.W.-H., Ooi, K.-B., Eds.; Springer Nature: Cham, Switzerland, 2024; Volume 2, pp. 171–202. [Google Scholar] [CrossRef]
- Intahchomphoo, C.; Millar, J.; Gundersen, O.E.; Tschirhart, C.; Meawasige, K.; Salemi, H. Effects of Artificial Intelligence and Robotics on Human Labour: A Systematic Review. Leg. Inf. Manag. 2024, 24, 109–124. [Google Scholar] [CrossRef]
- Zalizan, T. AI Is Already Displacing Jobs in Some Sectors. What Can Workers Do to Prepare? CNA. 28 March 2025. Available online: https://www.channelnewsasia.com/today/big-read/generative-ai-disrupt-jobs-prepare-5027576 (accessed on 16 May 2025).
- Newton-Rex, E. For Silicon Valley, AI Isn’t Just About Replacing Some Jobs. It’s About Replacing All of Them. The Guardian 12 May 2025. Available online: https://www.theguardian.com/commentisfree/2025/may/12/for-silicon-valley-ai-isnt-just-about-replacing-some-jobs-its-about-replacing-all-of-them (accessed on 16 May 2025).
- Liu, H. Acceptability of robots to assist the elderly by future designers: A case of guangdong ocean university industrial design students. Sustainability 2019, 11, 4139. [Google Scholar] [CrossRef]
- Palmer, J.K.; Gore, J.S. A theory of contrast effects in performance appraisal and social cognitive judgments. Psychol. Stud. 2014, 59, 323–336. [Google Scholar] [CrossRef]
- Wedell, D.H.; Parducci, A.; Geiselman, R.E. A formal analysis of ratings of physical attractiveness: Successive contrast and simultaneous assimilation. J. Exp. Soc. Psychol. 1987, 23, 230–249. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, S.; Zhang, T.; Yang, Y. Research on a Defecation Pre-Warning Algorithm for the Disabled Elderly Based on a Semi-Supervised Generative Adversarial Network. Sensors 2022, 22, 6704. [Google Scholar] [CrossRef]
- Mukundan, A.; Feng, S.-W.; Weng, Y.-H.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Lin, Y.-S.; Huang, Y.-C.; Wang, H.-C. Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia. Int. J. Mol. Sci. 2022, 23, 4745. [Google Scholar] [CrossRef]
- Johnson, C.J.; Demir, M.; McNeese, N.J.; Gorman, J.C.; Wolff, A.T.; Cooke, N.J. The Impact of Training on Human-Autonomy Team Communications and Trust Calibration. Hum. Factors 2023, 65, 1554–1570. [Google Scholar] [CrossRef]
- AI Deployment Fundamentals for Medical Imaging. United Kingdom: The Royal College of Radiologists. 2024. Available online: https://www.rcr.ac.uk/our-services/all-our-publications/clinical-radiology-publications/ai-deployment-fundamentals-for-medical-imaging/ (accessed on 16 May 2025).
- Sanghavi, F.; Jinadu, O.; Oludare, V.; Panetta, K.; Kezebou, L.; Roberts, S.B. An Individualized Machine Learning Approach for Human Body Weight Estimation Using Smart Shoe Insoles. Sensors 2023, 23, 7418. [Google Scholar] [CrossRef]
- Chien, S.-Y.; Lewis, M.; Sycara, K.; Liu, J.-S.; Kumru, A. The Effect of Culture on Trust in Automation: Reliability and Workload. ACM Trans. Interact. Intell. Syst. 2018, 8, 29:1–29:31. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prahl, A. A Conceptual Framework for User Trust in AI Biosensors: Integrating Cognition, Context, and Contrast. Sensors 2025, 25, 4766. https://doi.org/10.3390/s25154766
Prahl A. A Conceptual Framework for User Trust in AI Biosensors: Integrating Cognition, Context, and Contrast. Sensors. 2025; 25(15):4766. https://doi.org/10.3390/s25154766
Chicago/Turabian StylePrahl, Andrew. 2025. "A Conceptual Framework for User Trust in AI Biosensors: Integrating Cognition, Context, and Contrast" Sensors 25, no. 15: 4766. https://doi.org/10.3390/s25154766
APA StylePrahl, A. (2025). A Conceptual Framework for User Trust in AI Biosensors: Integrating Cognition, Context, and Contrast. Sensors, 25(15), 4766. https://doi.org/10.3390/s25154766