Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges
Abstract
1. Introduction
2. Operating Principle of Hybrid Nanogenerators
2.1. Triboelectric Nanogenerators
2.2. Piezoelectric Nanogenerators
2.3. Electromagnetic Generator
2.4. Pyroelectric Nanogenerator
2.5. Thermoelectric Generator
3. Applications
4. Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadoughipour, M.; VanZwieten, J.; Tang, Y. Drifter-based global ocean current energy resource assessment. Renew. Energy 2025, 244, 122576. [Google Scholar] [CrossRef]
- Taveira-Pinto, F.; Rosa-Santos, P.; Fazeres-Ferradosa, T. Marine renewable energy. Renew. Energy 2020, 150, 1160–1164. [Google Scholar] [CrossRef]
- Xing, F.; Tang, G.; Wang, H.; Wang, M.; Wu, M.; Xu, M. Exploring the synergy of EMG and TENG in motion based hybrid energy harvesting. Nano Energy 2025, 134, 110584. [Google Scholar] [CrossRef]
- Salman, M.; Sorokin, V.; Aw, K. Systematic literature review of wave energy harvesting using triboelectric nanogenerator. Renew. Sustain. Energy Rev. 2024, 201, 114626. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Huang, M.; Sun, L.; Liu, H.; Lee, C. Self-Sustained Artificial Internet of Things Based on Vibration Energy Harvesting Technology: Toward the Future Eco-Society. Adv. Energy Sustain. Res. 2024, 5, 2400116. [Google Scholar] [CrossRef]
- Ding, S.; Zhai, H.; Tao, X.; Yang, P.; Liu, Z.; Qin, S.; Hong, Z.; Chen, X.; Wang, Z.L. A Triboelectric-Electromagnetic Hybrid Nanogenerator with Magnetic Coupling Assisted Waterproof Encapsulation for Long-Lasting Energy Harvesting. Small 2024, 20, 2403879. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zeng, P.; Li, Y.; Qi, L. An electromagnetic-triboelectric hybrid wave energy harvesting system with high-output performance based on wire-stayed structure. Measurement 2025, 253, 117800. [Google Scholar] [CrossRef]
- Tang, W.; Shui, J.; Cao, L.; Guo, D.; Su, W.; Jiang, J.; Wen, H.; Liu, G.; Wan, L. Multi-Mode Hybrid Generator Utilizing Gravitational, Magnetic, and Inertial Forces Synergistically. Adv. Sustain. Syst. 2025, 9, 2500175. [Google Scholar] [CrossRef]
- Jia, S.; Yang, X.; Feng, W.; Liu, L.; Zhao, L.; Wu, L.; Li, S.; Zuo, W.; Tang, Q.; Jiang, T.; et al. Self-Adaptive Gyroscope-Structured Hybrid Triboelectric-Electromagnetic Buoy System for Real-Time Ocean Currents Monitoring. Small 2025, 21, 2501073. [Google Scholar] [CrossRef]
- Gao, L.; Xu, X.; Han, H.; Yang, W.; Zhuo, R.; Wei, Q.; Deng, Q.; Hu, N. A broadband hybrid blue energy nanogenerator for smart ocean IoT network. Nano Energy 2024, 127, 109697. [Google Scholar] [CrossRef]
- Vahidhosseini, S.M.; Rashidi, S.; Ehsani, M.H. Efficient energy harvesting using triboelectric nanogenerators (TENGs): Integration with technologies, wearable applications, and future trends. Renew. Sustain. Energy Rev. 2025, 216, 115662. [Google Scholar] [CrossRef]
- Shan, B.; Ai, T.; Wang, K. Triboelectric nanogenerator for ocean energy harvesting: A review of technological advances and future perspectives. Int. J. Electrochem. Sci. 2024, 19, 100694. [Google Scholar] [CrossRef]
- Ucar, E.F.; Ilbay, A.; Simsek, T.; Kaynar, M.B.; Ozbay, E.; Ozcan, S. Development of magnetically driven contactless piezoelectric nanogenerators utilizing ZnO nanowires with different shaped top electrodes. Semicond. Sci. Technol. 2024, 40, 015015. [Google Scholar] [CrossRef]
- Suresh, S.; Athira, B.S.; Akhila, N.S.; Vijaya, L.; Chandran, A.; Gowd, B. Anisotropic Poly(vinylidene fluoride-co-trifluoroethylene)/MXene Aerogel-Based Piezoelectric Nanogenerator for Efficient Kinetic Energy Harvesting and Self-Powered Force Sensing Applications. ACS Appl. Mater. Interfaces 2025, 17, 9818–9829. [Google Scholar] [CrossRef] [PubMed]
- Ziaee, S.; Montazer, M.; Bagherzadeh, R. Flexible copper/nickel carbon composite fabrics as electrodes for wearable PVDF/BaTiO3 composite piezoelectric nanogenerators. Compos. Struct. 2025, 357, 118868. [Google Scholar] [CrossRef]
- Huang, M.; Liao, W.; Shi, J.; Huang, X.; Gao, X.; Ding, Z.; Guo, S. A miniaturized fully enclosed spherical triboelectric and electromagnetic hybrid generator for multidimensional low-frequency vibration energy harvesting. Nano Energy 2025, 142, 111281. [Google Scholar] [CrossRef]
- Pan, J.; Sun, Y.; Sun, Q.; Jia, S.; Wang, X.; Xia, H.; Li, Q.; Xia, Y.; Shi, G. A phase-synchronized triboelectric-assisted electromagnetic energy harvesting system for omnidirectional low-frequency wave energy. Energy 2025, 328, 136529. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, Y.; Lu, X.; Su, W.; Zhang, H.; Wang, J.; Li, X. Passive wireless marine Internet-of-Things buoy based on hybrid nanogenerator with omnidirectional water-wave energy harvesting. Nano Energy 2025, 138, 110809. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Y.; Wang, C.; Li, G.; Wen, G.-L.; Lai, S.-L. Engineering a motion-enhanced tri-stable hybrid energy converter for capturing low-frequency wave energy. Energy 2025, 322, 135583. [Google Scholar] [CrossRef]
- Yaseen, H.M.A.; Park, S. Improved pyroelectric nanogenerator performance of P(VDF-TrFE)/rGO thin film by optimized rgo reduction. Nanomaterials 2024, 14, 1777. [Google Scholar] [CrossRef]
- Mondal, R.; Hasan, M.A.M.; Baik, J.M.; Yang, Y. Advanced pyroelectric materials for energy harvesting and sensing applications. Mater. Today 2023, 66, 273–301. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Li, X.; Huang, J.; Li, X.; Boong, S.K.; Lee, H.K.; Han, J.; Guo, R. Boosting solar-to-pyroelectric energy harvesting via a plasmon-enhanced solar-thermal conversion approach. Nano Energy 2022, 100, 107527. [Google Scholar] [CrossRef]
- Mistewicz, K.; Jesionek, M.; Nowak, M.; Kozioł, M. SbSeI pyroelectric nanogenerator for a low temperature waste heat recovery. Nano Energy 2019, 64, 103906. [Google Scholar] [CrossRef]
- Soltanian, S.; Mahmud, S.; Dutta, A. Analysis of a polymer-based textile-embroidered thermoelectric generator for harvesting electrical power from the human body. Appl. Therm. Eng. 2025, 269, 126156. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, W.; Guo, Z.-Y. Governing equations of thermoelectric generators. Int. J. Heat Mass Transf. 2025, 241, 126737. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, X.; Liang, Y.; Liu, X.; Zhang, R.; Huang, X.; Tan, L.; Tang, S. Design and optimization of two stage annular thermoelectric generator coupling with high temperature heat pipe application. Appl. Therm. Eng. 2025, 261, 125089. [Google Scholar] [CrossRef]
- Malagutti, M.A.; Lohani, K.; Prades, I.C.; Navarro-Güell, A.; Bernard, T.; Chiappini, A.; Saucedo, E.; Ataollahi, N.; Scardi, P. CuFeS2/Cu2S/FeS2 Composite to increase the performance of thin-film thermoelectric generators based on sustainable materials. ACS Appl. Electron. Mater. 2025, 7, 21–32. [Google Scholar] [CrossRef]
- Bayendang, N.P.; Balyan, V.; Kahn, M.T. The question of thermoelectric devices (TEDs) in/efficiency—A practical research considering thermoelectric generators (TEGs). IET Renew. Power Gener. 2025, 19, e13185. [Google Scholar] [CrossRef]
- Liu, C.; Fan, Y.; Zhao, K.; Shan, B.; Wang, Y.; Gao, Y.; Han, Z.; Xu, M.; Pan, X. Design and Application of a New Self-Powered Sensing Device Based on MTEG and FTENG. J. Energy Eng. 2022, 148, 04022036. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, C.; Liu, J.; Wang, J.; Wang, Y.; Fan, Y.; Pan, X. Design and study of a combining energy harvesting system based on thermoelectric and flapping triboelectric nanogenerator. Int. J. Green Energy 2021, 18, 1302–1308. [Google Scholar] [CrossRef]
- Li, J.; Cheng, L.; Wan, N.; Ma, J.; Hu, Y.; Wen, J. Hybrid harvesting of wind and wave energy based on triboelectric-piezoelectric nanogenerators. Sustain. Energy Technol. Assess. 2023, 60, 103466. [Google Scholar] [CrossRef]
- Sun, X.; Shang, C.; Ma, H.; Li, C.; Xue, L.; Xu, Q.; Wei, Z.; Li, W.; Yalikun, Y.; Lai, Y.-C.; et al. A tube-shaped solid–liquid-interfaced triboelectric–electromagnetic hybrid nanogenerator for efficient ocean wave energy harvesting. Nano Energy 2022, 100, 107540. [Google Scholar] [CrossRef]
- Xu, Q.; Shang, C.; Ma, H.; Hong, Q.; Li, C.; Ding, S.; Xue, L.; Sun, X.; Pan, Y.; Sugahara, T.; et al. A guided-liquid-based hybrid triboelectric nanogenerator for omnidirectional and high-performance ocean wave energy harvesting. Nano Energy 2023, 109, 108240. [Google Scholar] [CrossRef]
- Liu, C.; Qu, G.; Shan, B.; Aranda, R.; Chen, N.; Li, H.; Zhou, Z.; Yu, T.; Wang, C.; Mi, J.; et al. Underwater hybrid energy harvesting based on TENG-MTEG for self-powered marine mammal condition monitoring system. Mater. Today Sustain. 2023, 21, 100301. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, W.; Zhang, B.; Yang, O.; Liu, Y.; He, L.; Wang, J.; Wang, Z.L. High Space Efficiency Hybrid Nanogenerators for Effective Water Wave Energy Harvesting. Adv. Funct. Mater. 2022, 32, 2111775. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, T.; Niu, B.; Ma, Y.; Hu, C. A hydrokinetic turbine-based triboelectric-electromagnetic hybrid generator for ocean current energy harvesting. Energy Convers. Manag. 2025, 326, 119473. [Google Scholar] [CrossRef]
- Zhao, T.; Li, Z.; Niu, B.; Xie, G.; Shangguan, L.; Zhang, M.; Zhu, Y.; Ma, Y.; Hu, C.; Li, Y. A pendulum-based nanogenerator for high-entropy wave energy harvesting. Nat. Commun. 2025, 16, 5480. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, H.; Xing, W.; Tohl, D.; Tang, Y. A hybrid self-powered wave sensing device enables low-amplitude wave sensing. Device 2025, 3, 100575. [Google Scholar] [CrossRef]
- Liu, H.; Guo, D.; Zhu, H.; Wen, H.; Li, J.; Wan, L. Shell-Optimized Hybrid Generator for Ocean Wave Energy Harvesting. Energies 2025, 18, 1502. [Google Scholar] [CrossRef]
- Wen, H.; Liu, H.; Wang, X.; Liu, G.; Zhou, P.; Zhou, W.; Tuo, L.; Qu, H.; Zhai, L.; Wan, L.; et al. Enhanced hybrid generator with spring coupling effect for low-grade water wave energy harvesting. Nano Energy 2025, 133, 110488. [Google Scholar] [CrossRef]
- Sun, C.; Teng, H.; Ma, X.; Chen, H.; Sun, L.; Shao, C.; Cao, F.; Liu, H. Numerical and experimental investigation of an Inertial Tilting hybrid wave energy converter for powering small-scale marine systems. Int. J. Nav. Archit. Ocean Eng. 2025, 17, 100658. [Google Scholar] [CrossRef]
- Li, S.; Chen, C.; Guo, D.; Liu, H.; Ning, H.; Liu, G.; Wan, L. Highly Sensitive Hybrid Triboelectric Nanogenerator with Ferris-Wheel-Like Structure for Ocean Wave Energy Harvesting. Adv. Sustain. Syst. 2024, 8, 2400310. [Google Scholar] [CrossRef]
- Li, M.; Lou, Y.; Hu, J.; Cui, W.; Chen, L.; Yu, A.; Zhai, J. High-Coupled Magnetic-Levitation Hybrid Nanogenerator with Frequency Multiplication Effect for Wireless Water Level Alarm. Small 2024, 20, 2402009. [Google Scholar] [CrossRef]
- Ren, J.; Fang, L.; Qu, H.; Zhou, T.; Chen, C.; Wei, Q.; Shen, P.K.; Wan, L.; Tian, Z.Q. A wave-powered capacitive deionization system with in-situ blue energy harvester. Chem. Eng. J. 2024, 498, 155530. [Google Scholar] [CrossRef]
- Cui, W.; Hu, J.; Yang, H.; Liu, X.; Wang, Y.; Lou, Y.; Li, M.; Li, Z.; Yu, A.; Wang, Z.L.; et al. Self-powered wireless sensor node enabled by ultra-high-output swinging hybrid generator toward real-time and in-situ marine meteorological observations. Nano Energy 2024, 129, 110051. [Google Scholar] [CrossRef]
- Long, H.; Li, S.; Jia, M.; Huang, D.; Zhang, P.; Wang, X.; Li, X.; Wu, J.; Hou, D.; Zhang, Q. A tubular liquid-solid triboelectric-electromagnetic hybrid nanogenerator for enhancing wave energy harvesting. Energy 2024, 304, 132119. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, S.; Dai, X.; Tu, Y.; Du, Z.; Wu, X.; Huang, Y.; Fan, J.; Hong, Z.; Jiang, T.; et al. Hybridized triboelectric-electromagnetic nanogenerators for efficient harvesting of wave energy for self-powered ocean buoy. Nano Energy 2024, 128, 109929. [Google Scholar] [CrossRef]
- Li, T.; Wang, X.; Wang, K.; Liu, Y.; Li, C.; Zhao, F.; Yao, Y.; Cheng, T. Bidirectional Rotating Turbine Hybrid Triboelectric-Electromagnetic Wave Energy Harvester for Marine Environment Monitoring. Adv. Energy Mater. 2024, 14, 2400313. [Google Scholar] [CrossRef]
- Zhai, L.; Wen, H.; Liu, H.; Guo, D.; Liu, G.; Qu, H.; Wan, L.; Yao, H.; Zhai, J. High-sensitivity blue-energy-shuttle and in-situ electrical behaviors in ocean. Nano Energy 2024, 125, 109546. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, L.; Yang, D.; Zhang, M.; Liu, S.; Yu, Z.; Sun, J.; Mao, Y.; Yao, M.; Yang, T. A self-powered underwater glider using bidirectional swing-rotation hybrid nanogenerator. Nano Energy 2024, 125, 109526. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, G.; Lou, Y.; Li, M.; Hu, J.; Li, J.; Cui, W.; Yu, A.; Zhai, J. Elastic Self-Recovering Hybrid Nanogenerator for Water Wave Energy Harvesting and Marine Environmental Monitoring. Sensors 2024, 24, 3770. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Wu, G.; Zhao, Z.; Wu, Y.; Zheng, H. Triboelectric–electromagnetic hybrid nanogenerator for harvesting blue energy and creating an ocean wave warning system. Nanoscale Adv. 2024, 6, 3566–3572. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, J.; Guan, Z.; Zhao, L.; Tian, Z.; Jia, S.; Hong, H.; He, Z.; Wen, H.; Huang, R.; et al. Ultra-high output hybrid nanogenerator for self-powered smart mariculture monitoring and warning system. Chem. Eng. J. 2023, 472, 145039. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, C.; Shao, T.; Fan, Y.; Chen, R.; Pan, X. Enhanced thermoelectric performance of Bi2Te3 by carbon nanotubes and silicate aerogel co-doping toward ocean energy harvesting. Mater. Today Sustain. 2023, 23, 100476. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, Z.; Zhao, C.; Wang, Z.; Jiang, K.; Wang, J.; Meng, Z.; Li, F.; Zhu, C.; Chen, P.; et al. Highly Adaptive Triboelectric-Electromagnetic Hybrid Nanogenerator for Scavenging Flow Energy and Self-Powered Marine Wireless Sensing. Adv. Mater. Technol. 2023, 8, 2201245. [Google Scholar] [CrossRef]
- Tian, S.; Wei, X.; Lai, L.; Li, B.; Wu, Z.; Dai, Y. Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting. Nano Energy 2022, 102, 107669. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, J.; Lin, T.; Liu, G.; Yao, H.; Wen, H.; Li, S.; Mo, F.; Wan, L. Realization of a Sustainable Charging Power Source by In Situ Low-Frequency Water Wave Energy Harvesting with a Coaxial Triboelectric–Electromagnetic Hybrid Generator. Adv. Energy Sustain. Res. 2022, 3, 2200087. [Google Scholar] [CrossRef]
- Xue, F.; Chen, L.; Li, C.; Ren, J.; Yu, J.; Hou, X.; Geng, W.; Mu, J.; He, J.; Chou, X. A static-dynamic energy harvester for a self-powered ocean environment monitoring application. Sci. China Technol. Sci. 2022, 65, 893–902. [Google Scholar] [CrossRef]
- Hong, H.; Yang, X.; Cui, H.; Zheng, D.; Wen, H.; Huang, R.; Liu, L.; Duan, J.; Tang, Q. Self-powered seesaw structured spherical buoys based on a hybrid triboelectric–electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 2022, 15, 621–632. [Google Scholar] [CrossRef]
- Zhao, B.; Li, Z.; Liao, X.; Qiao, L.; Li, Y.; Dong, S.; Zhang, Z.; Zhang, B. A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy 2021, 89, 106381. [Google Scholar] [CrossRef]
- Ren, Z.; Liang, X.; Liu, D.; Li, X.; Ping, J.; Wang, Z.; Wang, Z.L. Water-Wave Driven Route Avoidance Warning System for Wireless Ocean Navigation. Adv. Energy Mater. 2021, 11, 2101116. [Google Scholar] [CrossRef]
- Mariello, M.; Fachechi, L.; Guido, F.; Vittorio, M.D. Multifunctional sub-100 µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMS-Ecoflex™. Nano Energy 2021, 83, 105811. [Google Scholar] [CrossRef]
- Feng, Y.; Liang, X.; An, J.; Jiang, T.; Wang, Z.L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625. [Google Scholar] [CrossRef]
- Jurado, U.T.; Pu, S.H.; White, N.M. Grid of hybrid nanogenerators for improving ocean wave impact energy harvesting self-powered application. Nano Energy 2020, 72, 104701. [Google Scholar] [CrossRef]
- Chandrasekhar, A.; Vivekananthan, V.; Kim, S.-J. A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 2020, 69, 104439. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, Q.; Tang, Q.; Liu, W.; Liu, G.; Zhang, Y.; Wu, J.; Hu, C.; Wang, H. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 2020, 67, 104205. [Google Scholar] [CrossRef]
- Hou, C.; Chen, T.; Li, Y.; Huang, M.; Shi, Q.; Liu, H.; Sun, L.; Lee, C. A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 2019, 63, 103871. [Google Scholar] [CrossRef]
- Hao, C.; He, J.; Zhai, C.; Jia, W.; Song, L.; Cho, J.; Chou, X.; Xue, C. Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting. Nano Energy 2019, 58, 147–157. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Q.; Ding, Z.; Li, Z.; Zheng, H.; Fu, J.; Diao, C.; Zhang, X.; Tian, J.; Zi, Y. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 2019, 57, 2211–2855. [Google Scholar] [CrossRef]
- Yang, H.; Yang, H.; Lai, M.; Xi, Y.; Guan, Y.; Liu, W.; Zeng, Q.; Lu, J.; Hu, C.; Wang, Z.L. Triboelectric and Electromagnetic Hybrid Nanogenerator Based on a Crankshaft Piston System as a Multifunctional Energy Harvesting Device. Adv. Mater. Technol. 2019, 4, 1800278. [Google Scholar] [CrossRef]
- Feng, L.; Liu, G.; Guo, H.; Tang, Q.; Pu, X.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy 2018, 47, 217–223. [Google Scholar] [CrossRef]
- Saadatnia, Z.; Asadi, E.; Askari, H.; Zu, J.; Esmailzadeh, E. Modeling and performance analysis of duck-shaped triboelectric and electromagnetic generators for water wave energy harvesting. Int. J. Energy Res. 2017, 41, 2392–2404. [Google Scholar] [CrossRef]
- Shao, H.; Wen, Z.; Cheng, P.; Sun, N.; Shen, Q.; Zhou, C.; Peng, M.; Yang, Y.; Xie, X.; Sun, X. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 2017, 39, 608–615. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Z.; Guo, H.; Wu, C.; He, X.; Lin, L.; Cao, X.; Wang, Z.L. Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 2016, 10, 11369–11376. [Google Scholar] [CrossRef]
- Wen, Z.; Guo, H.; Zi, Y.; Yeh, M.-H.; Wang, X.; Deng, J.; Wang, J.; Li, S.; Hu, C.; Zhu, L.; et al. Harvesting broad frequency band blue energy by a triboelectric− electromagnetic hybrid nanogenerator. ACS Nano 2016, 10, 6526–6534. [Google Scholar] [CrossRef]
Ref. | Transduction Modules | Main Components | Performance Parameters | Potential Applications/Advantages |
---|---|---|---|---|
[6] | A large disk-shaped TENG, four small disk-shaped TENGs, and four small disk-shaped EMGs. | Large disk TENG: Rabbit fur, PTFE film, and Cu electrodes. Small disk TENG: Rabbit fur, PTFE film, and Cu electrodes. Small disk EMG: Magnet and coils. | Using all modules: Peak power density of 37.105 Wm−3. | Self-powered corrosion protection systems of ship hulls/long durability and stable output performance. |
[7] | A TENG and an EMG. | TENG: Fluorinated ethylene propylene (FEP) film and Cu electrode. EMG: Magnets and coil. | TENG: Max. power density of 53 mWm−3. EMG: Max. power density of 50 Wm−3. | Design for large-scale wave energy harnessing/low wear, and improved service life. |
[8] | Three free-standing TENGs, two contact–separation TENGs, and two EMGs. | Free-standing TENGs: Polytetrafluoroethylene (PTFE) balls and Cu. Contact–separation TENGs: PTFE film and steel electrode. EMGs: Two coils and magnetic ball. | Using all modules: Peak power density of 125.41 Wm−3. | Self-powered marine sensors/compact structure, easy integration, and cooperative effect of three different module types. |
[9] | A rotating TENG, two free-standing TENGs, and an EMG. | Rotating TENG: Nylon ball, polydimethylsiloxane (PDMS) film, and Cu electrode. Two free-standing TENGs: Rabbit fur, polyvinylidene fluoride (PVDF)/BaTiO3 films, and Fe electrode. EMG: Coils and magnets. | Free-standing TENG: Peak power density of 29.92 Wm−3Hz−1. EMG: Peak power density of 402.08 Wm−3Hz−1. | Self-powered real-time ocean currents monitoring buoy systems, distributed sensor networks for smart MIoT/self-adaptability, versatile structure, and good mechanical robustness. |
[10] | Two TENGs, two EMGs, and two PENGs. | TENG: FEP film and Cu electrodes. EMG: Trapezoidal magnet and coils. PENG: Polyvinylidene fluoride (PVDF) film and silver electrodes. | Using all modules: Peak power density of 82.4 Wm−3. | Self-powered MIoT smart sensor networks/simple design, efficient space utilization, and stable output performance. |
[31] | A WD-TENG, a WD-PENG, and a WE-TENG. | WD-TENG: PTFE films and Cu electrode. WD-PENG: PVDF films. WE-TENG: PTFE films and Cu electrode. | WD-TENG: Power density of 5.064 Wm−3. WD-PENG: Power density of 1.478 Wm−3. WE-TENG: Power density of 1.092 Wm−3. | Self-sustaining MIoT ocean sensors/stable output performance and adaptability. |
[32] | A TENG and an EMG. | TENG: FEP film and Cu electrode. EMG: Magnet and coil. | Using all modules: Instantaneous power density of 0.25 mWcm−3. | Self-sufficient ocean monitoring systems/simple design, compact structure, and safe performance in harsh ocean environments. |
[33] | A TENG and an EMG. | TENG: FEP film and Cu electrode. EMG: Magnetic ball and coil. | Using all modules: power density of 7.25 µWcm−3. | Self-sufficient ocean sensors for MIoT/self-adaptability for irregular ocean waves, and stable operation. |
[34] | An O-TENG and an MTEG. | O-TENG: FEP film and Cu electrode. MTEG: N- type Bi2Te3 and P-type Bi2Te3. | O-TENG: Max. output voltage of 5.85 V. MTEG: Max. output voltage of 1.821 V. | Self-powered marine mammal condition monitoring system/ease of manufacturing, long service life, and stable operation. |
[35] | Two TENGs, two PENGs, and an EMG. | TENG: Kapton substrate, FEP films, and Cu electrodes. PENG: Two lanthanum zirconate titanate sheets, and Cu and Ag electrodes. EMG: Trapezoidal magnets and wedge-shaped coil. | Using all modules: Power density of 358.5 Wm−3. | Self-powered marine sensors/optimized geometric structure, easy maintenance, and stable operation. |
[36] | Two TENGs and two EMGs. | TENG: FEP and nylon films, and Cu electrode. EMG: Magnet array and coil array. | Using all modules: Average power density of 44.52 Wm−3. | To power sensors at MIoT nodes/adaptable and reliable structure, and stable performance. |
[37] | A TENG and an EMG. | TENG: Polyvinyl chloride (PVC) film and Cu electrode. EMG: Magnet and coil. | TENG: Peak power density of 56.7 Wm−3Hz−1. EMG: Peak power density of 192.3 Wm−3Hz−1. | Self-powered MIoT sensor networks/high efficiency, reliable operation, and low maintenance costs. |
[38] | A TENG and an EMG. | TENG: Polyvinyl alcohol (PVA)-based hydrogel with reduced graphene oxide (rGO) and silicone rubber, and Cu electrodes. EMG: Spherical magnet and copper winding. | TENG: Output voltage of 1.20 V. EMG: Output power of 1.47 W. | Sensor for monitoring low-frequency and low-amplitude waves/compact structure, and good durability. |
[39] | Four TENGs and two EMGs. | TENG: PTFE film and Cu electrode. EMG: Magnet and Cu coil. | TENG: Open-circuit voltage of 500 V. EMG: Open-circuit voltage of 11.6 V. | To power water quality sensor in oceans/simple design. |
[40] | Four free-standing TENGs, three PENGs, and an EMG. | TENG: PTFE film, steel sheet. PENG: Lead zirconate titanate (PZT), Cu and silver electrodes. EMG: Magnet and coil. | Using all modules: Maximum peak power of 15.42 mW. | To power a sustainable MIoT sensing system/good performance under low-frequency, and low-amplitude water waves. |
[41] | A TENG and an EMG. | TENG: Rabbit fur, FEP film, and Cu electrode. EMG: Magnet and coil. | TENG: Max. output power of 0.4 mW at RL = 10 GΩ. EMG: Max. output power of 0.42 mW at RL = 50 Ω. | Self-powered systems for small marine sensors/optimal structure and simple operating mechanisms. |
[42] | Two folded TENGs, a free-standing TENG, and three EMGs. | Folded TENG: PTFE film, stainless steel sheet. Free-standing TENG: Rabbit fur, PTFE film, and Cu electrode. EMG: Magnets and coils. | Folded TENG: Peak output power of 21.7 mW at RL = 20 MΩ. Free-standing TENG: Peak output power of 0.13 mW at RL = 70 MΩ. EMG: Peak output power of 2.9 mW at RL = 1 KΩ. | Self-powered marine sensors/low startup requirements, and good performance for wave low-frequency, and low-amplitude water waves. |
[43] | A TENG and an EMG. | TENG: Nylon and FEP films, and stainless steel. EMG: Magnet and coils. | Using all modules: Average power density of 1.69 Wm−3. | Wireless water level alarm system/clever structural design and stable operation. |
[44] | Two multilayered TENGs, six PENGs, and nine EMGs. | TENG: PTFE film and steel sheet. PENG: PZT sheet and steel sheet. EMG: Magnet and coil. | Using all modules: Peak power density of 61.4 Wm−3Hz−1. | Self-powered desalination technology/simple structure and low-cost fabrication. |
[45] | A TENG and an EMG. | TENG: Rabbit fur brushes, nylon and FEP strips, and Cu electrode. EMG: Magnets and coils. | Using all modules: Peak power density of 25.08 Wm−3. | Self-powered wireless sensor networks for marine meteorological monitoring/good durability, and versatile and economical design. |
[46] | A liquid–solid tubular TENG and two EMGs. | TENG: PFTE tube and Cu electrodes. EMG: Magnetic balls and coils. | TENG: Peak power of 8.8 μW at RL = 300 MΩ. EMG: Peak power of 2.35 mA at RL = 12 Ω. | Self-powered ocean sensors/compact structure and stable operation. |
[47] | A TENG and an EMG. | TENG: Rabbit fur, nylon, FEP layer, and Cu electrodes. EMG: Magnet and coils. | TENG: Average power density of 141.7 Wm−3. EMG: Average power density of 400.0 Wm−3. | Distributed marine environmental monitoring networks/good durability and stable operation. |
[48] | A TENG and an EMG. | TENG: Rabbit fur, FEP film, and Cu electrodes. EMG: Magnet and coils. | TENG: Power density of 32.55 Wm−3. EMG: Power density of 329.78 Wm−3. | Self-powered ocean environment detection systems connected to MIoT/reliable and stable operation. |
[49] | Four TENGs, two PENGs, and three EMGs. | TENG: PTFE film, copper, and stainless steel. PENG: Two PZT sheet and silver layers. EMG: Magnets and coils. | Using all the modules: Power density of 250.2 Wm−3. | Self-powered ocean sensing systems/simple design and stable operation. |
[50] | A TENG and an EMG. | TENG: FEP film and Cu electrode. EMG: Magnets and coils. | TENG: Peak power of 0.4 mW at 0.8 Hz. EMG: Peak power of 0.12 mW at 0.8 Hz. | Power source of underwater gliders/Optimal design and efficient performance. |
[51] | A TENG and an EMG. | TENG: Polyamide and FEP films, and Cu electrode. EMG: Magnet and coils. | TENG: Peak power of 42.68 mW at RL = 500 kΩ. EMG: Peak power of 4.40 mW at RL = 40 kΩ. | Self-powered wireless meteorological monitoring system /Optimized structure, self-recovering, strong-anti-wear operation, and large-scale integration. |
[52] | Two single-electrode TENGs and two EMGs. | TENG: PTFE film and Cu electrodes. EMG: Magnetic bar and coil. | TENG: Peak power of 85.3 μW at RL = 20 MΩ. EMG: Peak power of 95.6 μW at RL = 200 Ω. | Self-powered ocean wave warning systems/Simple design and low-cost fabrication. |
[53] | A TENG and an EMG. | TENG: Nylon film, PVDF and PDMS composite film, and Cu electrode. EMG: Magnet and coil. | Using all the modules: Peak power density of 20.9 Wm−3. | Self-powered smart mariculture monitoring and warning systems/optimized design, durable structure, and stable performance. |
[54] | A TEG, a TENG, and an EMG. | TEG: P-type Bi2Te3 and N-type Bi2Te3, silica aerogel, and carbon nanotubes (CNTs). TENG: Nylon film, PTFE film, and Cu electrodes. EMG: Magnet ball and coil. | Using all the modules: Power density of 8.1 Wm−3. | Self-powered marine devices/stable and durable performance. |
[55] | A TENG and an EMG. | TENG: Nylon and PVC films, and Cu electrode. EMG: Magnet and coil. | Using all the modules: Peak power of 449.74 mW. | Self-powered marine wireless sensing systems/highly adaptive and simple design. |
[56] | A TENG, two PENGs, and two EMGs. | TENG: Nylon and PFTE films, and Cu electrodes. PENG: PZT sheet and Cu electrodes. EMG: Magnets and coil. | Using all the modules: Power density of 5.73 Wm−3. | Large-scale self-powered marine sensors/simple structure and stable performance. |
[57] | Six TENGs and six EMGs. | TENG: PFTE film and steel sheet. EMG: Magnetic bar and coil. | Six TENGs: Peak open-circuit voltage of 254.96 V. Six EMGs: Peak open-circuit voltage of 7.49 V. | Long-term ocean sensing and monitoring/Simple design and stable operation. |
[58] | A free-standing TENG, four PNGs, and seven EMGs TEG. | TENG: PTFE film and conductive ink electrode. PNG: Piezoelectric ceramic and Cu substrate. EMG: Magnet and coils TEG Photovoltaic. | TENG: Peak power of 0.25 mW. PENG: Peak power of 1.58 mW. EMG: Peak power of 13.8 mW. TEG: Output voltage of 5 V. | Self-powered ocean environment monitoring systems/integration of various transduction mechanisms. |
[59] | Contact–separation TENGs, free-standing TENGs, and an EMG. | Contact–separation TENGs: PDMS/PVDF/Nylon films. Free-standing TENGs: PDMS/PVDF/Nylon films. EMG: Magnet and coil. | Contact–separation TENG: Peak power density of 17 Wm−3. Free-standing TENG: Peak power density of 4.8 Wm−3. EMG: Peak power density of 9.8 Wm−3. | Self-powered buoy for sea surface wireless positioning/optimized design and stable operation. |
[60] | A TENG and an EMG. | TENG: Nylon fibers, PTFE films, and Cu electrodes. EMG: Magnets and coils. | TENG: Peak power density of 15.5 Wm−3 at RL = 8 MΩ. EMG: Peak power density of 6.45 Wm−3 at RL = 100 Ω. | Self-powered marine environment monitoring sensor/stable performance and good durability. |
[61] | Two multilayered TENGs and an EMG. | TENG: FEP film and Cu films. EMG: Magnet and coils. | TENG: Peak power density of 0.41 Wm−2 at RL = 10 MΩ and 1.5 Hz. EMG: Peak power density of 0.30 Wm−2 at RL = 2 KΩ and 1.5 Hz. | Self-powered route avoidance warning system for ocean navigation/good mechanical strength and flexibility. |
[62] | A TENG and a PENG. | TENG: PDMS-EcoflexTM film, Parylene-C film, and Ti/Au electrodes. PENG: AlN film and molybdenum electrodes. | TENG: Power density of 65 mWm−2. PENG: Power density of 6.5 mWm−2. | Self-powered marine sensors/multifunctional, flexible, and compact design. |
[63] | A TENG and an EMG. | TENG: FEP film, rabbit hair brush, and Cu electrodes. EMG: Magnet and coils. | TENG: Peak power density of 2.71 Wm−3 at RL = 150 MΩ. EMG: Peak power density of 7.45 Wm−3 at RL = 300 Ω. | Ocean environment monitoring/good durability and optimized design. |
[64] | A TENG and a PENG. | TENG: Polyimide film, copper and aluminum electrodes. PENG: PVDF sheet and carbon conductive ink. | Using all the modules: Max. power density of 0.18 mWm−2 at RL = 8 MΩ. | Self-powered smart sensing systems/simple and compact design, and low-cost fabrication. |
[65] | A TENG and an EMG. | TENG: PDMS film and Al electrodes. EMG: Magnet and coil. | TENG: Max. power of 700 μW at RL = 100 MΩ. EMG: Max. power of 6 mW at RL = 100 Ω. | Self-powered position tracking systems/simple operation, and inexpensive and reliable structure. |
[66] | A multilayered TENG and an EMG. | Multilayered TENG: PTFE film and Al electrode. EMG: Magnet and coil. | Multilayered TENG: Max. power density of 55 mWm−2 at RL = 353 MΩ. EMG: Max. voltage of 1.8 V. | Self-powered marine sensor networks/stable operation, durable and cost-effective structure, and light-weight and reliable device. |
[67] | A TENG and an EMG. | TENG: FEP films and Cu electrode. EMG: Magnet and coil. | TENG: Max. power density of 3.25 Wm−2 at RL = 10 MΩ. EMG: Max. power density of 79.9 Wm−2 at RL = 100 Ω. | MIoT monitoring systems/simple operation and compact structure. |
[68] | A TENG and an EMG. | TENG: PMMA and silicone films, Al layer and Ag interdigitated electrodes. EMG: Magnetic ball and coil. | TENG: Max. power of 0.08 mW at RL = 100 MΩ. EMG: Max. power of 14.9 mW at RL = 1 kΩ. | Self-powered wireless acoustic sensing system/simple design and easy operation. |
[69] | Three free-standing TENGs, six contact–separation TENGs, and an EMG. | TENGs: Silicone sheet and Cu electrodes. EMG: Magnet and coils. | Three free-standing TENG: Max. power of 165 μW at RL = 20 MΩ and 2 Hz. Contact–separation TENG: Peak power of 850 μW at RL = 20 MΩ and 2 Hz. EMG: Peak power of 9 mW at RL = 100 Ω. | Smart marine rescue system and self-powered environmental electrochemistry/simple and durable structure, stable operation, and low-cost fabrication. |
[70] | A TENG and an EMG. | TENG: PFTE and PDMS films, and Cu electrodes. EMG: Magnet and coil. | TENG: Power density of 0.08 mWcm−2 at RL = 60 MΩ. EMG: Max. power density of 0.0295 mWcm−2 at RL = 75 Ω. | To power marine environment sensors/ease to manufacturing and stable operation. |
[71] | A TENG and an EMG. | TENG: PTFE film and Al electrodes. EMG: Magnet and coils. | TENG: Max. output energy of 21.7 μJ at RL = 50 MΩ and 4 Hz. EMG: Max. power of 8.23 μW at RL = 350 Ω. | Large-scale blue energy harvesting/simple structure and ease fabrication. |
[72] | A free-standing TENG and an EMG. | TENG: Nylon balls, Kapton layer, and Cu electrodes. EMG: Magnet and coil. | TENG: Peak power density of 213.1 Wm−3 at RL = 280 MΩ and 2.5 Hz. EMG: Peak power density of 144.4 Wm−3 at RL = 1.5 Ω and 2.5 Hz. | Blue energy harvesting systems/lightweight, eco-friendly, low-cost manufacturing, and stable performance. |
[73] | Four TENGs, four EMGs, and a solar cell. | TENG: PTFE film, Al layer, and Cu electrode. EMG: Magnet and coils. Solar cell: Water-proof silicon. | TENG: Max. average power of 31.5 μW. EMG: Max. average power of 66.9 μW. Solar cell: Output power density: of 0.14 mWm−2 at RL = 1.5 Ω. | Multifunctional hybrid power unit/simple design and stable operation. |
[74] | A rolling free-standing TENG and an EMG. | TENG: PTFE film, Al rods, and Cu interdigitated electrodes. EMG: Magnet and coil. | TENG: Average power density of 1.05 μWcm−3. EMG: Average power density of 1.32 μWcm−3. | Large-scale blue energy harvesting/compact structure and stable performance. |
[75] | A spiral-interdigitated electrode TENG and an EMG. | TENG: FEP film and Cu electrodes. EMG: Magnets and coils. | TENG: Average power density of 15.67 μWcm−2 in rotation mode. EMG: Average power density of 27.12 μWcm−2 in rotation mode. | Energy harvesting panel floating on the ocean/compact design, cost-efficient fabrication, and stable operation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Alvarado, E.; Morales-Gonzalez, E.A.; Gonzalez-Calderon, J.A.; Peréz-Peréz, M.C.I.; Delgado-Maciel, J.; Peña-Juarez, M.G.; Hernandez-Hernandez, J.; Elvira-Hernandez, E.A.; Figueroa-Navarro, M.A.; Herrera-May, A.L. Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges. Technologies 2025, 13, 336. https://doi.org/10.3390/technologies13080336
Delgado-Alvarado E, Morales-Gonzalez EA, Gonzalez-Calderon JA, Peréz-Peréz MCI, Delgado-Maciel J, Peña-Juarez MG, Hernandez-Hernandez J, Elvira-Hernandez EA, Figueroa-Navarro MA, Herrera-May AL. Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges. Technologies. 2025; 13(8):336. https://doi.org/10.3390/technologies13080336
Chicago/Turabian StyleDelgado-Alvarado, Enrique, Enrique A. Morales-Gonzalez, José Amir Gonzalez-Calderon, Ma. Cristina Irma Peréz-Peréz, Jesús Delgado-Maciel, Mariana G. Peña-Juarez, José Hernandez-Hernandez, Ernesto A. Elvira-Hernandez, Maximo A. Figueroa-Navarro, and Agustin L. Herrera-May. 2025. "Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges" Technologies 13, no. 8: 336. https://doi.org/10.3390/technologies13080336
APA StyleDelgado-Alvarado, E., Morales-Gonzalez, E. A., Gonzalez-Calderon, J. A., Peréz-Peréz, M. C. I., Delgado-Maciel, J., Peña-Juarez, M. G., Hernandez-Hernandez, J., Elvira-Hernandez, E. A., Figueroa-Navarro, M. A., & Herrera-May, A. L. (2025). Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges. Technologies, 13(8), 336. https://doi.org/10.3390/technologies13080336