The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges
Abstract
1. Introduction
- (1)
- Inclusion: reviews or original research directly focused on SOH estimation for lithium-ion batteries.
- (2)
- Exclusion: non-lithium-ion technologies, single-case studies without methodological synthesis, or papers lacking SOH-related content.
- (3)
- Screening process: title/abstract screening → full-text review → final selection.
2. Classification and Extraction of Health Indicators
2.1. Data Preprocessing and Quality Control
- (1)
- Outlier Detection and Removal: Employ statistical thresholds or machine-learning methods such as Isolation Forest to identify spikes or sensor faults in voltage, current, and temperature time series. Log the proportion and location of removed points for traceability.
- (2)
- Missing-Value Imputation: Short gaps, fill isolated dropouts using linear or polynomial interpolation to preserve local trends; extended gaps, omit entire cycles or di-charge segments when missing spans risk introducing excessive interpolation error.
- (3)
- Signal filtering and noise reduction: Apply Savitzky–Golay smoothing filters or moving average filters, etc., to retain the slow trends related to battery health while suppressing high-frequency noise.
- (4)
- Feature scaling: By using methods such as min-max scaling and Z-score standardization, the capacity, cumulative charging volume, temperature and other features are standardized. A uniform feature scale ensures that e-sure can achieve stable gradient updates during the model training process.
- (5)
- Cross-Cycle Consistency Checks: Compute the coefficient of variation in key metrics (e.g., discharge capacity, internal resistance) across cycles. Mark batteries with a coefficient of variation greater than 5 % for further review or exclusion to avoid biased learning.
2.2. Capacity-Related Indicators
2.2.1. Incremental Capacity Analysis (ICA)
2.2.2. Differential Voltage Analysis (DVA)
2.3. Internal Resistance-Related Indicators
2.4. Temperature-Related Indicators
- (1)
- Temperature change rate: Reflects the intensity of internal battery reactions and heat dissipation during charge–discharge. Abnormal changes in the temperature change rate can indicate battery aging, aiding in timely detection of abnormal states.
- (2)
- Performance indicators at specific temperatures: Significant changes in battery internal resistance and capacity occur at high and low temperatures. Establishing a quantitative relationship between these performance indicators and SOH at specific temperatures allows for more accurate assessment of battery health under diverse environmental conditions.
- (3)
- Temperature distribution characteristics: The non-uniformity of surface temperature distribution is closely related to internal aging. Constructing a three-dimensional temperature field model enables comprehensive battery health assessment, offering a basis for optimizing thermal management systems.
2.5. Charge–Discharge Curve Features
3. SOH Estimation Methods
3.1. Classification of SOH Estimation Methods
3.2. Direct Measurement Methods
3.2.1. Capacity Measurement Method
3.2.2. Charge–Discharge Curve Analysis Method
3.2.3. Internal Resistance Measurement Method
3.3. Model-Based Methods
3.3.1. Electrochemical Model (EChM)
3.3.2. Equivalent Circuit Model (ECM)
3.3.3. Electrochemical Impedance Spectroscopy (EIS)
3.3.4. Empirical Model
3.4. Data-Driven Methods
3.4.1. Traditional Machine Learning
Support Vector Machine (SVM)
Gaussian Process Regression (GPR)
Relevance Vector Machine (RVM)
Random Forest (RF)
3.4.2. Deep Learning Methods
Feedforward Neural Networks (FFNNs)
Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTM)
Gated Recurrent Units (GRUs)
3.4.3. Hybrid Methods
Combination of Physics-Based and Data-Driven Models
Integration of Multiple Machine Learning Models
Advantages and Challenges of Hybrid Approaches
- (1)
- Computational Complexity: Hybrid models are computationally demanding, posing challenges for real-time applications. Balancing computational efficiency and estimation accuracy remains a critical issue.
- (2)
- Design and Optimization: The selection of appropriate model combinations and integration strategies depends on specific application scenarios, making the design and optimization process complex.
- (3)
- Interpretability: Hybrid approaches, particularly those incorporating deep learning models, often lack interpretability. Enhancing model explainability is an urgent issue that requires further investigation.
4. Application Trends and Challenges
4.1. Integration into BMS
- (1)
- Developing efficient online testing methods to minimize the impact of SOH estimation on battery operation, enabling real-time monitoring without disrupting battery performance.
- (2)
- Establishing more accurate battery aging models by integrating electrochemical mechanisms with data-driven approaches to enhance SOH estimation reliability.
- (3)
- Exploring novel data fusion techniques that leverage multi-source information (e.g., voltage, current, temperature, internal resistance) to improve estimation accuracy.
- (4)
- Developing adaptive and robust SOH estimation algorithms to meet the demands of diverse application scenarios. This is particularly critical for electric vehicles and energy storage systems, where operational conditions are highly variable, and model adaptability is essential.
4.2. Big Data and Cloud-Edge Collaboration
- (1)
- Data privacy and security concerns must be addressed, particularly in scenarios involving sensitive user data. Ensuring secure encryption for data transmission and storage remains a key challenge.
- (2)
- Stability of data transmission can be affected by network conditions, especially in remote areas or mobile applications. Maintaining data integrity and real-time availability requires further investigation.
- (3)
- Optimization of cloud-edge collaboration efficiency is crucial, particularly in large-scale battery pack management. Balancing computational resource allocation and task prioritization to achieve efficient health management remains a complex technical challenge.
- (1)
- Edge cached fallback models that operate during disconnections.
- (2)
- Data prioritization—critical features transmit first.
- (3)
- Compressed telemetry reducing payload by 70%.
4.3. Emerging Research Frontiers
4.3.1. Composite Health Indicators
4.3.2. Aging Mechanisms of Emerging Battery Materials
4.3.3. Explainable Machine Learning
4.3.4. Sustainable Recycling and Environmental Monitoring
5. Conclusions
- (1)
- Limitations of single indicators: Relying solely on capacity or internal resistance fails to comprehensively capture battery degradation characteristics under diverse operating conditions. There is a pressing need to develop composite health indicators that integrate multiple physical quantities.
- (2)
- Model generalization capability: Model parameters and algorithms derived under laboratory conditions often struggle to generalize to real-world applications, resulting in reduced estimation accuracy and real-time performance under complex and dynamic working conditions.
- (3)
- Data quality and acquisition issues: Noise, uneven sampling, and inconsistencies in multi-source information during battery operation pose challenges to accurate SOH evaluation.
- (4)
- Lack of interpretability: Although machine learning techniques enhance predictive accuracy, their “black-box” nature limits quantitative insights into intrinsic battery degradation mechanisms, hindering their deployment in high-safety applications.
- (1)
- Development of Composite Health Indicators: Integrating capacity, internal resistance, temperature, and other physical parameters into a new health indicator system will enable a more comprehensive and dynamic representation of battery degradation, providing a richer foundation for SOH estimation.
- (2)
- Model Optimization and Cross-Modal Fusion: Enhancing estimation models to balance high accuracy and real-time performance, incorporating both physical models and data-driven approaches, and leveraging interpretable machine learning techniques will improve model transparency and generalization across diverse operating environments.
- (3)
- Data Standardization and Cloud-Edge Collaboration: Standardizing experimental data management, establishing large-scale data platforms for information sharing and multi-dimensional data fusion, and utilizing cloud-edge collaboration to support low-latency real-time monitoring while enabling complex online computations will provide a robust data infrastructure for battery management systems.
- (4)
- Interdisciplinary Collaboration and New Material Research: Promoting interdisciplinary cooperation among electrochemistry, materials science, and artificial intelligence will enable in-depth exploration of aging mechanisms in emerging battery materials, such as solid-state electrolytes and high-nickel cathodes. Developing SOH estimation models tailored to these novel materials will expand the research frontiers of battery health management.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Liu, Y.; Zhao, Z.; Xia, H.; Chen, Z.; Zhang, Y. Automatic Feature Extraction-Enabled Lithium-Ion Battery Capacity Estimation Using Random Fragmented Charging Data. IEEE Trans. Transp. Electrif. 2024, 10, 8845–8856. [Google Scholar] [CrossRef]
- Zhou, Z.; Duan, B.; Li, C.; Kang, Y.; Shang, Y.; Zhang, C. Life-Cycle State of Charge Estimation for Lithium-ion Battery Considering Coulomb Efficiency and Capacity Decay. IEEE Trans. Transp. Electrif. 2024, 11, 6335–6343. [Google Scholar] [CrossRef]
- Yao, L.; Wen, J.; Xiao, Y.; Zhang, C.; Shen, Y.; Cui, G.; Xiao, D. State of health estimation approach for Li-ion batteries based on mechanism feature empowerment. J. Energy Storage 2024, 84, 110965. [Google Scholar] [CrossRef]
- Zhang, C.; Du, J.; Li, S.; Zhang, L.; Zhang, W. Cross-domain machine transfer learning for capacity aging trajectory prediction of lithium-ion batteries. J. Power Sources 2024, 624, 235534. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, C.; Qiao, X.; Ge, Y.; Li, X.; Peng, T.; Nazir, M.S. State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural network. Appl. Energy 2024, 356, 122417. [Google Scholar] [CrossRef]
- Zhang, J.; Li, K. State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles—A Review. Energies 2024, 17, 5753. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Liu, P.; She, C.; Wang, Q.; Zhou, L.; Qin, Z. A multi-step fast charging-based battery capacity estimation framework of real-world electric vehicles. Energy 2024, 294, 130773. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Liu, P.; Wang, Q.; She, C.; Bauer, P.; Qin, Z. Multistep Fast Charging-Based State of Health Estimation of Lithium-Ion Batteries. IEEE Trans. Transp. Electrif. 2024, 10, 4640–4652. [Google Scholar] [CrossRef]
- Zhang, H.; Altaf, F.; Wik, T. Battery capacity knee-onset identification and early prediction using degradation curvature. J. Power Sources 2024, 608, 234619. [Google Scholar] [CrossRef]
- Lyu, D.; Zhang, B.; Liu, E.; Yang, T.; Xiang, J. Prognosis-enabled battery SOC estimation using a closed-loop approach with consideration of SOH degradation. J. Energy Storage 2024, 106, 113713. [Google Scholar] [CrossRef]
- Jin, H.; Ru, R.; Cai, L.; Meng, J.; Wang, B.; Peng, J.; Yang, S. A synthetic data generation method and evolutionary transformer model for degradation trajectory prediction in lithium-ion batteries. Appl. Energy 2024, 377, 124629. [Google Scholar] [CrossRef]
- Wang, C.; Jiao, S.; Li, Y.; Zhang, Q. Capacity optimization of a hybrid energy storage system considering Wind-Solar reliability evaluation based on a novel Multi-strategy snake optimization algorithm. Expert Syst. Appl. 2023, 231, 120602. [Google Scholar] [CrossRef]
- Yang, G.; Wang, X.; Li, R.; Zhang, X. State of Health Estimation for Lithium-Ion Batteries Based on Transferable Long Short-Term Memory Optimized Using Harris Hawk Algorithm. Sustainability 2024, 16, 6316. [Google Scholar] [CrossRef]
- Xu, Y. Advanced RUL Estimation for Lithium-Ion Batteries: Integrating Attention-Based LSTM with Mutual Learning-enhanced Artificial Bee Colony Optimization. J. Inst. Eng. (India) Ser. B 2024, 106, 735–760. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, B.; Wang, F.; Zheng, S.; Yu, Q.; Zhai, Z.; Chen, X. Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries. J. Energy Storage 2024, 105, 114542. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, W.; Zhang, Y.; Zhang, C.; Zhang, C.; Zhang, J. Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization. Appl. Energy 2024, 379, 124713. [Google Scholar] [CrossRef]
- Wang, F.; Zhai, Z.; Zhao, Z.; Di, Y.; Chen, X. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis. Nat. Commun. 2024, 15, 4332. [Google Scholar] [CrossRef]
- S, V.; Che, H.S.; Selvaraj, J.; Tey, K.S.; Lee, J.W.; Shareef, H.; Errouissi, R. State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges. Appl. Energy 2024, 369, 123542. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Ding, P.; Yao, N. Joint prediction of the capacity and temperature of Li-ion batteries by using ConvLSTM Network. J. Power Electron. 2024, 24, 1944–1955. [Google Scholar] [CrossRef]
- Yao, L.; Xu, S.; Tang, A.; Zhou, F.; Hou, J.; Xiao, Y.; Fu, Z. A review of lithium-ion battery state of health estimation and prediction methods. World Electr. Veh. J. 2021, 12, 113. [Google Scholar] [CrossRef]
- Xiong, R.; He, Y.; Sun, Y.; Jia, Y.; Shen, W. Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks. J. Energy Chem. 2025, 104, 618–627. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Zeng, W.; Chen, X.; Zhang, Y.; Zhang, S.; Li, Z.; Li, C.; Mu, S. Degradation mechanism, direct regeneration and upcycling of ternary cathode material for retired lithium-ion power batteries. J. Energy Chem. 2025, 102, 534–554. [Google Scholar] [CrossRef]
- Shi, T.; An, Z.; Du, X.; Ding, Y.; Jia, R.; Li, W.; Zhang, D. Experimental study on the degradation characteristics and mechanism of lithium-ion batteries under mild mechanical deformation. J. Energy Storage 2025, 108, 115097. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Chen, H. A Method for Predicting Tool Remaining Useful Life: Utilizing BiLSTM Optimized by an Enhanced NGO Algorithm. Mathematics 2024, 12, 2404. [Google Scholar] [CrossRef]
- Tran, K.; Vu, H.C.; Pham, L.; Boudaoud, N.; Nguyen, H.S.H. Robust-MBDL: A Robust Multi-Branch Deep-Learning-Based Model for Remaining Useful Life Prediction of Rotating Machines. Mathematics 2024, 12, 1569. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, Z.; Stein, H.S.; Zhu, J. Flexible health prognosis of battery nonlinear aging using temporal transfer learning. Appl. Energy 2025, 377, 124766. [Google Scholar] [CrossRef]
- Ide, M.; Mizutani, M.; Kobayashi, T.; Toyosaki, T.; Inoue, K. Field Verification Results on Long-term Operational Performance of a Large Battery Energy Storage System using Lithium-ion Batteries and their Uneven Degradation. IEEJ Trans. Power Energy 2025, 145, 98–105. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Z.; Zhang, H.; Dong, S. Degradation Analysis of Li4Ti5O12 of Lithium-Ion Battery Under Tram Operating Conditions. IEEE Trans. Transp. Electrif. 2025, 11, 314–325. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, X.; Duan, L.; Gong, Q.; Wang, Y.; Ao, X. A novel method for state of health estimation of lithium-ion batteries based on fractional-order differential voltage-capacity curve. Appl. Energy 2025, 377, 124404. [Google Scholar] [CrossRef]
- Wang, Q.; Gu, Y.; Zhu, T.; Ge, L.; Huang, Y. SOH Estimation of Lithium Batteries Based on ICA and WOA-RBF Algorithm. Energy Eng. J. Assoc. Energy Eng. 2024, 121, 3221–3239. [Google Scholar] [CrossRef]
- Im, H.; Beatty, M.; Brenton, M.; Ashton, E.; Strickland, D. Imbalance and ICA Monitoring for Multiple Battery-Electrolyser Cells in Series. In Proceedings of the 13th International Conference on Renewable Energy Research and Applications, ICRERA 2024, Nagasaki, Japan, 9–13 November 2024; pp. 420–425. [Google Scholar] [CrossRef]
- Aribi, Y.; Boutora, S.; Zamoum, P.R.B.; Menasria, H.; Abdellaoui, A.; Kouzou, P.A. Turbofan Engine RUL Prediction using ICA and Machine Learning Algorithms. In Proceedings of the 2023 20th International Multi-Conference on Systems, Signals and Devices, SSD 2023, Mahdia, Tunisia, 20–23 February 2023; pp. 477–484. [Google Scholar] [CrossRef]
- Sun, H.; Sun, J.; Zhao, K.; Wang, L.; Wang, K. Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimatio. Math. Probl. Eng. 2022, 2022, 9645892. [Google Scholar] [CrossRef]
- Zhou, Z.; Duan, B.; Kang, Y.; Zhang, Q.; Shang, Y.; Zhang, C. Online State of Health Estimation for Series-Connected LiFePO4 Battery Pack Based on Differential Voltage and Inconsistency Analysis. IEEE Trans. Transp. Electrif. 2024, 10, 989–998. [Google Scholar] [CrossRef]
- Bilfinger, P.; Rosner, P.; Schreiber, M.; Kröger, T.; Gamra, K.A.; Ank, M.; Wassiliadis, N.; Dietermann, B.; Lienkamp, M. Battery pack diagnostics for electric vehicles: Transfer of differential voltage and incremental capacity analysis from cell to vehicle leve. eTransportation 2024, 22, 100356. [Google Scholar] [CrossRef]
- Xia, F.; Wang, K.; Chen, J. State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage analysis method. J. Energy Storage 2023, 64, 107161. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, P.Y.; Yoo, K.S.; Kim, J.H. A SOH Estimation Study on Lithium-Ion Battery based on Incremental Capacity and Differential Voltage Analysis. Trans. Korean Soc. Mech. Eng. 2021, 45, 259–266. [Google Scholar] [CrossRef]
- Zhang, W.; Ahmed, R.; Habibi, S. State-of-health estimation for lithium-ion batteries based on electrochemical impedance spectroscopy measurements combined with unscented Kalman filter. J. Power Sources 2025, 625, 235450. [Google Scholar] [CrossRef]
- Xing, Q.; Zhang, M.; Fu, Y.; Wang, K. Transfer learning to estimate lithium-ion battery state of health with electrochemical impedance spectroscop. J. Energy Storage 2025, 110, 115345. [Google Scholar] [CrossRef]
- Sun, J.; Liu, X.; Li, X.; Chen, S.; Xing, S.; Guo, Y. State of health estimation of lithium-ion battery based on constant current charging time feature extraction and internal resistance compensatio. Energy 2025, 315, 134472. [Google Scholar] [CrossRef]
- Vendrame, F.; Damay, N.; Rabab, H.; Forgez, C.; Sayegh, M. Non-invasive diagnosis of solid electrolyte interphase and charge transfers resistances for degraded lithium-ion batterie. J. Power Sources 2024, 595, 234049. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Wu, T. Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network. Energy Eng. J. Assoc. Energy Eng. 2025, 122, 203–220. [Google Scholar] [CrossRef]
- Yetik, O. Innovative-serpentine cooling method of batteries: Both thermal and statistical method approac. Int. J. Therm. Sci. 2025, 208, 109437. [Google Scholar] [CrossRef]
- Schmidt, L.; Hankins, K.; Bläubaum, L.; Gerasimov, M.; Krewer, U. High temperature in situ gas analysis for identifying degradation mechanisms of lithium-ion batteries. Chem. Sci. 2025, 16, 5118–5128. [Google Scholar] [CrossRef]
- Kunz, A.; Kirst, C.; Durdel, A.; Singer, J.P.; Jossen, A. Assessing degradation modes in cylindrical lithium-ion batteries: A non-invasive method using the entropic heat flow or surface temperatur. J. Power Sources 2025, 627, 235732. [Google Scholar] [CrossRef]
- Wang, T.; Yang, J.; Lei, H.; Gu, M.; Leng, S.; Meng, Y. State of Health Estimation for Satellite Batteries Based on the Charge Curves. In Proceedings of the CISS 2021—2nd China International SAR Symposium, Shanghai, China, 3–5 November 2021. [Google Scholar] [CrossRef]
- Beltran, H.; Sansano, E.; Pecht, M. Machine learning techniques suitability to estimate the retained capacity in lithium-ion batteries from partial charge/discharge curve. J. Energy Storage 2023, 59, 106346. [Google Scholar] [CrossRef]
- Xiong, W.; Xu, G.; Li, Y.; Zhang, F.; Ye, P.; Li, B. Early prediction of lithium-ion battery cycle life based on voltage-capacity discharge curve. J. Energy Storage 2023, 62, 106790. [Google Scholar] [CrossRef]
- He, Y.; Deng, Z.; Chen, J.; Li, W.; Zhou, J.; Xiang, F.; Hu, X. State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks. J. Energy Chem. 2024, 98, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Z.; Mao, L.; Xie, M. Adaptive State of Health Estimation for Lithium-ion Battery with Partially Unlabeled and Incomplete Charge Curves. IEEE Trans. Transp. Electrif. 2024, 11, 6165–6176. [Google Scholar] [CrossRef]
- de la Vega, J.; Riba, J.R.; Ortega-Redondo, J.A. Mathematical Modeling of Battery Degradation Based on Direct Measurements and Signal Processing Method. Appl. Sci. 2023, 13, 4938. [Google Scholar] [CrossRef]
- Yang, L.; Ma, H.; Zhang, Y.; He, W. Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh. Energy Eng. J. Assoc. Energy Eng. 2025, 122, 243–264. [Google Scholar] [CrossRef]
- Zheng, X.; Su, N.; Huang, W. SOH Prediction for Lithium-Ion Batteries Based on SSABP-MLR. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2024; Volume 1169 LNEE, pp. 572–581. [Google Scholar] [CrossRef]
- Yu, M.; Zhu, Y.; Gu, X.; Li, J.; Shang, Y. Co-estimation and definition for states of health and charge of lithium-ion batteries using expansio. Energy 2024, 308, 132872. [Google Scholar] [CrossRef]
- Lim, M.G.; Jung, J.B.; Kim, N.H.; Kim, J.M.; Shen, J.; Rho, D.S. Evaluation Method of Internal Resistance for Repurposing Using Middle and Large-Sized Batterie. Energies 2023, 16, 5652. [Google Scholar] [CrossRef]
- Grandjean, T.R.B.; Groenewald, J.; McGordon, A.; Widanage, W.D.; Marco, J. Accelerated internal resistance measurements of lithium-ion cells to support future end-of-life strategies for electric vehicle. Batteries 2018, 4, 49. [Google Scholar] [CrossRef]
- Wu, T.; Kang, J.; Zhu, J.; Tu, T. Lithium-Ion Battery Health State Estimation Based on Feature Reconstruction and Optimized Least Squares Support Vector Machin. J. Electrochem. Energy Convers. Storage 2025, 22, 011013. [Google Scholar] [CrossRef]
- Zheng, M.; Luo, X. Joint estimation of State of Charge (SOC) and State of Health (SOH) for lithium ion batteries using Support Vector Machine (SVM), Convolutional Neural Network (CNN) and Long Sort Term Memory Network (LSTM) model. Int. J. Electrochem. Sci. 2024, 19, 100747. [Google Scholar] [CrossRef]
- Liu, S.; Fang, L.; Zhao, X.; Wang, S.; Hu, C.; Gu, F.; Ball, A. State-of-health estimation of lithium-ion batteries using a kernel support vector machine tuned by a new nonlinear gray wolf algorith. J. Energy Storage 2024, 102, 114052. [Google Scholar] [CrossRef]
- Xu, P.; Ran, W.; Huang, Y.; Xiang, Y.; Liu, Y.; Xiao, K.; Xu, C.; Wan, S. State of Health Estimation of Lithium-Ion Batteries Based on Differential Thermal Voltammetry and Improved Gray Wolf Optimizer Optimizing Gaussian Process Regressio. Energy Technol. 2025, 13, 2400996. [Google Scholar] [CrossRef]
- Zheng, X.; Fan, W.; Chen, C.; Peng, Z. Adaptive Two-Stage Model for Bearing Remaining Useful Life Prediction Using Gaussian Process Regression With Matched Kernels. IEEE Trans. Reliab. 2024, 73, 1958–1966. [Google Scholar] [CrossRef]
- Zhang, R.; Ji, C.; Zhou, X.; Liu, T.; Jin, G.; Pan, Z.; Liu, Y. Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regressio. Energy 2024, 297, 131154. [Google Scholar] [CrossRef]
- Pohlmann, S.; Mashayekh, A.; Stroebl, F.; Karnehm, D.; Kuder, M.; Neve, A.; Weyh, T. State-of-Health prediction of lithium-ion batteries based on a low dimensional Gaussian Process Regressio. J. Energy Storage 2024, 88, 111649. [Google Scholar] [CrossRef]
- Lü, Z.; Gao, R.; Huang, X. A Li-Ion Battery Capacity Estimation Method Based on Multi-Kernel Relevance Vector Machine Optimized Model. Diangong Jishu Xuebao/Trans. China Electrotech. Soc. 2023, 38, 1713–1722. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, N.; Ji, Y.; Niu, M.; Wang, Y. Lithium-ion batteries remaining useful life prediction based on BLS-RVM. Energy 2021, 234, 121269. [Google Scholar] [CrossRef]
- Lyu, Z.; Wang, G.; Gao, R. Synchronous state of health estimation and remaining useful lifetime prediction of Li-Ion battery through optimized relevance vector machine framewor. Energy 2022, 251, 123852. [Google Scholar] [CrossRef]
- Yang, N.; Hofmann, H.; Sun, J.; Song, Z. Remaining Useful Life Prediction of Lithium-Ion Batteries With Limited Degradation History Using Random Forest. IEEE Trans. Transp. Electrif. 2024, 10, 5049–5060. [Google Scholar] [CrossRef]
- Wu, J.; Fang, L.; Liu, X.; Chen, J.; Liu, X.; Lü, B. State of Health Estimation of Lithium-ion Battery Based on Feature Optimization and Random Forest Algorithm. Jixie Gongcheng Xuebao/J. Mech. Eng. 2024, 60, 335–343. [Google Scholar]
- Wang, X.; Hu, B.; Su, X.; Xu, L.; Zhu, D. State of Health estimation for lithium-ion batteries using Random Forest and Gated Recurrent Uni. J. Energy Storage 2024, 76, 109796. [Google Scholar] [CrossRef]
- Lu, D.; Cui, N.; Li, C. A Novel Transfer Learning Framework Combining Attention Mechanisms and Random Forest Regression for State of Health Estimation of Lithium-Ion Battery With Different Formulations. IEEE Trans. Ind. Appl. 2024, 60, 5726–5736. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, Z.; Wu, J.; Wu, H.; Huang, J.; Lin, S. SOH estimation method of lithium-ion battery based on multilayer feedforward neural network. In Proceedings of the 2020 8th International Conference on Power Electronics Systems and Applications: Future Mobility and Future Power Transfer, PESA 2020, Hong Kong, China, 7–10 December 2020. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, W.; Wang, X.; Zhu, J.; Yin, J. Lithium battery SOH estimation through FFNN. In Journal of Physics: Conference Series, 1st ed.; IOP Publishing Ltd.: Bristol, UK, 2022; Volume 2260. [Google Scholar] [CrossRef]
- Berghout, T.; Benbouzid, M.; Amirat, Y.; Yao, G. Lithium-Ion Battery State of Health Prediction With a Robust Collaborative Augmented Hidden Layer Feedforward Neural Network Approach. IEEE Trans. Transp. Electrif. 2023, 9, 4492–4502. [Google Scholar] [CrossRef]
- Yuan, T.; Gao, F.; Bai, J.; Sun, H. A lithium-ion battery state of health estimation method utilizing convolutional neural networks and bidirectional long short-term memory with attention mechanisms for collaborative defense against false data injection cyber-attacks. J. Power Sources 2025, 631, 236193. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, W.; Ding, Y.; Li, X.; Zhang, K.; Liu, J. A CNN-LSTM Method Based on Voltage Deviation for Predicting the State of Health of Lithium-Ion Batteries. Energy 2025, 4, e20240036. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Zhen, D.; Pombo, J.; Yang, W.; Gu, F.; Ball, A. Adaptable capacity estimation of lithium-ion battery based on short-duration random constant-current charging voltages and convolutional neural networks. Energy 2024, 306, 132541. [Google Scholar] [CrossRef]
- Ouyang, T.; Su, Y.; Wang, C.; Jin, S. Combined Meta-Learning with CNN-LSTM Algorithms for State-of-Health Estimation of Lithium-Ion Battery. IEEE Trans. Power Electron. 2024, 39, 10106–10117. [Google Scholar] [CrossRef]
- Shu, X.; Shen, J.; Li, G.; Zhang, Y.; Chen, Z.; Liu, Y. A Flexible State-of-Health Prediction Scheme for Lithium-Ion Battery Packs with Long Short-Term Memory Network and Transfer Learning. IEEE Trans. Transp. Electrif. 2021, 7, 2238–2248. [Google Scholar] [CrossRef]
- Tan, Y.; Zhao, G. Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries. IEEE Trans. Ind. Electron. 2020, 67, 8723–8731. [Google Scholar] [CrossRef]
- Ma, Y.; Shan, C.; Gao, J.; Chen, H. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction. Energy 2022, 251, 123973. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Gao, J.; Chen, H. State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature. Energy 2024, 295, 131085. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Gao, W. State of health estimation of lithium-ion battery during fast charging process based on BiLSTM-Transformer. Energy 2024, 311, 133418. [Google Scholar] [CrossRef]
- Peng, S.; Wang, Y.; Tang, A.; Jiang, Y.; Kan, J.; Pecht, M. State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries. Energy 2025, 315, 134293. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Luo, L.; Zhang, C. A Lithium-Ion Battery Capacity and RUL Prediction Fusion Method Based on Decomposition Strategy and GRU. Batteries 2023, 9, 323. [Google Scholar] [CrossRef]
- Xue, J.; Ma, W.; Feng, X.; Guo, P.; Guo, Y.; Hu, X.; Chen, B. Stacking integrated learning model via ELM and GRU with mixture correntropy loss for robust state of health estimation of lithium-ion batteries. Energy 2023, 284, 129279. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, J.; Chen, J.; Deng, H.; Hu, W. State of health estimation for lithium battery random charging process based on CNN-GRU method. Energy Rep. 2023, 9, 1–10. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, Y.; Luo, J.; Zhu, T. Remaining Useful Life Prediction by Distribution Contact Ratio Health Indicator and Consolidated Memory GRU. IEEE Trans. Ind. Inform. 2023, 19, 8472–8483. [Google Scholar] [CrossRef]
- Izadi, M.J.; Hassani, P.; Raeesi, M.; Ahmadi, P. A novel WaveNet-GRU deep learning model for PEM fuel cells degradation prediction based on transfer learning. Energy 2024, 293, 130602. [Google Scholar] [CrossRef]
- Pan, H.; Lü, Z.; Wang, H.; Wei, H.; Chen, L. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine. Energy 2018, 160, 466–477. [Google Scholar] [CrossRef]
- Jia, J.; Liang, J.; Shi, Y.; Wen, J.; Pang, X.; Zeng, J. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators. Energies 2020, 13, 375. [Google Scholar] [CrossRef]
- Zhou, Z.; Duan, B.; Kang, Y.; Shang, Y.; Zhang, Q.; Zhang, C. Practical State of Health Estimation for LiFePO4Batteries Based on Gaussian Mixture Regression and Incremental Capacity Analysis. IEEE Trans. Ind. Electron. 2023, 70, 2576–2585. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, P.; Lu, J.; Xiong, R.; Cai, Z. A transferable long-term lithium-ion battery aging trajectory prediction model considering internal resistance and capacity regeneration phenomenon. Appl. Energy 2024, 360, 122825. [Google Scholar] [CrossRef]
- Wang, P.; Peng, X.; Ze, C. State-of-health estimation for lithium-ion batteries using differential thermal voltammetry and Gaussian process regression. J. Power Electron. 2022, 22, 1165–1175. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Wang, Z.; Xie, J. A data-fusion framework for lithium battery health condition Estimation Based on differential thermal voltammetry. Energy 2022, 239, 122206. [Google Scholar] [CrossRef]
- Choi, Y.; Yun, J.; Jang, P. A Deep Learning Approach for State of Health Estimation of Lithium-Ion Batteries Based on Differential Thermal Voltammetry. IEEE Access 2024, 12, 89921–89932. [Google Scholar] [CrossRef]
- Chen, S.; Weng, L.; Lian, D.; He, X. SOH Estimation of Energy Storage Lithium-Ion Batteries Based on DTV Health Feature Analysis and Integrated Learning Machine. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2025; Volume 1288 LNEE, pp. 164–173. [Google Scholar] [CrossRef]
- Khaleghi, S.; Firouz, Y.; Berecibar, M.; van Mierlo, J.; van den Bossche, P. Ensemble gradient boosted tree for SOH estimation based on diagnostic features. Energies 2020, 13, 1262. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Wang, K.; Kang, L.; Peng, F.; Wang, L.; Pang, J. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Appl. Energy 2020, 260, 114169. [Google Scholar] [CrossRef]
- Ai, S.; Song, J.; Cai, G. Sequence-to-Sequence Remaining Useful Life Prediction of the Highly Maneuverable Unmanned Aerial Vehicle: A Multilevel Fusion Transformer Network Solution. Mathematics 2022, 10, 1733. [Google Scholar] [CrossRef]
- Waseem, M.; Huang, J.; Wong, C.N.; Lee, C.K.M. Data-Driven GWO-BRNN-Based SOH Estimation of Lithium-Ion Batteries in EVs for Their Prognostics and Health Management. Mathematics 2023, 11, 4263. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.; Li, Z.; Yu, Q.; Mu, H. An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application. Appl. Energy 2018, 219, 264–275. [Google Scholar] [CrossRef]
- Nikolian, A.; Firouz, Y.; Gopalakrishnan, R.; Timmermans, J.-M.; Omar, N.; Van den Bossche, P.; Van Mierlo, J. Lithium ion batteries-development of advanced electrical equivalent circuit models for nickel manganese cobalt lithium-ion. Energies 2016, 9, 360. [Google Scholar] [CrossRef]
- Allafi, W.; Uddin, K.; Zhang, C.; Sha, R.M.R.A.; Marco, J. On-line scheme for parameter estimation of nonlinear lithium ion battery equivalent circuit models using the simplified refined instrumental variable method for a modified Wiener continuous-time model. Appl. Energy 2017, 204, 497–508. [Google Scholar] [CrossRef]
- Farmann, A.; Sauer, D.U. Comparative study of reduced order equivalent circuit models for on-board state-of-available-power prediction of lithium-ion batteries in electric vehicles. Appl. Energy 2018, 225, 1102–1122. [Google Scholar] [CrossRef]
- Cui, X.; Chen, Z. A Highly Robust State of Health Estimation Method for Lithium-Ion Batteries Based on ECM and SGPR. Shanghai Jiaotong Daxue Xuebao/J. Shanghai Jiaotong Univ. 2024, 58, 747–759. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Hu, M.; Li, Y.; Li, S.; Fu, C.; Qin, D.; Li, Z. Lithium-ion battery modeling and parameter identification based on fractional theory. Energy 2018, 165, 153–163. [Google Scholar] [CrossRef]
- Liu, F.; Shao, C.; Su, W.; Liu, Y. Online joint estimator of key states for battery based on a new equivalent circuit model. J. Energy Storage 2022, 52, 104780. [Google Scholar] [CrossRef]
- Song, Y.; Liu, D.; Li, L.; Peng, Y. Lithium-Ion Battery Pack On-Line Degradation State Prognosis Based on the Empirical Model. In Proceedings of the 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2018, Xi’an, China, 15–17 August 2018; pp. 402–407. [Google Scholar] [CrossRef]
- Sadabadi, K.K.; Ramesh, P.; Tulpule, P.; Rizzoni, G. Design and calibration of a semi-empirical model for capturing dominant aging mechanisms of a PbA battery. J. Energy Storage 2019, 24, 100789. [Google Scholar] [CrossRef]
- Zheng, Y.; Cui, Y.; Han, X.; Ouyang, M. A capacity prediction framework for lithium-ion batteries using fusion prediction of empirical model and data-driven method. Energy 2021, 237, 121556. [Google Scholar] [CrossRef]
- Kim, J.; Sin, S.; Kim, J. Early remaining-useful-life prediction applying discrete wavelet transform combined with improved semi-empirical model for high-fidelity in battery energy storage system. Energy 2024, 297, 131285. [Google Scholar] [CrossRef]
- Hoque, M.A.; Nurmi, P.; Kumar, A.; Varjonen, S.; Song, J.; Pecht, M.G.; Tarkoma, S. Data driven analysis of lithium-ion battery internal resistance towards reliable state of health prediction. J. Power Sources 2021, 513, 230519. [Google Scholar] [CrossRef]
- Yuan, Y.; Kong, X.; Hua, J.; Pan, Y.; Sun, Y.; Han, X.; Yang, H.; Li, Y.; Liu, X.; Zhou, X.; et al. Fast grading method based on data driven capacity prediction for high-efficient lithium-ion battery manufacturing. J. Energy Storage 2023, 73, 109143. [Google Scholar] [CrossRef]
- Lipu, M.H.; Rahman, M.A.; Mansor, M.; Rahman, T.; Ansari, S.; Fuad, A.M.; Hannan, M. Data driven health and life prognosis management of supercapacitor and lithium-ion battery storage systems: Developments, implementation aspects, limitations, and future directions. J. Energy Storage 2024, 98, 113172. [Google Scholar] [CrossRef]
- Patil, A.; Mahalle, P. Machine Learning for Sustainable Battery Optimization: A Data Driven Approach. Eng. Sci. 2024, 32, 1317. [Google Scholar] [CrossRef]
- Pei, H.; Si, X.; Li, T.; Zhang, Z.; Lei, Y. Interactive Prognosis Framework Between Deep Learning and a Stochastic Process Model for Remaining Useful Life Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 18000–18012. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Yu, C.; Wang, T.; Yang, J.; Wang, W. A Training-Free Estimation Method for the State of Charge and State of Health of Series Battery Packs under Various Load Profiles. Energies 2024, 17, 1824. [Google Scholar] [CrossRef]
- Li, R.; Li, W.; Zhang, H.; Zhou, Y.; Tian, W. On-Line Estimation Method of Lithium-Ion Battery Health Status Based on PSO-SVM. Front. Energy Res. 2021, 9, 693249. [Google Scholar] [CrossRef]
- Qian, L.; Xuan, L.; Chen, J. Battery SOH estimation based on decision tree and improved support vector machine regression algorithm. Front. Energy Res. 2023, 11, 1218580. [Google Scholar] [CrossRef]
- Ye, L.H.; He, Z.; Ke, C.L.; Cheng, X.; Zhao, X.; Zhang, Z.X.; Shi, A.P. State of health estimation for lithium-ion batteries with Bayesian optimized Gaussian process regression. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024. [Google Scholar] [CrossRef]
- Dong, H.; Mao, L.; Qu, K.; Zhao, J.; Li, F.; Jiang, L. State of Health Estimation and Remaining Useful Life Estimation for Li-ion Batteries Based on a Hybrid Kernel Function Relevance Vector Machine. Int. J. Electrochem. Sci. 2022, 17, 221135. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Chen, W.; Han, W.; Zhou, S.; Pecht, M. State of health prediction based on multi-kernel relevance vector machine and whale optimization algorithm for lithium-ion battery. Trans. Inst. Meas. Control. 2021. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Shi, N.; Li, F.; Wang, Y.; Cui, J. Online state-of-health estimation of lithium-ion battery based on relevance vector machine with dynamic integration. Appl. Soft Comput. 2022, 129, 109615. [Google Scholar] [CrossRef]
- Zhao, H.; Meng, J.; Peng, Q. Early perception of Lithium-ion battery degradation trajectory with graphical features and deep learning. Appl. Energy 2025, 381, 125214. [Google Scholar] [CrossRef]
- Liu, Z.-F.; Huang, Y.-H.; Zhang, S.-R.; Luo, X.-F.; Chen, X.-R.; Lin, J.-J.; Tang, Y.; Guo, L.; Li, J.-X. A collaborative interaction gate-based deep learning model with optimal bandwidth adjustment strategies for lithium-ion battery capacity point-interval forecasting. Appl. Energy 2025, 377, 124741. [Google Scholar] [CrossRef]
- Soltani, M.; Vilsen, S.B.; Stroe, A.I.; Knap, V.; Stroe, D.I. Degradation behaviour analysis and end-of-life prediction of lithium titanate oxide batteries. J. Energy Storage 2023, 68, 107745. [Google Scholar] [CrossRef]
- Shen, S.; Sadoughi, M.; Li, M.; Wang, Z.; Hu, C. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries. Appl. Energy 2020, 260, 114296. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Liu, X.; Wang, Y.; Zhang, L. Lithium-ion battery capacity estimation—A pruned convolutional neural network approach assisted with transfer learning. Appl. Energy 2021, 285, 116410. [Google Scholar] [CrossRef]
- Qian, C.; Xu, B.; Chang, L.; Sun, B.; Feng, Q.; Yang, D.; Ren, Y.; Wang, Z. Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries. Energy 2021, 227, 120333. [Google Scholar] [CrossRef]
- Xiao, H.; Fu, L.; Shang, C.; Fan, Y.; Bao, X.; Xu, X. A Lithium-ion Battery State-of-Health Prediction Model Combining Convolutional Neural Network and Masked Multi-Head Attention Mechanism. IEEE Trans. Energy Convers. 2024, 40, 218–232. [Google Scholar] [CrossRef]
- Chae, S.G.; Bae, S.J.; Oh, K.Y. State-of-health estimation and remaining useful life prediction of lithium-ion batteries using DnCNN-CNN. J. Energy Storage 2024, 106, 114826. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, L.; Yu, H.; Zou, B.; Wang, W.; Zhang, C.; Yang, S.; Liu, X. End-cloud collaboration method enables accurate state of health and remaining useful life online estimation in lithium-ion batteries. J. Energy Chem. 2023, 82, 1–17. [Google Scholar] [CrossRef]
- Chen, J.C.; Chen, T.L.; Liu, W.J.; Cheng, C.C.; Li, M.G. Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery. Adv. Eng. Inform. 2021, 50, 101405. [Google Scholar] [CrossRef]
- Schmitt, J.; Horstkötter, I.; Bäker, B. Electrical lithium-ion battery models based on recurrent neural networks: A holistic approach. J. Energy Storage 2023, 58, 106461. [Google Scholar] [CrossRef]
- Yayan, U.; Arslan, A.T.; Yucel, H. A Novel Method for SoH Prediction of Batteries Based on Stacked LSTM with Quick Charge Data. Appl. Artif. Intell. 2021, 35, 421–439. [Google Scholar] [CrossRef]
- Wang, S.; Wu, F.; Takyi-Aninakwa, P.; Fernandez, C.; Stroe, D.I.; Huang, Q. Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-current variations. Energy 2023, 284, 128677. [Google Scholar] [CrossRef]
- Huang, J.; He, T.; Zhu, W.; Liao, Y.; Zeng, J.; Xu, Q.; Niu, Y. A lithium-ion battery SOH estimation method based on temporal pattern attention mechanism and CNN-LSTM model. Comput. Electr. Eng. 2025, 122, 109930. [Google Scholar] [CrossRef]
- Guo, F.; Wu, X.; Liu, L.; Ye, J.; Wang, T.; Fu, L.; Wu, Y. Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network. Energy 2023, 270, 126880. [Google Scholar] [CrossRef]
- Hong, J.; Li, K.; Liang, F.; Yang, H.; Zhang, C.; Yang, Q.; Wang, J. A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks. Energy 2024, 289, 129918. [Google Scholar] [CrossRef]
- Su, S.; Li, W.; Mou, J.; Garg, A.; Gao, L.; Liu, J. A Hybrid Battery Equivalent Circuit Model, Deep Learning, and Transfer Learning for Battery State Monitoring. IEEE Trans. Transp. Electrif. 2023, 9, 1113–1127. [Google Scholar] [CrossRef]
- Xue, K.; Yang, J.; Yang, M.; Wang, D. An Improved Generic Hybrid Prognostic Method for RUL Prediction Based on PF-LSTM Learning. IEEE Trans. Instrum. Meas. 2023, 72, 3509121. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Fathy, M.A. Novel paper-based potentiometric combined sensors using coumarin derivatives modified with vanadium pentoxide nanoparticles for the selective determination of trace levels of lead ions. Microchim. Acta 2024, 191, 427. [Google Scholar] [CrossRef] [PubMed]
Method Category | Representative Techniques | Advantages | Limitations |
---|---|---|---|
Direct Measurement | Capacity Measurement, Charge–Discharge Curve Analysis, Internal Resistance Measurement | High accuracy; direct physical interpretation | Long testing time/high hardware cost; environment-sensitive |
Model-Based | EChM, ECM, Empirical Models | Mechanistic interpretability; real-time capability | Model assumptions limit accuracy; high computation; data dependency |
Data-Driven | SVM, GPR, RVM, RF, FFNNs, CNNs, RNNs/LSTM/GRUs | Automated feature extraction; strong nonlinear fitting | Black-box nature; requires large high-quality datasets; complex online deployment |
Hybrid | Combination of Physics-Based and Data-Driven Models, Integration of Multiple Machine Learning Models | Balances accuracy and real-time performance; increased robustness | Complex design; high computational cost; reduced interpretability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.; Luo, B.; Chen, D.; Wang, C.; Chen, L.; Li, F.; Cao, Y.; Wang, C. The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges. World Electr. Veh. J. 2025, 16, 429. https://doi.org/10.3390/wevj16080429
Tang K, Luo B, Chen D, Wang C, Chen L, Li F, Cao Y, Wang C. The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges. World Electric Vehicle Journal. 2025; 16(8):429. https://doi.org/10.3390/wevj16080429
Chicago/Turabian StyleTang, Kang, Bingbing Luo, Dian Chen, Chengshuo Wang, Long Chen, Feiliang Li, Yuan Cao, and Chunsheng Wang. 2025. "The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges" World Electric Vehicle Journal 16, no. 8: 429. https://doi.org/10.3390/wevj16080429
APA StyleTang, K., Luo, B., Chen, D., Wang, C., Chen, L., Li, F., Cao, Y., & Wang, C. (2025). The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges. World Electric Vehicle Journal, 16(8), 429. https://doi.org/10.3390/wevj16080429