Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Sources
3.2. Variable Selection
3.2.1. Dependent Variable
3.2.2. Independent Variables
3.3. Research Methods
3.3.1. Calculation Method for Carbon Emissions in Apple Production
- (1)
- Functional unit. In agricultural LCA studies, the functional unit is typically defined in terms of the output of a unit of agricultural product. In this study, the functional unit is set as the production of 1 ton of apples.
- (2)
- System boundaries. The system boundaries of this study encompass the production input processes within a one-year operational cycle of an apple orchard, specifically, including the agricultural input and production stages (Figure 2). The agricultural input production stage primarily covers the production processes of fertilizers, pesticides, diesel, agricultural films, and electricity. The agricultural production stage includes key operations such as weeding, fertilization, pesticide application, flower thinning and fruit shaping, bagging, and harvesting.
- (3)
- Inventory analysis. Life cycle inventory analysis quantifies the inputs (e.g., raw materials, energy) and outputs (e.g., emissions) at each stage of a product or service’s life cycle. The data collection for apple cultivation is divided into two parts: first, the data collection for the agricultural inputs production stage, which includes production data on fertilizers, chemicals, agricultural films, and electricity; second, the data collection for the agricultural production stage, which involves the resource inputs and environmental impacts of processes such as fertilization, pesticide application, and weeding. The life cycle inventories of carbon emissions during the agricultural production stage of apple production are presented in Table 2.
- (4)
- Carbon emission accounting: SimaPro 9.1.0.11 is a widely used software tool for LCA, incorporating multiple LCA methodologies such as the IPCC guidelines, IMPACT, and the ReCiPe. Given that this study evaluates the carbon emissions across the entire life cycle of apple production, the IPCC 2013 GWP 100a V1.03 method, specifically designed for carbon emission calculations in SimaPro 9.1.0.11, is employed to estimate the greenhouse gas emissions throughout the apple production life cycle, with emissions expressed in CO2e.
3.3.2. Super-SBM Model
3.3.3. Tobit Model
4. Results
4.1. Spatiotemporal Evolution of Carbon Emissions in Apple Production in China
4.1.1. Analysis of National Carbon Emissions in Apple Production
4.1.2. Analysis of Carbon Emissions of Apple Production in Major Production Regions
4.1.3. Scenario Analysis
4.2. Spatiotemporal Evolution of APCEE in China
4.2.1. Analysis of National APCEE
4.2.2. Analysis of APCEE in Major Production Regions
4.3. Analysis of the Determinants of APCEE in China
4.3.1. Analysis of Factors Influencing the APCEE at the National Level
4.3.2. Analysis of Factors Influencing the APCEE in the Major Production Regions
4.3.3. Endogeneity Test
4.3.4. Robustness Test
5. Discussion
5.1. The TCE and LCI in China Reached Their Peak During the Study Period
5.2. The Overall APCEE in China Is Relatively Low, Indicating Efficiency Loss
5.3. The Factors Influencing APCEE in China
6. Conclusions and Limitations
6.1. Conclusions
- (1)
- Given the significant regional differences in carbon emission characteristics of apple production, each region should leverage its natural resource endowments, technology, capital, and other advantages to adopt differentiated carbon reduction strategies, thereby promoting the green and low-carbon transformation of apple production. For the Loess Plateau region, it is recommended to promote the construction of high-standard orchards, manufacture mountainous, simplified, lightweight, and energy-saving agricultural machinery, and improve the mechanization rate of farmers. Increase investment in research and development of organic fertilizers and biological pesticides and give full play to the emission reduction and synergistic effects of green technology innovation. For the Bohai Bay region, it is suggested to continuously and steadily increase investment in the field of agricultural green technological innovation, particularly enhancing the green production efficiency of agricultural machinery.
- (2)
- Governments at all levels, along with apple industry associations, agricultural companies, and other organizations, should strengthen inter-regional communication and collaboration. Emphasis should be placed on leveraging the high APCEE in provinces such as Beijing and Shaanxi to drive and influence neighboring major production provinces. Efforts should be made to actively guide low-efficiency provinces, such as Liaoning and Gansu, to learn from the advanced experiences of high-efficiency provinces to improve the APCEE.
- (3)
- In the future, each production region should actively guide and train fruit farmers with low-carbon production awareness, continue to phase out backward apple orchards, and adopt intensive planting methods according to local conditions. This will enhance the degree of mechanization and reduce the input of labor and material resources. At the same time, governments at all levels should precisely allocate agricultural green subsidies for the green transformation of apple production and continuously increase investment in agricultural green technological innovation to improve APCEE.
6.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEE | Agricultural carbon emission efficiency |
APCEE | Carbon emission efficiency of apple production |
Super-SBM | Super-efficiency slacks-based measure |
LCA | Life cycle assessment |
YCI | Yield carbon intensity |
TCE | Total carbon emissions |
LCI | Land carbon intensity |
RCI | Revenue carbon intensity |
HHH | High YCI, high RCI, and high LCI |
LLL | Low YCI, low RCI, and low LCI |
CNRDS | China national research data service |
DMUs | Decision-making units |
RDI | Research and development investment intensity |
DEA | Data envelopment analysis |
VIF | Variance inflation factor |
LR | Likelihood ratio |
Culstruc | Apple cultivation structure |
Indstruc | Apple industry structure |
Education | Education level of rural labor force |
Damage | Crop damage extent |
Macpower | Degree of agricultural mechanization |
Electric | Rural electricity consumption |
Greenpat | Green technology innovation |
Agriexp | Agricultural subsidies |
LCS | Low-carbon scenarios |
Appendix A
Appendix A.1. Inventory Data
- (1)
- Stage of agricultural input production. In this study, data on the production of agricultural inputs (fertilizers, insecticides, fungicides, diesel, electricity, and agricultural films) and their raw materials (minerals, energy, water, etc.) were primarily obtained from the Ecoinvent V3 database within the SimaPro software system.
- (2)
- Stage of agricultural production. In this paper, we mainly consider the carbon dioxide generated from nitrogen fertilizer application and labour inputs, and the carbon sources and emission factors are shown in Table A1. In addition, the conversion factors for N2O and NOX to CO2e are 273 and 310, respectively (IPCC).
Carbon Source | Categories | Unit | Emission Factor | Reference Source |
---|---|---|---|---|
N | N2O direct emissions | kg N2O-N kg | 0.0301 | [53] |
NOX direct emissions | kg NOX-N kg | 0.1721 | [54] | |
NH3 volatilization | kg NH3-N kg | 0.0874 | [55] | |
N | N2O indirect emissions NOX indirect emissions | kg N2O-NH3 kg | 0.01 | [47] |
kg NOX-NH3 kg | 0.025 | |||
Labor | CO2 emissions | kgCO2-kg | 0.115 | [56] |
Appendix A.2. YCI in the Two Major Production Regions
Regions | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bohai Bay | 0.75 | 0.81 | 0.83 | 0.88 | 1.05 | 1.00 | 1.03 | 1.09 | 1.02 | 0.94 | 1.05 | 1.11 | 0.89 | 0.74 | 0.73 | 0.89 | 0.71 | 0.73 | 0.74 | 0.78 |
Beijing | 0.82 | 0.76 | 0.74 | 0.71 | 1.42 | 1.16 | 0.77 | 0.89 | 0.88 | 0.65 | 0.88 | 1.05 | 0.83 | 0.43 | 0.36 | 0.82 | 0.40 | 0.42 | 0.61 | 0.76 |
Hebei | 0.75 | 0.77 | 0.78 | 0.88 | 0.96 | 0.90 | 1.30 | 1.14 | 0.91 | 0.94 | 1.02 | 1.03 | 0.98 | 0.77 | 0.91 | 0.90 | 0.88 | 0.99 | 0.70 | 0.78 |
Liaoning | 0.71 | 0.90 | 0.75 | 1.06 | 0.67 | 0.94 | 0.91 | 1.20 | 1.04 | 1.07 | 1.06 | 1.13 | 0.74 | 0.85 | 0.67 | 0.88 | 0.58 | 0.66 | 0.73 | 0.72 |
Shandong | 0.71 | 0.80 | 1.04 | 0.87 | 1.16 | 1.00 | 1.13 | 1.14 | 1.27 | 1.09 | 1.26 | 1.25 | 1.00 | 0.92 | 0.99 | 0.96 | 0.96 | 0.86 | 0.91 | 0.89 |
Loess plateau | 0.65 | 0.59 | 0.83 | 0.76 | 0.84 | 0.72 | 0.89 | 1.01 | 0.85 | 0.82 | 0.91 | 1.02 | 1.02 | 1.02 | 0.96 | 1.21 | 0.83 | 0.98 | 0.87 | 0.98 |
Shanxi | 0.57 | 0.50 | 0.65 | 0.63 | 0.72 | 0.66 | 0.78 | 0.96 | 0.74 | 0.95 | 1.02 | 1.03 | 1.04 | 0.85 | 0.80 | 1.10 | 0.71 | 0.86 | 0.86 | 0.88 |
Henan | 0.69 | 0.65 | 1.17 | 1.01 | 0.92 | 0.70 | 0.93 | 1.01 | 0.85 | 0.74 | 0.72 | 0.82 | 0.91 | 0.87 | 0.82 | 0.93 | 0.79 | 0.92 | 0.73 | 0.77 |
Shaanxi | 0.71 | 0.65 | 0.74 | 0.78 | 0.96 | 0.95 | 1.11 | 1.27 | 1.01 | 0.76 | 0.85 | 0.96 | 1.00 | 1.00 | 1.02 | 1.20 | 0.92 | 0.89 | 0.85 | 0.92 |
Gansu | 0.62 | 0.54 | 0.76 | 0.63 | 0.75 | 0.56 | 0.73 | 0.81 | 0.79 | 0.83 | 1.05 | 1.27 | 1.13 | 1.35 | 1.21 | 1.59 | 0.89 | 1.26 | 1.05 | 1.34 |
Appendix A.3. TCE in the Two Major Production Regions
Regions | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bohai Bay | 4.70 | 4.84 | 4.96 | 4.62 | 5.70 | 5.25 | 5.96 | 5.76 | 5.71 | 5.83 | 6.47 | 6.03 | 5.79 | 4.00 | 3.99 | 3.69 | 3.84 | 3.70 | 3.29 | 3.34 |
Beijing | 0.21 | 0.22 | 0.20 | 0.19 | 0.23 | 0.26 | 0.16 | 0.20 | 0.18 | 0.16 | 0.17 | 0.19 | 0.20 | 0.10 | 0.08 | 0.14 | 0.08 | 0.08 | 0.06 | 0.05 |
Hebei | 5.54 | 5.93 | 5.91 | 5.64 | 6.71 | 6.13 | 7.78 | 5.63 | 5.56 | 5.82 | 6.81 | 6.97 | 6.83 | 2.70 | 3.16 | 2.97 | 3.20 | 3.50 | 2.74 | 3.19 |
Liaoning | 1.29 | 2.17 | 1.76 | 2.18 | 2.43 | 3.10 | 3.63 | 4.06 | 3.89 | 3.59 | 4.07 | 3.59 | 2.88 | 2.55 | 2.45 | 2.28 | 1.84 | 2.16 | 1.83 | 1.71 |
Shandong | 11.75 | 11.05 | 11.97 | 10.48 | 13.42 | 11.51 | 12.29 | 13.15 | 13.22 | 13.76 | 14.84 | 13.39 | 13.26 | 10.67 | 10.29 | 9.35 | 10.23 | 9.06 | 8.51 | 8.39 |
Loess plateau | 3.24 | 4.07 | 3.78 | 5.67 | 6.23 | 5.98 | 7.99 | 8.61 | 8.32 | 7.94 | 8.72 | 9.71 | 10.34 | 8.80 | 8.74 | 8.17 | 7.54 | 8.25 | 6.96 | 6.87 |
Shanxi | 2.22 | 2.45 | 2.31 | 3.47 | 2.97 | 3.07 | 3.54 | 3.63 | 3.62 | 4.67 | 4.79 | 4.59 | 4.71 | 4.45 | 4.46 | 2.96 | 3.57 | 3.50 | 3.27 | 2.81 |
Henan | 2.59 | 4.36 | 3.59 | 5.95 | 4.57 | 4.26 | 5.33 | 5.32 | 5.20 | 5.05 | 4.22 | 4.90 | 6.50 | 5.38 | 4.76 | 4.15 | 3.30 | 4.14 | 2.75 | 2.96 |
Shaanxi | 6.30 | 6.96 | 6.46 | 9.69 | 12.90 | 12.59 | 18.36 | 19.25 | 17.78 | 15.07 | 16.27 | 18.16 | 18.61 | 16.22 | 16.48 | 17.21 | 16.17 | 16.84 | 15.19 | 14.45 |
Gansu | 1.86 | 2.51 | 2.77 | 3.58 | 4.49 | 4.01 | 4.74 | 6.24 | 6.68 | 6.96 | 9.58 | 11.19 | 11.53 | 9.13 | 9.26 | 8.37 | 7.12 | 8.52 | 6.64 | 7.26 |
Appendix A.4. LCI in the Two Major Production Regions
Regions | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bohai Bay | 20.27 | 22.93 | 22.54 | 24.35 | 30.43 | 30.75 | 31.94 | 31.75 | 30.28 | 29.76 | 29.78 | 30.44 | 29.43 | 23.78 | 23.21 | 22.45 | 22.16 | 22.81 | 19.86 | 21.27 |
Beijing | 16.22 | 17.17 | 18.72 | 19.70 | 22.55 | 28.35 | 19.99 | 24.22 | 23.49 | 20.29 | 23.07 | 27.14 | 29.52 | 14.78 | 11.75 | 21.81 | 12.17 | 12.67 | 10.19 | 11.27 |
Hebei | 20.05 | 22.24 | 22.40 | 22.28 | 26.86 | 25.15 | 33.03 | 21.23 | 23.50 | 24.71 | 28.70 | 28.92 | 28.15 | 22.92 | 25.87 | 24.90 | 25.51 | 27.82 | 23.87 | 27.73 |
Liaoning | 11.23 | 19.45 | 16.00 | 19.99 | 22.67 | 27.19 | 29.75 | 32.22 | 29.05 | 25.83 | 26.26 | 22.75 | 17.88 | 18.06 | 17.51 | 16.61 | 13.49 | 15.54 | 13.72 | 13.19 |
Shandong | 32.90 | 32.46 | 34.95 | 33.70 | 44.01 | 41.67 | 45.44 | 49.69 | 47.84 | 49.20 | 48.90 | 43.94 | 44.24 | 39.45 | 38.76 | 36.25 | 41.47 | 36.77 | 35.00 | 34.93 |
Loess plateau | 14.44 | 18.34 | 19.39 | 24.21 | 22.53 | 21.59 | 26.16 | 28.12 | 26.84 | 26.88 | 28.19 | 30.72 | 33.75 | 33.29 | 32.95 | 29.91 | 26.91 | 30.51 | 25.63 | 26.24 |
Shanxi | 14.39 | 16.02 | 15.26 | 23.74 | 20.57 | 20.69 | 24.38 | 26.36 | 25.04 | 30.99 | 31.06 | 28.94 | 30.27 | 29.08 | 29.34 | 20.05 | 24.46 | 24.24 | 23.48 | 21.07 |
Henan | 15.77 | 26.47 | 21.65 | 35.47 | 25.04 | 24.62 | 30.32 | 29.93 | 28.79 | 28.22 | 23.89 | 28.47 | 38.17 | 34.11 | 32.28 | 32.14 | 27.68 | 35.20 | 26.09 | 28.39 |
Shaanxi | 15.70 | 16.89 | 15.16 | 20.96 | 26.61 | 23.71 | 32.51 | 32.00 | 28.53 | 23.35 | 24.46 | 26.64 | 26.77 | 28.14 | 28.12 | 28.80 | 26.31 | 27.15 | 24.45 | 23.45 |
Gansu | 11.10 | 14.48 | 15.08 | 17.28 | 18.12 | 16.26 | 18.13 | 23.24 | 24.32 | 24.53 | 33.02 | 37.97 | 39.13 | 39.67 | 40.20 | 35.72 | 29.54 | 34.28 | 26.38 | 28.31 |
Appendix A.5. RCI in the Two Major Production Regions
Regions | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bohai bay | 6.48 | 6.20 | 4.82 | 4.21 | 4.95 | 6.44 | 4.53 | 3.64 | 3.91 | 3.82 | 4.22 | 4.00 | 4.29 | 4.00 | 3.58 | 3.18 | 3.48 | 3.85 | 5.37 | 4.04 |
Beijing | 6.79 | 6.52 | 3.20 | 2.13 | 3.53 | 5.18 | 1.92 | 1.84 | 1.97 | 1.49 | 1.89 | 2.43 | 2.46 | 1.45 | 1.05 | 2.06 | 1.06 | 1.18 | 2.09 | 1.92 |
Hebei | 6.66 | 7.19 | 5.83 | 5.57 | 5.88 | 6.55 | 8.31 | 4.77 | 4.42 | 4.60 | 5.79 | 5.38 | 6.00 | 5.09 | 5.62 | 4.37 | 5.64 | 7.04 | 7.14 | 5.22 |
Liaoning | 5.48 | 5.74 | 4.69 | 5.29 | 4.01 | 7.17 | 5.05 | 4.98 | 5.99 | 6.92 | 6.83 | 5.78 | 5.37 | 6.96 | 4.94 | 5.40 | 5.87 | 6.42 | 8.04 | 5.23 |
Shandong | 6.51 | 5.70 | 6.26 | 5.51 | 5.51 | 6.95 | 5.77 | 4.61 | 5.40 | 5.83 | 6.80 | 4.42 | 5.97 | 6.09 | 5.84 | 4.10 | 5.80 | 5.61 | 7.18 | 4.76 |
Loess plateau | 7.29 | 8.03 | 7.61 | 6.50 | 5.12 | 7.13 | 7.09 | 4.96 | 4.86 | 5.12 | 5.77 | 5.16 | 6.38 | 7.17 | 6.58 | 5.84 | 6.41 | 6.34 | 6.62 | 5.31 |
Shanxi | 6.15 | 7.58 | 5.26 | 5.67 | 5.00 | 6.93 | 7.60 | 6.18 | 4.93 | 7.09 | 8.57 | 6.86 | 8.79 | 7.74 | 6.85 | 5.59 | 6.91 | 5.74 | 7.71 | 5.14 |
Henan | 8.21 | 13.36 | 9.55 | 10.23 | 6.94 | 9.50 | 9.55 | 5.31 | 7.12 | 6.63 | 6.14 | 5.78 | 8.64 | 8.01 | 7.71 | 6.81 | 6.77 | 7.33 | 5.26 | 4.75 |
Shaanxi | 6.28 | 6.08 | 4.53 | 5.85 | 5.69 | 7.69 | 6.99 | 5.90 | 5.09 | 3.51 | 3.91 | 3.58 | 4.48 | 4.99 | 5.02 | 4.52 | 5.38 | 4.90 | 6.00 | 4.28 |
Gansu | 9.55 | 6.41 | 8.99 | 4.73 | 3.49 | 4.70 | 4.86 | 3.18 | 3.30 | 4.30 | 5.74 | 5.26 | 5.34 | 8.06 | 6.76 | 6.15 | 6.92 | 7.32 | 7.72 | 6.70 |
References
- Yang, Y.; Tilman, D.; Jin, Z.N.; Smith, P.; Barrett, C.B.; Zhu, Y.G.; Burney, J.; D’Odorico, P.; Fantke, P.; Fargione, J.; et al. Climate change exacerbates the environmental impacts of agriculture. Science 2024, 385, eadn3747. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Xi, X.C.; Tang, X.; Luo, D.M.; Gu, B.J.; Lam, S.K.; Vitousek, P.M.; Chen, D.L. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef]
- Ji, M.; Li, J.R.; Zhang, M.D. What drives the agricultural carbon emissions for low-carbon transition? Evidence from China. Environ. Impact Assess. Rev. 2024, 105, 107440. [Google Scholar] [CrossRef]
- Cheng, J.J.; Yu, J.; Tan, D.J.; Wang, Q.; Zhao, Z.Y. Life cycle assessment of apple production and consumption under different sales models in China. Sustain. Prod. Consump. 2025, 55, 100–116. [Google Scholar] [CrossRef]
- Liu, D.; Xu, J.L.; Li, X.X.; Zhang, F.S. Green production of apples delivers environmental and economic benefits in China. Plant Commun. 2024, 5, 101006. [Google Scholar] [CrossRef]
- Yang, X.Q.; Liu, Y.; Bezama, A.; Thrän, D. Agricultural carbon emission efficiency and agricultural practices: Implications for balancing carbon emissions reduction and agricultural productivity increment. Environ. Dev. 2024, 50, 101004. [Google Scholar] [CrossRef]
- Elahi, E.; Zhu, M.; Khalid, Z.; Wei, K.Z. An empirical analysis of carbon emission efficiency in food production across the Yangtze River basin: Towards sustainable agricultural development and carbon neutrality. Agric. Syst. 2024, 218, 103994. [Google Scholar] [CrossRef]
- Han, G.H.; Xu, J.H.; Zhang, X.; Pan, X. Efficiency and Driving Factors of Agricultural Carbon Emissions: A Study in Chinese State Farms. Agriculture 2024, 14, 1454. [Google Scholar] [CrossRef]
- Wang, M.Y.; Jiang, Q.R.; Xue, T.D.; Xiao, Y.D.; Shan, T.Y.; Liu, Z.H.; Li, H.; Hu, C. Spatial and temporal pattern changes and spatial spillover effects of agricultural carbon emission efficiency in the Yangtze River economic belt of China. Environ. Dev. Sustain. 2025, 1–29. [Google Scholar] [CrossRef]
- Sun, C.; Xia, E.J.; Huang, J.P.; Tong, H.T. Coupled coordination and pathway analysis of food security and carbon emission efficiency under climate-smart agriculture orientation. Sci. Total. Environ. 2024, 948, 174706. [Google Scholar] [CrossRef]
- Xia, Y.J.; Guo, H.P.; Xu, S.; Pan, C.L. Environmental regulations and agricultural carbon emissions efficiency: Evidence from rural China. Heliyon 2024, 10, 174706. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, M.Y.; Zhou, R.; Zhu, S.G.; Tao, H.Y.; Khan, A.; Uzamurera, A.G.; Wang, B.Z.; Jin, J.M.; Ma, Y.; et al. Effects of interspecific interactions on soil carbon emission and efficiency in the semiarid intercropping systems. Soil Tillage Res. 2023, 234, 105857. [Google Scholar] [CrossRef]
- Han, G.H.; Zhang, X.; Pan, X. Study on agricultural carbon emission efficiency calculation and driving path of grain production department in China. Qual. Assur. Saf. Crop. 2025, 17, 201–216. [Google Scholar] [CrossRef]
- Dong, R.; Gao, Q.; Kong, Q.K.; Ren, L.G. Empowering agricultural ecological quality development through the digital economy with evidence from net carbon efficiency. Sci. Rep. 2025, 15, 10756. [Google Scholar] [CrossRef]
- Wang, R.; Feng, Y. Research on China’s agricultural carbon emission efficiency evaluation and regional differentiation based on DEA and Theil models. Int. J. Environ. Sci. Technol. 2021, 18, 1453–1464. [Google Scholar] [CrossRef]
- Jin, B.Y.; Cui, C.; Wen, L.; Shi, R.; Zhao, M.J. Regional differences and convergence of agricultural carbon efficiency in China: Embodying carbon sink effect. Ecol. Indic. 2024, 169, 112929. [Google Scholar] [CrossRef]
- Cheng, J.J.; Wang, Q.; Yu, J. Life cycle assessment of concentrated apple juice production in China: Mitigation options to reduce the environmental burden. Sustain. Prod. Consump. 2022, 32, 15–26. [Google Scholar] [CrossRef]
- Cheng, J.J.; Wang, Q.; Yu, J. Life cycle assessment of potential environmental burden and human capital loss caused by apple production system in China. Environ. Sci. Pollut. Res. 2023, 30, 62015–62031. [Google Scholar] [CrossRef]
- Cui, S.L.; Pathera, D.; Li, Y.J.; Jiao, X.Q. The impact of social network and resource endowment of smallholders on sustainable apple production. China Agric. Econ. Rev. 2024, 17, 22–41. [Google Scholar] [CrossRef]
- Esteves, C.; Costa, E.; Mata, M.; Mota, M.; Martins, M.; Ribeiro, H.; Fangueiro, D. Partial replacement of mineral fertilisers with animal manures in an apple orchard: Effects on GHG emission. J. Environ. Manag. 2024, 356, 120552. [Google Scholar] [CrossRef] [PubMed]
- Vercambre, G.; Mirás-Avalos, J.M.; Juillion, P.; Moradzadeh, M.; Plenet, D.; Valsesia, P.; Memah, M.M.; Launay, M.; Lesniak, V.; Cheviron, B.; et al. Analyzing the impacts of climate change on ecosystem services provided by apple orchards in Southeast France using a process-based model. J. Environ. Manag. 2024, 370, 122470. [Google Scholar] [CrossRef]
- Iriarte, A.; Yáñez, P.; Villalobos, P.; Huenchuleo, C.; Rebolledo-Leiva, R. Carbon footprint of southern hemisphere fruit exported to Europe: The case of Chilean apple to the UK. J. Clean. Prod. 2021, 293, 62015–62031. [Google Scholar] [CrossRef]
- Smith, L.G.; Kirk, G.J.D.; Jones, P.J.; Williams, A.G. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. 2019, 10, 4641. [Google Scholar] [CrossRef]
- Vinyes, E.; Asin, L.; Alegre, S.; Gasol, C.M.; Muñoz, P. Carbon footprint and profitability of two apple cultivation training systems: Central axis and Fruiting wall. Sci. Hortic. 2018, 229, 233–239. [Google Scholar] [CrossRef]
- Han, J.L.; Jin, X.L.; Huang, S.W.; Zhu, X.Y.; Liu, J.J.; Chen, J.Y.; Zhang, A.F.; Wang, X.D.; Tong, Y.A.; Hussain, Q.; et al. Carbon and nitrogen footprints of apple orchards in China’s Loess Plateau under different fertilization regimes. J. Clean. Prod. 2023, 413, 137546. [Google Scholar] [CrossRef]
- Wani, N.A.; Mishra, U. An integrated circular economic model with controllable carbon emission and deterioration from an apple orchard. J. Clean. Prod. 2022, 374, 133962. [Google Scholar] [CrossRef]
- Svanes, E.; Johnsen, F.M. Environmental life cycle assessment of production, processing, distribution and consumption of apples, sweet cherries and plums from conventional agriculture in Norway. J. Clean. Prod. 2019, 238, 117773. [Google Scholar] [CrossRef]
- Zhang, B.B.; Yan, S.H.; Li, B.; Wu, S.F.; Feng, H.; Gao, X.D.; Song, X.L.; Siddique, K.H.M. Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards. Agric. Water Manag. 2023, 288, 108482. [Google Scholar] [CrossRef]
- du Plessis, M.; van Eeden, J.; Goedhals-Gerber, L.L. Energy and emissions: Comparing short and long fruit cold chains. Heliyon 2024, 10, e32507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Zhao, J.R.; Hou, L.Y.; Xu, X.P.; Zhu, Y.J.; Zhai, B.N.; Liu, Z.J. Comparative assessment of environmental impacts, mitigation potentials, and economic benefits of rain-fed and irrigated apple production systems on China’s Loess Plateau. Sci. Total Environ. 2023, 869, 161791. [Google Scholar] [CrossRef]
- Sompouviset, T.; Ma, Y.T.; Zhao, Z.Y.; Zhen, Z.X.; Zheng, W.; Li, Z.Y.; Zhai, B.N. Combined Application of Organic and Inorganic Fertilizers Effects on the Global Warming Potential and Greenhouse Gas Emission in Apple Orchard in Loess Plateau Region of China. Forests 2023, 14, 337. [Google Scholar] [CrossRef]
- Han, J.L.; Zhang, A.F.; Kang, Y.H.; Han, J.Q.; Yang, B.; Hussain, Q.; Wang, X.D.; Zhang, M.; Khan, M.A. Biochar promotes soil organic carbon sequestration and reduces net global warming potential in apple orchard: A two-year study in the Loess Plateau of China. Sci. Total Environ. 2022, 803, 150035. [Google Scholar] [CrossRef]
- Liu, J.B.; Gao, X.D.; Song, J.J.; Wen, M.Y.; Wang, J.J.; Cai, Y.H.; Zhao, X.N. Subsurface drip irrigation mitigated greenhouse gas emission and improved root growth and yield in apple in semi-arid region. Agric. Water Manag. 2025, 308, 109290. [Google Scholar] [CrossRef]
- Yildizhan, H.; Taki, M.; Ozilgen, M.; Gorjian, S. Renewable energy utilization in apple production process: A thermodynamic approach. Sustain. Energy Technol. Assess. 2021, 43, 100956. [Google Scholar] [CrossRef]
- Cui, Y.; Khan, S.U.; Deng, Y.; Zhao, M.J. Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect. Environ. Impact Assess. Rev. 2022, 92, 106699. [Google Scholar] [CrossRef]
- Pienaah, C.K.A.; Antabe, R.; Arku, G.; Luginaah, I. Farmer field schools, climate action plans and climate change resilience among smallholder farmers in Northern Ghana. Clim. Change 2024, 177, 90. [Google Scholar] [CrossRef]
- Li, B.; Gao, Y.T. Impact and transmission mechanism of digital economy on agricultural energy carbon emission reduction. In.t Rev. Econ. Financ. 2024, 95, 103457. [Google Scholar] [CrossRef]
- Zhang, M.; Cai, L.; Li, C.; Zhang, Q.; Wang, W.X.; Wang, K.X. The assessment of environmental effect and economic benefit for apple orchard under different stand ages in the Loess Plateau, China. Plant Soil 2024, 511, 427–445. [Google Scholar] [CrossRef]
- Boschiero, M.; De Laurentiis, V.; Caldeira, C.; Sala, S. Comparison of organic and conventional cropping systems: A systematic review of life cycle assessment studies. Environ. Impact Asses. 2023, 102, 107187. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Aldieri, L.; Gatto, A.; Vinci, C.P. Impact of environmental, energy and business efficiency on CO2 emissions: A composite indicator for emerging Asia-Pacific markets. Appl. Energy 2024, 368, 123246. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Zhu, X.D. Carbon reduction decisions in green technology collaborative R&D and spillover time lag effects. J. Clean. Prod. 2023, 429, 139595. [Google Scholar] [CrossRef]
- Cui, Y.; Khan, S.U.; Li, Z.X.; Zhao, M.J. Environmental effect, price subsidy and financial performance: Evidence from Chinese new energy enterprises. Energy Policy. 2021, 149, 112050. [Google Scholar] [CrossRef]
- Cheng, J.J.; Wang, Q.; Zhang, H.M.; Matsubara, T.; Yoshikawa, N.; Yu, J. Does Farm Size Expansion Improve the Agricultural Environment? Evidence from Apple Farmers in China. Agriculture 2022, 12, 1800. [Google Scholar] [CrossRef]
- Chen, W.; Hong, J.L.; Li, Z.L.; Wang, Y.P.; Zhang, T.Z.; Geng, Y. Spatiotemporal evolution and influencing factors of carbon emission efficiency in China’s soybean production from 2011 to 2020. China Popul. Resour. Environ. 2024, 34, 70–80. [Google Scholar]
- Zhu, Z.L.; Jia, Z.H.; Peng, L.; Chen, Q.; He, L.; Jiang, Y.M.; Ge, S.F. Life cycle assessment of conventional and organic apple production systems in China. J. Clean. Prod. 2018, 201, 156–168. [Google Scholar] [CrossRef]
- Subedi, S.; Dent, B.; Adhikari, R. The carbon footprint of fruits: A systematic review from a life cycle perspective. Sustain. Prod. Consump. 2024, 52, 12–28. [Google Scholar] [CrossRef]
- Zhang, S.H.; Li, X.; Nie, Z.; Wang, Y.; Li, D.N.; Chen, X.P.; Liu, Y.P.; Pang, J.X. The Significance of Agricultural Modernization Development for Agricultural Carbon Emission Efficiency in China. Agriculture 2024, 14, 939. [Google Scholar] [CrossRef]
- Lu, F.; Meng, J.X.; Cheng, B.D. How does improving agricultural mechanization affect the green development of agriculture? Evidence from China. J. Clean. Prod. 2024, 472, 143298. [Google Scholar] [CrossRef]
- Ma, W.Q.; Liu, T.X.; Li, W.Q.; Yang, H. The role of agricultural machinery in improving green grain productivity in China: Towards trans-regional operation and low-carbon practices. Heliyon 2023, 9, e20279. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.L.; Xiao, Y.P.; Zhang, F.T.; Zhao, N.; Xiao, Y.D.; Chuai, X. Spatiotemporal characteristics and influencing factors of agricultural low-carbon economic efficiency in china. Front. Environ. Sci. 2022, 10, 980896. [Google Scholar] [CrossRef]
- Pang, J.Z.; Wang, X.K.; Mu, Y.J.; Ouyang, Z.Y.; Liu, W.Z. Nitrous oxide emissions from an apple orchard soil in the semiarid Loess Plateau of China. Biol. Fertil. Soils 2009, 46, 37–44. [Google Scholar] [CrossRef]
- Fan, P.; Li, J.; Zhang, L.N.; Cao, Y.; Kasimu, J. Nitrogen content and distribution characteristics in deep soil layers of apple orchards on the Loess Plateau. J. Plant Nutr. Fert. 2013, 19, 420–429. (In Chinese) [Google Scholar]
- Ge, S.F.; Jiang, Y.M.; Peng, F.T.; Fang, X.J.; Wang, H.N.; Dong, M.X.; Liu, J.C. Effects of combined application of organic manure and chemical fertilizer on soil ammonia volati-lization in apple orchards during spring. J. Soil Water Conserv. 2010, 24, 199–203. (In Chinese) [Google Scholar]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
Variable Type | Variable Name | Variable Symbol | Variable Definition | Reference Source |
---|---|---|---|---|
Dependent variable | Apple production’s carbon emission efficiency | APCEE | The Super-SBM model is used to measure APCEE | [8] |
Apple cultivation structure | Culstruc | Apple cultivated area/total orchard area | [36] | |
Apple industry structure | Indstruc | Apple output value/total agricultural output value | [9] | |
Educational level of rural labor force | Education | Rural laborers with a middle school education or higher/total rural population | [37] | |
Crop damage extent | Damage | Crop area affected by disasters/total sown area | [12] | |
Independent variables | Degree of agricultural mechanization | Macpower | Total agricultural machinery power/total sown area | [7] |
Rural electricity consumption | Electric | Total electricity consumption in rural areas/total rural population | [4] | |
Green technology innovation | Greenpat | The sum of the green invention patents and the green utility model patents | [38] | |
Agricultural subsidy | Agriexp | Agricultural, forestry, and water expenditures/total fiscal expenditure | [12] |
Carbon Source | N kg | P2O5 kg | K2O kg | Pesticide kg | Diesel kg | Film kg | Electricity kW·h | Labor h |
---|---|---|---|---|---|---|---|---|
2003 | 8.58 | 8.58 | 8.58 | 1.54 | 1.09 | 0.37 | 26.48 | 304.8 |
2004 | 11.09 | 5.57 | 4.41 | 1.14 | 1.00 | 0.03 | 27.47 | 341.6 |
2005 | 12.98 | 7.14 | 7.25 | 1.02 | 0.43 | 0.92 | 25.36 | 318.56 |
2006 | 12.23 | 6.84 | 7.26 | 1.40 | 1.10 | 0.15 | 31.93 | 333.12 |
2007 | 15.75 | 7.38 | 8.34 | 1.45 | 1.32 | 9.63 | 30.66 | 290.24 |
2008 | 17.37 | 6.15 | 5.94 | 1.49 | 1.63 | 0.31 | 22.25 | 315.28 |
2009 | 15.31 | 7.09 | 6.98 | 1.71 | 1.90 | 2.02 | 36.68 | 338.4 |
2010 | 17.44 | 8.49 | 8.99 | 1.81 | 2.07 | 1.07 | 34.77 | 349.52 |
2011 | 16.14 | 8.78 | 8.70 | 1.39 | 2.69 | 0.91 | 19.85 | 322.56 |
2012 | 14.23 | 7.47 | 7.53 | 1.29 | 2.95 | 1.10 | 17.12 | 322.96 |
2013 | 16.68 | 8.10 | 7.84 | 1.33 | 2.36 | 1.14 | 17.23 | 303.12 |
2014 | 17.91 | 8.91 | 9.07 | 1.37 | 4.18 | 1.01 | 20.44 | 320.8 |
2015 | 15.13 | 7.82 | 8.15 | 1.18 | 3.12 | 0.84 | 16.42 | 299.12 |
2016 | 13.37 | 7.41 | 7.76 | 1.03 | 3.27 | 0.85 | 17.90 | 300.4 |
2017 | 12.28 | 7.17 | 7.54 | 1.03 | 2.19 | 0.73 | 19.36 | 283.84 |
2018 | 14.74 | 9.21 | 9.65 | 1.34 | 3.31 | 0.92 | 23.75 | 270.8 |
2019 | 10.58 | 6.91 | 7.30 | 0.96 | 3.84 | 0.78 | 17.94 | 298.8 |
2020 | 12.34 | 7.67 | 8.03 | 0.99 | 3.52 | 0.93 | 14.38 | 297.44 |
2021 | 12.40 | 8.72 | 9.29 | 1.18 | 2.85 | 0.91 | 15.11 | 262.08 |
2022 | 13.06 | 9.29 | 9.78 | 1.24 | 3.39 | 1.34 | 17.03 | 255.84 |
2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YCI (t CO2e/t) | 0.69 | 0.65 | 0.77 | 0.77 | 1.04 | 0.89 | 0.92 | 1.03 | 0.93 | 0.83 | 0.92 | 1.00 | 0.86 | 0.79 | 0.74 | 0.91 | 0.68 | 0.76 | 0.80 | 0.85 |
TCE (106 t CO2e) | 31.41 | 35.67 | 40.09 | 42.31 | 52.69 | 52.53 | 55.29 | 61.40 | 60.00 | 57.25 | 61.63 | 65.20 | 62.59 | 46.54 | 45.75 | 43.51 | 41.74 | 44.06 | 39.17 | 39.53 |
LCI (t CO2e/ha) | 16.53 | 19.01 | 21.21 | 22.28 | 26.86 | 26.37 | 26.98 | 28.69 | 27.55 | 25.66 | 27.13 | 28.26 | 26.88 | 23.92 | 23.50 | 22.44 | 21.10 | 22.10 | 19.83 | 20.21 |
RCI (t CO2e/104 yuan) | 6.57 | 6.28 | 5.75 | 5.32 | 5.09 | 6.56 | 4.26 | 3.66 | 4.14 | 3.96 | 4.66 | 4.42 | 5.09 | 5.58 | 4.89 | 4.19 | 4.70 | 5.06 | 6.55 | 4.66 |
Regions | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
China | 0.72 | 0.74 | 0.74 | 0.60 | 0.68 | 0.65 | 0.73 | 0.76 | 0.75 | 0.62 | 0.61 | 0.60 | 0.67 | 0.60 | 0.42 | 0.55 | 0.57 | 0.56 | 0.62 | 0.70 |
Bohai Bay | 0.78 | 0.78 | 0.79 | 1.04 | 0.82 | 0.67 | 1.04 | 1.06 | 1.03 | 0.78 | 0.76 | 0.77 | 0.90 | 0.87 | 0.50 | 0.75 | 1.04 | 0.88 | 0.77 | 0.84 |
Beijing | 1.42 | 1.00 | 1.20 | 1.33 | 1.11 | 1.16 | 1.38 | 1.31 | 1.31 | 1.40 | 1.35 | 1.20 | 1.27 | 1.47 | 1.55 | 1.26 | 1.53 | 1.53 | 1.43 | 1.36 |
Hebei | 0.85 | 0.78 | 0.80 | 0.75 | 0.66 | 0.66 | 0.58 | 0.59 | 0.76 | 0.68 | 0.65 | 0.61 | 0.68 | 0.81 | 0.46 | 0.82 | 0.82 | 0.64 | 0.76 | 1.02 |
Liaoning | 1.06 | 1.12 | 1.17 | 1.09 | 1.16 | 0.65 | 1.03 | 0.70 | 0.65 | 0.43 | 0.47 | 0.42 | 0.54 | 0.42 | 0.36 | 0.36 | 0.37 | 0.40 | 0.41 | 0.49 |
Shandong | 1.22 | 1.19 | 1.01 | 0.60 | 1.10 | 1.03 | 0.77 | 1.06 | 0.81 | 0.57 | 0.52 | 1.07 | 0.67 | 0.67 | 0.41 | 0.67 | 0.73 | 0.68 | 0.77 | 1.09 |
Loess plateau | 0.48 | 0.52 | 0.44 | 0.46 | 0.63 | 0.52 | 0.57 | 0.69 | 0.78 | 0.62 | 0.60 | 0.61 | 0.66 | 0.62 | 0.44 | 0.58 | 0.61 | 0.69 | 0.80 | 0.76 |
Shanxi | 1.01 | 0.54 | 0.63 | 0.70 | 0.63 | 0.52 | 0.48 | 0.56 | 0.75 | 0.49 | 0.45 | 0.45 | 0.45 | 0.54 | 0.37 | 0.43 | 0.58 | 0.62 | 0.61 | 0.66 |
Henan | 0.45 | 0.45 | 0.45 | 0.36 | 0.49 | 0.41 | 0.43 | 0.64 | 0.54 | 0.46 | 0.53 | 0.49 | 0.50 | 0.53 | 0.36 | 0.47 | 0.60 | 0.60 | 1.07 | 0.84 |
Shaanxi | 0.86 | 0.66 | 0.70 | 0.47 | 0.63 | 0.51 | 0.74 | 0.68 | 1.05 | 1.15 | 1.18 | 1.20 | 1.17 | 1.12 | 1.13 | 1.09 | 1.06 | 1.17 | 1.04 | 1.11 |
Gansu | 0.26 | 0.65 | 0.22 | 1.07 | 1.27 | 1.26 | 1.37 | 1.15 | 1.20 | 0.66 | 0.57 | 0.59 | 1.03 | 0.51 | 0.40 | 0.48 | 0.43 | 0.53 | 0.62 | 0.56 |
APCEE | |||||||||
---|---|---|---|---|---|---|---|---|---|
China | Bohai Bay Region | Loess Plateau Region | |||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
Culstruc | −1.229 *** | −1.398 *** | −1.314 *** | −2.489 *** | −2.361 *** | −2.304 *** | −0.469 | −0.709 ** | −0.536 * |
(0.292) | (0.290) | (0.296) | (0.493) | (0.391) | (0.366) | (0.341) | (0.339) | (0.319) | |
Indstruc | 1.540 *** | 1.530 *** | 1.455 *** | 3.928 *** | 5.335 *** | 5.181 *** | 1.351 *** | 1.373 *** | 1.361 *** |
(0.231) | (0.235) | (0.252) | (0.824) | (0.922) | (0.819) | (0.179) | (0.178) | (0.169) | |
Education | −0.882 * | −0.964 ** | −1.138 ** | −0.705 | −0.479 | −0.459 | −1.156 *** | −1.291 *** | −1.554 *** |
(0.468) | (0.460) | (0.466) | (0.780) | (0.697) | (0.655) | (0.376) | (0.384) | (0.406) | |
Macpower | 0.161 * | 0.144 * | 0.110 | −0.221 * | −0.259 ** | −0.182 * | 0.159 | 0.147 | 0.080 |
(0.082) | (0.083) | (0.084) | (0.129) | (0.102) | (0.106) | (0.103) | (0.104) | (0.108) | |
Damage | 0.175 | 0.215 | 0.239 | 0.187 | 0.140 | 0.093 | 0.206 | 0.336 | 0.488 ** |
(0.159) | (0.160) | (0.155) | (0.202) | (0.202) | (0.193) | (0.209) | (0.216) | (0.209) | |
Electric | −0.071 | −0.071 | −0.054 | −0.279 *** | −0.296 *** | −0.270 *** | 0.116 | 0.064 | 0.002 |
(0.059) | (0.060) | (0.062) | (0.074) | (0.074) | (0.080) | (0.108) | (0.121) | (0.129) | |
Greenpat | 0.075 *** | 0.098 *** | 0.043 | ||||||
(0.025) | (0.031) | (0.045) | |||||||
Agriexp | −2.148 ** | −0.393 | −1.954 * | ||||||
(0.878) | (1.449) | (1.045) | |||||||
L.Greenpat | 0.080 *** | 0.142 *** | 0.066 | ||||||
(0.024) | (0.033) | (0.048) | |||||||
L.Agriexp | −1.548 * | −1.970 | −1.054 | ||||||
(0.884) | (1.417) | (1.067) | |||||||
L3.Greenpat | 0.110 *** | 0.147 *** | 0.135 *** | ||||||
(0.024) | (0.024) | (0.044) | |||||||
L3.Agriexp | −2.966 *** | −2.258 ** | −3.197 *** | ||||||
(0.868) | (1.085) | (1.051) | |||||||
_cons | 1.359 *** | 1.410 *** | 1.386 *** | 3.443 *** | 3.142 *** | 2.803 *** | 0.194 | 0.439 | 0.792 |
(0.400) | (0.409) | (0.475) | (0.629) | (0.619) | (0.721) | (0.428) | (0.473) | (0.569) | |
sigma_u | 0.104 *** | 0.106 *** | 0.120 *** | 0.093 ** | 0.015 | 0.000 | 0.000 | 0.000 | 0.000 |
(0.029) | (0.029) | (0.035) | (0.046) | (0.075) | (0.024) | (0.021) | (0.020) | (0.025) | |
sigma_e | 0.192 *** | 0.185 *** | 0.169 *** | 0.164 *** | 0.164 *** | 0.156 *** | 0.188 *** | 0.183 *** | 0.173 *** |
(0.010) | (0.010) | (0.010) | (0.012) | (0.013) | (0.012) | (0.013) | (0.013) | (0.013) | |
Wald test | 73.35 *** | 76.9 *** | 91.39 *** | 71.95 *** | 144.55 *** | 269.49 *** | 97.49 *** | 101.20 *** | 119.01 *** |
Log-likelihood | 36.82 | 40.93 | 49.82 | 33.66 | 36.61 | 37.21 | 25.45 | 26.71 | 28.67 |
N | 200 | 190 | 170 | 100 | 95 | 85 | 100 | 95 | 85 |
Dependent Variables | (1) | (2) |
---|---|---|
Greenpat | APCEE | |
Greenpat | 0.367 *** | |
(0.071) | ||
RDI | 0.286 *** | |
(0.046) | ||
Controls | Y | Y |
F | 38.20 | |
Uncentered R2 | 0.994 | |
N | 200 | 200 |
APCEE | |||||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Culstruc | −1.205 *** | −1.373 *** | −1.303 *** | −1.204 *** | −1.633 *** | −1.204 *** | −1.204 ** |
(0.296) | (0.293) | (0.303) | (0.240) | (0.390) | (0.235) | (0.603) | |
Indstruc | 1.520 *** | 1.486 *** | 1.316 *** | 1.774 *** | 1.763 *** | 1.774 *** | 1.774 ** |
(0.240) | (0.255) | (0.284) | (0.168) | (0.307) | (0.164) | (0.774) | |
Education | −0.850 * | −0.923 ** | −0.990 ** | −0.928 *** | 1.160 | −0.928 *** | −0.928 |
(0.471) | (0.467) | (0.503) | (0.313) | (0.877) | (0.306) | (0.666) | |
Macpower | 0.177 * | 0.154 | 0.094 | 0.192 ** | 0.382 *** | 0.192 *** | 0.192 |
(0.096) | (0.097) | (0.102) | (0.075) | (0.141) | (0.073) | (0.140) | |
Damage | 0.170 | 0.215 | 0.249 | 0.339 ** | 0.237 | 0.339 ** | 0.339 |
(0.159) | (0.160) | (0.154) | (0.170) | (0.173) | (0.166) | (0.220) | |
Electric | −0.065 | −0.066 | −0.046 | −0.065 | −0.086 | −0.065 | −0.065 |
(0.061) | (0.061) | (0.064) | (0.044) | (0.078) | (0.043) | (0.119) | |
Income | −0.043 | ||||||
(0.122) | |||||||
Greenpat | 0.094 | 0.102 *** | 0.318 *** | 0.102 *** | 0.102 ** | ||
(0.060) | (0.023) | (0.079) | (0.022) | (0.047) | |||
Agriexp | −2.143 ** | −3.117 *** | 0.867 | −3.117 *** | −3.117 ** | ||
(0.875) | (0.739) | (1.177) | (0.722) | (1.446) | |||
L.Income | −0.064 | ||||||
(0.134) | |||||||
L.Greenpat | 0.109 * | ||||||
(0.064) | |||||||
L.Agriexp | −1.494 * | ||||||
(0.891) | |||||||
L3.Income | −0.165 | ||||||
(0.159) | |||||||
L3.Greenpat | 0.183 ** | ||||||
(0.074) | |||||||
L3.Agriexp | −2.790 *** | ||||||
(0.884) | |||||||
cons | 1.478 ** | 1.656 ** | 2.178 ** | 1.081 *** | −1.380 * | 1.081 *** | 1.081 |
(0.699) | (0.779) | (0.937) | (0.347) | (0.813) | (0.340) | (0.756) | |
sigma_u | 0.105 *** | 0.109 *** | 0.138 *** | 0.000 | |||
(0.030) | (0.031) | (0.043) | (0.023) | ||||
sigma_e | 0.192 *** | 0.185 *** | 0.167 *** | 0.215 *** | |||
(0.010) | (0.010) | (0.010) | (0.010) | ||||
Province | Y | ||||||
Year | Y | ||||||
Wald test | 73.76 *** | 77.15 *** | 90.46 *** | 201.48 *** | 43.56 *** | ||
Log-likelihood/R2 | 36.73 | 40.91 | 50.34 | 0.502 | 0.412 | 23.887 | 23.887 |
N | 200 | 190 | 170 | 200 | 200 | 200 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, D.; Cheng, J.; Yu, J.; Wang, Q.; Chen, X. Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022. Agriculture 2025, 15, 1680. https://doi.org/10.3390/agriculture15151680
Tan D, Cheng J, Yu J, Wang Q, Chen X. Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022. Agriculture. 2025; 15(15):1680. https://doi.org/10.3390/agriculture15151680
Chicago/Turabian StyleTan, Dejun, Juanjuan Cheng, Jin Yu, Qian Wang, and Xiaonan Chen. 2025. "Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022" Agriculture 15, no. 15: 1680. https://doi.org/10.3390/agriculture15151680
APA StyleTan, D., Cheng, J., Yu, J., Wang, Q., & Chen, X. (2025). Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022. Agriculture, 15(15), 1680. https://doi.org/10.3390/agriculture15151680