Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,446)

Search Parameters:
Keywords = technical criteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2578 KiB  
Article
Experimental Comparison Between Two-Course Masonry Specimens and Three-Course Extracted Masonry Specimens in Clay Masonry Structures
by Bernardo Tutikian and Felipe Schneider
Processes 2025, 13(8), 2446; https://doi.org/10.3390/pr13082446 (registering DOI) - 1 Aug 2025
Abstract
This study investigates the relationship between the compressive strength of two-course masonry specimens and three-course masonry specimens extracted from previously constructed walls, to correlate the execution control specimens with the retest specimens. Compressive strength tests were performed on clay masonry units, laboratory-built two-course [...] Read more.
This study investigates the relationship between the compressive strength of two-course masonry specimens and three-course masonry specimens extracted from previously constructed walls, to correlate the execution control specimens with the retest specimens. Compressive strength tests were performed on clay masonry units, laboratory-built two-course masonry specimens, and three-course masonry specimens extracted from constructed walls, following the prescriptions of NBR 15270 and NBR 16868-3. The results demonstrate that three-course masonry specimens exhibit lower compressive strength (characteristic and average, 44.83% and 40.29%, respectively) compared to two-course masonry specimens. Additionally, it was found that the dispersion of results is greater in three-course masonry specimens. Given that three-course specimens are typically used when it becomes necessary to verify the structural compliance of executed masonry—usually following unsatisfactory results from execution control using two-course specimens—more data are needed to compare such results. Factors such as increased height-to-thickness ratio, the presence of head joints, and the influence of execution conditions at the construction site seem to influence the difference between two and three-course specimens, as well as the dispersion of the results. Therefore, it is essential that technical standards provide supporting criteria to enable a reliable comparison between two-course specimens used for execution control and three-course specimens used as retest elements. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

33 pages, 3561 KiB  
Article
A Robust Analytical Network Process for Biocomposites Supply Chain Design: Integrating Sustainability Dimensions into Feedstock Pre-Processing Decisions
by Niloofar Akbarian-Saravi, Taraneh Sowlati and Abbas S. Milani
Sustainability 2025, 17(15), 7004; https://doi.org/10.3390/su17157004 (registering DOI) - 1 Aug 2025
Abstract
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria [...] Read more.
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria decision-making framework for selecting pre-processing equipment configurations within a hemp-based biocomposite SC. Using a cradle-to-gate system boundary, four alternative configurations combining balers (square vs. round) and hammer mills (full-screen vs. half-screen) are evaluated. The analytical network process (ANP) model is used to evaluate alternative SC configurations while capturing the interdependencies among environmental, economic, social, and technical sustainability criteria. These criteria are further refined with the inclusion of sub-criteria, resulting in a list of 11 key performance indicators (KPIs). To evaluate ranking robustness, a non-linear programming (NLP)-based sensitivity model is developed, which minimizes the weight perturbations required to trigger rank reversals, using an IPOPT solver. The results indicated that the Half-Round setup provides the most balanced sustainability performance, while Full-Square performs best in economic and environmental terms but ranks lower socially and technically. Also, the ranking was most sensitive to the weight of the system reliability and product quality criteria, with up to a 100% shift being required to change the top choice under the ANP model, indicating strong robustness. Overall, the proposed framework enables decision-makers to incorporate uncertainty, interdependencies, and sustainability-related KPIs into the early-stage SC design of bio-based composite materials. Full article
(This article belongs to the Special Issue Sustainable Enterprise Operation and Supply Chain Management)
Show Figures

Figure 1

13 pages, 647 KiB  
Article
Reference Values for Liver Stiffness in Newborns by Gestational Age, Sex, and Weight Using Three Different Elastography Methods
by Ángel Lancharro Zapata, Alejandra Aguado del Hoyo, María del Carmen Sánchez Gómez de Orgaz, Maria del Pilar Pintado Recarte, Pablo González Navarro, Perceval Velosillo González, Carlos Marín Rodríguez, Yolanda Ruíz Martín, Manuel Sanchez-Luna, Miguel A. Ortega, Coral Bravo Arribas and Juan Antonio León Luís
J. Clin. Med. 2025, 14(15), 5418; https://doi.org/10.3390/jcm14155418 (registering DOI) - 1 Aug 2025
Abstract
Objective: To determine reference values of liver stiffness during the first week of extrauterine life in healthy newborns, according to gestational age, sex, and birth weight, using three elastography techniques: point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) with convex [...] Read more.
Objective: To determine reference values of liver stiffness during the first week of extrauterine life in healthy newborns, according to gestational age, sex, and birth weight, using three elastography techniques: point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) with convex and linear probes. Materials and Methods: This was a cross-sectional observational study conducted at a single center on a hospital-based cohort of 287 newborns between 24 and 42 weeks of gestation, admitted between January 2023 and May 2024. Cases with liver disease, significant neonatal morbidity, or technically invalid studies were excluded. Hepatic elastography was performed during the first week of life using pSWE and 2D-SWE with both convex and linear probes. Clinical and technical neonatal variables were recorded. Liver stiffness values were analyzed in relation to gestational age, birth weight, and sex. Linear regression models were applied to assess associations, considering p-values < 0.05 as statistically significant. Results: After applying exclusion criteria, valid liver stiffness measurements were obtained in 208 cases with pSWE, 224 with 2D-SWE (convex probe), and 222 with 2D-SWE (linear probe). A statistically significant inverse association between liver stiffness and gestational age (p < 0.03) was observed across all techniques except for 2D-SWE with the linear probe. Only 2D-SWE with the convex probe showed a significant association with birth weight. No significant differences were observed based on neonatal sex. The 2D-SWE technique with the convex probe demonstrated significantly shorter examination times compared to pSWE (p < 0.001). Conclusions: Neonatal liver stiffness measured by pSWE and 2D-SWE with a convex probe shows an inverse correlation with gestational age, potentially reflecting the structural and functional maturation of the liver. These techniques are safe, reliable, and provide useful information for distinguishing normal findings in preterm neonates from early hepatic pathology. The values obtained represent a valuable reference for clinical hepatic assessment in the neonatal period. Full article
(This article belongs to the Special Issue Multiparametric Ultrasound Techniques for Liver Disease Assessments)
Show Figures

Figure 1

29 pages, 1626 KiB  
Review
Alternative Arterial Access in Veno-Arterial ECMO: The Role of the Axillary Artery
by Debora Emanuela Torre and Carmelo Pirri
J. Clin. Med. 2025, 14(15), 5413; https://doi.org/10.3390/jcm14155413 (registering DOI) - 1 Aug 2025
Abstract
Background: Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is increasingly used to support patients with refractory cardiogenic shock or cardiac arrest. While femoral artery cannulation remains the most common arterial access, axillary artery cannulation has emerged as a valuable alternative in selected cases. Objective [...] Read more.
Background: Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is increasingly used to support patients with refractory cardiogenic shock or cardiac arrest. While femoral artery cannulation remains the most common arterial access, axillary artery cannulation has emerged as a valuable alternative in selected cases. Objective: This narrative review aims to synthesize current evidence and expert opinion on axillary artery cannulation in V-A ECMO, focusing on its technical feasibility, physiologic implications, and clinical outcomes. Methods: A comprehensive literature search was performed in PubMed and Scopus using relevant keywords related to ECMO, axillary artery, cannulation techniques, and outcomes. Emphasis was placed on prospective and retrospective clinical studies, expert consensus statements, and technical reports published over the past two decades. Results: Axillary cannulation provides antegrade aortic flow, potentially reducing the risk of differential hypoxia and improving upper body perfusion. However, the technique presents unique technical challenges and may carry risks such as hyperperfusion syndrome or arterial complications. Emerging data suggest favorable outcomes in selected patient populations when performed in experienced centers. Conclusions: Axillary cannulation represents a promising arterial access route in V-A ECMO, particularly in cases with contraindications to femoral cannulation or when upper-body perfusion is a concern. Further prospective studies are needed to better define patient selection criteria and long-term outcomes. Full article
(This article belongs to the Special Issue Cardiac Surgery: Clinical Advances)
Show Figures

Figure 1

20 pages, 3593 KiB  
Article
A Feature Engineering Framework for Smart Meter Group Failure Rate Prediction
by Yihong Li, Xia Xiao, Zhengbo Zhang and Wenao Liu
Mathematics 2025, 13(15), 2472; https://doi.org/10.3390/math13152472 - 31 Jul 2025
Abstract
Smart meters play a significant role in power systems, but their condition assessment faces challenges such as inconsistent evaluation criteria and inaccurate assessment results. This paper proposes feature engineering including feature construction and feature selection for smart meter group failure rate prediction. First, [...] Read more.
Smart meters play a significant role in power systems, but their condition assessment faces challenges such as inconsistent evaluation criteria and inaccurate assessment results. This paper proposes feature engineering including feature construction and feature selection for smart meter group failure rate prediction. First, the basic structure and common fault types of smart meters are introduced. Smart meters are grouped by batch and distribution area. Next, 25 condition features are constructed based on failure mechanisms and technical specifications. Then, an evolutionary multi-objective feature selection algorithm combining NSGA-II, Jaccard similarity, and XGBoost is developed, where feature subsets are encoded as binary individuals optimized for three objectives: MSE, 1 − R2, and the number of features. The experimental results demonstrate that the proposed method not only reduces the number of features (25→7) but also improves the prediction accuracy (MSE: 0.0049 → 0.0042, R2: 0.6638 → 0.7228) of smart meter group failure rates. Comparative studies with other feature selection methods further confirm the superiority of our approach. The optimized features enhance interpretability and computational efficiency, providing a practical solution for large-scale smart meter condition assessment in power systems. Full article
(This article belongs to the Special Issue Evolutionary Algorithms and Applications)
Show Figures

Figure 1

11 pages, 261 KiB  
Review
Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery
by Luciana Benvegnù, Giorgia Cibin, Fabiola Perrone, Vincenzo Tarzia, Augusto D’Onofrio, Giovanni Battista Luciani, Gino Gerosa and Francesco Onorati
J. Cardiovasc. Dev. Dis. 2025, 12(8), 289; https://doi.org/10.3390/jcdd12080289 - 29 Jul 2025
Viewed by 175
Abstract
Atrial fibrillation remains the most frequent sustained arrhythmia, particularly in the elderly population, and is associated with increased risks of stroke, heart failure, and reduced quality of life. While catheter ablation is widely used for rhythm control, its efficacy is limited in persistent [...] Read more.
Atrial fibrillation remains the most frequent sustained arrhythmia, particularly in the elderly population, and is associated with increased risks of stroke, heart failure, and reduced quality of life. While catheter ablation is widely used for rhythm control, its efficacy is limited in persistent and long-standing atrial fibrillation. Over the past two decades, minimally invasive surgical strategies have emerged as effective alternatives, aiming to replicate the success of the Cox-Maze procedure while reducing surgical trauma. This overview critically summarizes the current minimally invasive techniques available for atrial fibrillation treatment, including mini-thoracotomy ablation, thoracoscopic ablation, and hybrid procedures such as the convergent approach. These methods offer the potential for durable sinus rhythm restoration by enabling direct visualization, transmural lesion creation, and left atrial appendage exclusion, with lower perioperative morbidity compared to traditional open surgery. The choice of energy source plays a key role in lesion efficacy and safety. Particular attention is given to the technical steps of each procedure, patient selection criteria, and the role of left atrial appendage closure in stroke prevention. Hybrid strategies, which combine epicardial surgical ablation with endocardial catheter-based procedures, have shown encouraging outcomes in patients with refractory or long-standing atrial fibrillation. Despite the steep learning curve, minimally invasive techniques provide significant benefits in terms of recovery time, reduced hospital stay, and fewer complications. As evidence continues to evolve, these approaches represent a key advancement in the surgical management of atrial fibrillation, deserving integration into contemporary treatment algorithms and multidisciplinary heart team planning. Full article
(This article belongs to the Special Issue Hybrid Ablation of the Atrial Fibrillation)
Show Figures

Graphical abstract

27 pages, 910 KiB  
Article
QES Model Aggregating Quality, Environmental Impact, and Social Responsibility: Designing Product Dedicated to Renewable Energy Source
by Dominika Siwiec and Andrzej Pacana
Energies 2025, 18(15), 4029; https://doi.org/10.3390/en18154029 - 29 Jul 2025
Viewed by 154
Abstract
The complexity of assessment is a significant problem in designing renewable energy source (RES) products, especially when one wants to take into account their various aspects, e.g., technical, environmental, or social. Hence, the aim of the research is to develop a model supporting [...] Read more.
The complexity of assessment is a significant problem in designing renewable energy source (RES) products, especially when one wants to take into account their various aspects, e.g., technical, environmental, or social. Hence, the aim of the research is to develop a model supporting the decision-making process of RES product development based on meeting the criteria of quality, environmental impact, and social responsibility (QES). The model was developed in four main stages, implementing multi-criteria decision support methods such as DEMATEL (decision-making trial and evaluation laboratory) and TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution), as well as criteria for social responsibility and environmental impact from the ISO 26000 standard. The model was tested and illustrated using the example of photovoltaic panels (PVs): (i) five prototypes were developed, (ii) 30 PV criteria were identified from the qualitative, environmental, and social groups, (iii) the criteria were reduced to 13 key (strongly intercorrelated) criteria according to DEMATEL, (iv) the PV prototypes were assessed taking into account the importance and fulfilment of their key criteria according to TOPSIS, and (v) a PV ranking was created, where the fifth prototype turned out to be the most advantageous (QES = 0.79). The main advantage of the model is its simple form and transparency of application through a systematic analysis and evaluation of many different criteria, after which a ranking of design solutions is obtained. QES ensures precise decision-making in terms of sustainability of new or already available products on the market, also those belonging to RES. Therefore, QES will find application in various companies, especially those looking for low-cost decision-making support techniques at early stages of product development (design and conceptualization). Full article
Show Figures

Figure 1

11 pages, 556 KiB  
Article
Added Value of SPECT/CT in Radio-Guided Occult Localization (ROLL) of Non-Palpable Pulmonary Nodules Treated with Uniportal Video-Assisted Thoracoscopy
by Demetrio Aricò, Lucia Motta, Giulia Giacoppo, Michelangelo Bambaci, Paolo Macrì, Stefania Maria, Francesco Barbagallo, Nicola Ricottone, Lorenza Marino, Gianmarco Motta, Giorgia Leone, Carlo Carnaghi, Vittorio Gebbia, Domenica Caponnetto and Laura Evangelista
J. Clin. Med. 2025, 14(15), 5337; https://doi.org/10.3390/jcm14155337 - 29 Jul 2025
Viewed by 159
Abstract
Background/Objectives: The extensive use of computed tomography (CT) has led to a significant increase in the detection of small and non-palpable pulmonary nodules, necessitating the use of invasive methods for definitive diagnosis. Video-assisted thoracoscopic surgery (VATS) has become the preferred procedure for nodule [...] Read more.
Background/Objectives: The extensive use of computed tomography (CT) has led to a significant increase in the detection of small and non-palpable pulmonary nodules, necessitating the use of invasive methods for definitive diagnosis. Video-assisted thoracoscopic surgery (VATS) has become the preferred procedure for nodule resections; however, intraoperative localization remains challenging, especially for deep or subsolid lesions. This study explores whether SPECT/CT improves the technical and clinical outcomes of radio-guided occult lesion localization (ROLL) before uniportal video-assisted thoracoscopic surgery (u-VATS). Methods: This is a retrospective study involving consecutive patients referred for the resection of pulmonary nodules who underwent CT-guided ROLL followed by u-VATS between September 2017 and December 2024. From January 2023, SPECT/CT was systematically added after planar imaging. The cohort was divided into a planar group and a planar + SPECT/CT group. The inclusion criteria involved nodules sized ≤ 2 cm, with ground glass or solid characteristics, located at a depth of <6 cm from the pleural surface. 99mTc-MAA injected activity, timing, the classification of planar and SPECT/CT image findings (focal uptake, multisite with focal uptake, multisite without focal uptake), spillage, and post-procedure complications were evaluated. Statistical analysis was performed, with continuous data expressed as the median and categorical data as the number. Comparisons were made using chi-square tests for categorical variables and the Mann–Whitney U test for procedural duration. Cohen’s kappa coefficient was calculated to assess agreement between imaging modalities. Results: In total, 125 patients were selected for CT-guided radiotracer injection followed by uniportal-VATS. The planar group and planar + SPECT/CT group comprised 60 and 65 patients, respectively. Focal uptake was detected in 68 (54%), multisite with focal uptake in 46 (36.8%), and multisite without focal uptake in 11 patients (8.8%). In comparative analyses between planar and SPECT/CT imaging in 65 patients, 91% exhibited focal uptake, revealing significant differences in classification for 40% of the patients. SPECT/CT corrected the classification of 23 patients initially categorized as multisite with focal uptake to focal uptake, improving localization accuracy. The mean procedure duration was 39 min with SPECT/CT. Pneumothorax was more frequently detected with SPECT/CT (43% vs. 1.6%). The intraoperative localization success rate was 96%. Conclusions: SPECT/CT imaging in the ROLL procedure for detecting pulmonary nodules before u-VATs demonstrates a significant advantage in reclassifying radiotracer positioning compared to planar imaging. Considering its limited impact on surgical success rates and additional procedural time, SPECT/CT should be reserved for technically challenging cases. Larger sample sizes, multicentric and prospective randomized studies, and formal cost–utility analyses are warranted. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

23 pages, 1310 KiB  
Review
Evaluating Antimicrobial Susceptibility Testing Methods for Cefiderocol: A Review and Expert Opinion on Current Practices and Future Directions
by Stefania Stefani, Fabio Arena, Luigi Principe, Stefano Stracquadanio, Chiara Vismara and Gian Maria Rossolini
Antibiotics 2025, 14(8), 760; https://doi.org/10.3390/antibiotics14080760 - 28 Jul 2025
Viewed by 573
Abstract
Background: Cefiderocol (FDC) presents challenges in antimicrobial susceptibility testing (AST). The reference standard is the broth microdilution (BMD) method with iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB). Still, it is cumbersome for routine clinical laboratory use, while variable accuracy has been reported with available commercial [...] Read more.
Background: Cefiderocol (FDC) presents challenges in antimicrobial susceptibility testing (AST). The reference standard is the broth microdilution (BMD) method with iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB). Still, it is cumbersome for routine clinical laboratory use, while variable accuracy has been reported with available commercial systems. Variability in interpretive criteria and areas of technical uncertainty (ATUs) further complicate assessments. Methods: This review and expert opinion presents: (1) an overview of non-susceptibility to FDC and then delves into the performance of current FDC AST methods for Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex; (2) a practical decision framework to guide clinical microbiologists in making informed choices. Results and Conclusions: For Enterobacterales, including carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa, we propose disk diffusion (DD) as a preliminary screening tool to classify isolates as susceptible (S) or resistant (R). Confirmatory testing using the UMIC® FDC system or the ID-CAMHB BMD method is recommended for R isolates. In cases of discrepancy, repeating the test with ID-CAMHB BMD is advised. Additionally, isolates falling within the ATU during DD testing should be retested using the UMIC® system or ID-CAMHB BMD. For A. baumannii complex, since EUCAST breakpoints have not been defined yet, we propose a stepwise framework based on the first DD result: isolates with inhibition zones < 17 mm are considered non-susceptible and should be confirmed with standard BMD. Those between 17 and 22 mm require retesting with a commercial BMD method, with further confirmation recommended if S isolates with zones ≥ 23 mm may be considered S without additional testing. Full article
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
by Charikleia Karakosta and Isaak Vryzidis
Energies 2025, 18(15), 4014; https://doi.org/10.3390/en18154014 - 28 Jul 2025
Viewed by 126
Abstract
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating [...] Read more.
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges. Full article
Show Figures

Figure 1

17 pages, 597 KiB  
Review
Dry Needling for Tension-Type Headache: A Scoping Review on Intervention Procedures, Muscle Targets, and Outcomes
by Ana Bravo-Vazquez, Ernesto Anarte-Lazo, Cleofas Rodriguez-Blanco and Carlos Bernal-Utrera
J. Clin. Med. 2025, 14(15), 5320; https://doi.org/10.3390/jcm14155320 - 28 Jul 2025
Viewed by 202
Abstract
Background/Objectives: Tension-type headache (TTH) is the most prevalent form of primary headache. The etiology of TTH is not yet fully understood, although it is associated with the presence of myofascial trigger points (MTPs) in cervical and facial muscles. Dry needling (DN) therapy [...] Read more.
Background/Objectives: Tension-type headache (TTH) is the most prevalent form of primary headache. The etiology of TTH is not yet fully understood, although it is associated with the presence of myofascial trigger points (MTPs) in cervical and facial muscles. Dry needling (DN) therapy has emerged as an effective and safe non-pharmacological option for pain relief, but there are a lack of systematic reviews focused on its specific characteristics in TTH. The aim of this paper is to examine the characteristics and methodologies of DN in managing TTH. Methods: A scoping review was conducted with inclusion criteria considering studies that evaluated DN interventions in adults with TTH, reporting target muscles, diagnostic criteria, and technical features. The search was performed using PubMed, Embase, Scopus, and the Web of Science, resulting in the selection of seven studies after a rigorous filtering and evaluation process. Results: The included studies, primarily randomized controlled trials, involved a total of 309 participants. The most frequently treated muscles were the temporalis and trapezius. Identification of MTPs was mainly performed through manual palpation, although diagnostic criteria varied. DN interventions differed in technique. All studies included indicated favorable outcomes with improvements in headache symptoms. No serious adverse effects were reported, suggesting that the technique is safe. However, heterogeneity in protocols and diagnostic criteria limits the comparability of results. Conclusions: The evidence supports the use of DN in key muscles such as the temporalis and trapezius for managing TTH, although the diversity in methodologies and diagnostic criteria highlights the need for standardization. The safety profile of the method is favorable, but further research is necessary to define optimal protocols and improve reproducibility. Implementing objective diagnostic criteria and uniform protocols will facilitate advances in clinical practice and future research, ultimately optimizing outcomes for patients with TTH. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

18 pages, 5991 KiB  
Article
Sustainability Assessment of Rural Biogas Production and Use Through a Multi-Criteria Approach: A Case Study in Colombia
by Franco Hernan Gomez, Nelson Javier Vasquez, Kelly Cristina Torres, Carlos Mauricio Meza and Mentore Vaccari
Sustainability 2025, 17(15), 6806; https://doi.org/10.3390/su17156806 - 26 Jul 2025
Viewed by 706
Abstract
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels [...] Read more.
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels for cooking and heating in domestic and productive activities poses significant health and environmental risks. This study validated, in three different phases, the sustainability of a model for the production and use of biogas from the treatment of swine-rearing wastewater (WWs) on a community farm: (i) A Multi-Criteria Analysis (MCA), incorporating environmental, social/health, technical, and economic criteria, identified the main weighted criterion to C8 (use of small-scale technologies and low-cost access), with a score of 0.44 points, as well as the Tubular biodigester (Tb) as the most suitable option for the study area, scoring 8.1 points. (ii) Monitoring of the Tb over 90 days showed an average biogas production of 2.6 m3 d−1, with average correlation 0.21 m3 Biogas kg Biomass−1. Using the experimental biogas production rate (k = 0.0512 d−1), the process was simulated with the BgMod model, achieving an average deviation of only 10.4% during the final production phase. (iii) The quantification of benefits demonstrated significant reductions in firewood use: in Scenario S1 (kitchen energy needs), biogas replaced 83.1% of firewood, while in Scenario S2 (citronella essential oil production), the substitution rate was 24.1%. In both cases, the avoided emissions amounted to 0.52 tons of CO2eq per month. Finally, this study proposes a synthesised, community-based rural biogas framework designed for replication in regions with similar socio-environmental, technical, and economic conditions. Full article
Show Figures

Figure 1

24 pages, 3885 KiB  
Article
Discrete Meta-Modeling Method of Breakable Corn Kernels with Multi-Particle Sub-Area Combinations
by Jiangdong Xu, Yanchun Yao, Yongkang Zhu, Chenxi Sun, Zhi Cao and Duanyang Geng
Agriculture 2025, 15(15), 1620; https://doi.org/10.3390/agriculture15151620 - 26 Jul 2025
Viewed by 160
Abstract
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be [...] Read more.
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be crushed during the simulation process, and the calculation of the crushing rate needs to be considered through multiple criteria such as the contact force, the number of collisions, and so on. Aiming at the issue that kernel crushing during maize threshing cannot be accurately modeled in discrete element simulations, in this study, a sub-area crushing model was constructed; representative samples with 26%, 30% and 34% moisture content were selected from a double-season maturing region in China; based on the physical dimensions and biological structure of the maize kernel, three stress regions were defined; and mechanical property tests were conducted on each of the three stress regions using a texturometer as a way to determine the different crushing forces due to the heterogeneity of the maize structure. The correctness of the model was verified by stacking angle and mechanical property experiments. A discrete element model of corn kernels was established using the Bonding V2 method and sub-area modeling. Bonding parameters were calculated by combining stacking angle tests and mechanical property tests. The flattened corn kernel was used as a prototype, and the bonding parameters were determined through size and mechanical property tests. A 22-ball bonding model was developed using dimensional parameters, and the kernel density was recalculated. Results showed that the relative error between the stacking angle test and the measured mean value was 0.31%. The maximum deviation of axial compression simulation results from the measured mean value was 22.8 N, and the minimum deviation was 3.67 N. The errors between simulated and actual rupture forces at the three force areas were 5%, 10%, and 0.6%, respectively. The decreasing trend of the maximum rupture force for the three moisture levels in the simulation matched that of the actual rupture force. The discrete element model can accurately reflect the rupture force, energy relationship, and rupture process on both sides, top, and bottom of the grain, and it can solve the error problem caused by the contact between the threshing element and the grain line in the actual threshing process to achieve the design optimization of the threshing drum. The modeling method provided in this study can also be applied to breakable discrete element models for wheat and soybean, and it provides a reference for optimizing the design of subsequent threshing devices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

48 pages, 753 KiB  
Review
Shaping Training Load, Technical–Tactical Behaviour, and Well-Being in Football: A Systematic Review
by Pedro Afonso, Pedro Forte, Luís Branquinho, Ricardo Ferraz, Nuno Domingos Garrido and José Eduardo Teixeira
Sports 2025, 13(8), 244; https://doi.org/10.3390/sports13080244 - 25 Jul 2025
Viewed by 244
Abstract
Football performance results from the dynamic interaction between physical, tactical, technical, and psychological dimensions—each of which also influences player well-being, recovery, and readiness. However, integrated monitoring approaches remain scarce, particularly in youth and sub-elite contexts. This systematic review screened 341 records from PubMed, [...] Read more.
Football performance results from the dynamic interaction between physical, tactical, technical, and psychological dimensions—each of which also influences player well-being, recovery, and readiness. However, integrated monitoring approaches remain scarce, particularly in youth and sub-elite contexts. This systematic review screened 341 records from PubMed, Scopus, and Web of Science, with 46 studies meeting the inclusion criteria (n = 1763 players; age range: 13.2–28.7 years). Physical external load was reported in 44 studies using GPS-derived metrics such as total distance and high-speed running, while internal load was examined in 36 studies through session-RPE (rate of perceived exertion × duration), heart rate zones, training impulse (TRIMP), and Player Load (PL). A total of 22 studies included well-being indicators capturing fatigue, sleep quality, stress levels, and muscle soreness, through tools such as the Hooper Index (HI), the Total Quality Recovery (TQR) scale, and various Likert-type or composite wellness scores. Tactical behaviours (n = 15) were derived from positional tracking systems, while technical performance (n = 7) was assessed using metrics like pass accuracy and expected goals, typically obtained from Wyscout® or TRACAB® (a multi-camera optical tracking system). Only five studies employed multivariate models to examine interactions between performance domains or to predict well-being outcomes. Most remained observational, relying on descriptive analyses and examining each domain in isolation. These findings reveal a fragmented approach to player monitoring and a lack of conceptual integration between physical, psychological, tactical, and technical indicators. Future research should prioritise multidimensional, standardised monitoring frameworks that combine contextual, psychophysiological, and performance data to improve applied decision-making and support player health, particularly in sub-elite and youth populations. Full article
Show Figures

Figure 1

24 pages, 3226 KiB  
Article
The Environmental Impacts of Façade Renovation: A Case Study of an Office Building
by Patrik Štompf, Rozália Vaňová and Stanislav Jochim
Sustainability 2025, 17(15), 6766; https://doi.org/10.3390/su17156766 - 25 Jul 2025
Viewed by 375
Abstract
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University [...] Read more.
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University in Zvolen (Slovakia) using a life cycle assessment (LCA) approach. The aim is to quantify and compare these impacts based on material selection and its influence on sustainable construction. The analysis focuses on key environmental indicators, including global warming potential (GWP), abiotic depletion (ADE, ADF), ozone depletion (ODP), toxicity, acidification (AP), eutrophication potential (EP), and primary energy use (PERT, PENRT). The scenarios vary in the use of insulation materials (glass wool, wood fibre, mineral wool), façade finishes (cladding vs. render), and window types (aluminium vs. wood–aluminium). Uncertainty analysis identified GWP, AP, and ODP as robust decision-making categories, while toxicity-related results showed lower reliability. To support integrated and transparent comparison, a composite environmental index (CEI) was developed, aggregating characterisation, normalisation, and mass-based results into a single score. Scenario C–2, featuring an ETICS system with mineral wool insulation and wood–aluminium windows, achieved the lowest environmental impact across all categories. In contrast, scenarios with traditional cladding and aluminium windows showed significantly higher impacts, particularly in fossil fuel use and ecotoxicity. The findings underscore the decisive role of material selection in sustainable renovation and the need for a multi-criteria, context-sensitive approach aligned with architectural, functional, and regional priorities. Full article
Show Figures

Figure 1

Back to TopTop