Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery
Abstract
1. Introduction
2. Patient Selection and Indications
3. Technologies
4. Minimally Invasive Surgical Techniques
4.1. Mini-Thoracotomy Ablation
4.2. Thoracoscopic Ablation
4.3. Hybrid Approach
4.4. Convergent Procedure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Atrial Fibrillation |
CT | Computed Tomography |
RF | Radiofrequency |
LAA | Left Atrial Appendage |
CPB | Cardiopulmonary Bypass |
PVI | Pulmonary Vein Isolation |
EP | Electrophysiologist |
SR | Sinus Rhythm |
LA | Left Atrium |
ACT | Activated Clotting Time |
SGLT2i | Sodium–Glucose Cotransporter 2 Inhibitor |
PFA | Pulsed Field Ablation |
References
- Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circ. Res. 2017, 120, 1501–1517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sagris, M.; Vardas, E.P.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Tousoulis, D. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int. J. Mol. Sci. 2021, 23, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sovari, A.A.; Dudley, S.C., Jr. Reactive oxygen species-targeted therapeutic interventions for atrial fibrillation. Front. Physiol. 2012, 3, 311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, C.; Tousoulis, D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021, 9, 781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bizhanov, K.A.; Abzaliyev, K.B.; Baimbetov, A.K.; Sarsenbayeva, A.B.; Lyan, E. Atrial fibrillation: Epidemiology, pathophysiology, and clinical complications (literature review). J. Cardiovasc. Electrophysiol. 2023, 34, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Dilaveris, P.E.; Kennedy, H.L. Silent atrial fibrillation: Epidemiology, diagnosis, and clinical impact. Clin. Cardiol. 2017, 40, 413–418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ko, D.; Chung, M.K.; Evans, P.T.; Benjamin, E.J.; Helm, R.H. Atrial Fibrillation: A Review. JAMA 2025, 333, 329–342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGilvray, M.M.O.; Barron, L.; Yates, T.E.; Zemlin, C.W.; Damiano, R.J., Jr. The Cox-Maze procedure: What lesions and why. JTCVS Tech. 2022, 17, 84–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156, Erratum in Circulation 2024, 149, e1413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. ESCScientific Document Group 2024 ESCGuidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- MacGregor, R.M.; Melby, S.J.; Schuessler, R.B.; Damiano, R.J. Energy Sources for the Surgical Treatment of Atrial Fibrillation. Innovations 2019, 14, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Melby, S.J.; Schuessler, R.B.; Damiano, R.J., Jr. Ablation technology for the surgical treatment of atrial fibrillation. ASAIO J. 2013, 59, 461–468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitlock, R.P.; Vincent, J.; Blackall, M.H.; Hirsh, J.; Fremes, S.; Novick, R.; Devereaux, P.J.; Teoh, K.; Lamy, A.; Connolly, S.J.; et al. Left Atrial Appendage Occlusion Study II (LAAOS II). Can. J. Cardiol. 2013, 29, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, R.P.; Belley-Cote, E.P.; Paparella, D.; Healey, J.S.; Brady, K.; Sharma, M.; Reents, W.; Budera, P.; Baddour, A.J.; Fila, P.; et al. Left Atrial Appendage Occlusion during Cardiac Surgery to Prevent Stroke. N. Engl. J. Med. 2021, 384, 2081–2091. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Pothineni, N.V.K.; Singh, V.; Bawa, D.; Darden, D.; Kabra, R.; Singh, A.; Memon, S.; Romeya, A.; Van Meeteren, J.; et al. Long-Term Imaging and Clinical Outcomes of Surgical Left Atrial Appendage Occlusion with AtriClip. Am. J. Cardiol. 2023, 201, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Bartus, K.; Han, F.T.; Bednarek, J.; Myc, J.; Kapelak, B.; Sadowski, J.; Lelakowski, J.; Bartus, S.; Yakubov, S.J.; Lee, R.J. Percutaneous left atrial appendage suture ligation using the LARIAT device in patients with atrial fibrillation: Initial clinical experience. J. Am. Coll. Cardiol. 2013, 62, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Tarzia, V.; Ponzoni, M.; Lena, T.; Gerosa, G. Simultaneous epicardial atrial fibrillation ablation and left atrial appendage ligation: Early considerations. Ann. Cardiothorac. Surg. 2024, 13, 176–178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tilz, R.R.; Fink, T.; Bartus, K.; Wong, T.; Vogler, J.; Nentwich, K.; Panniker, S.; Fang, Q.; Piorkowski, C.; Liosis, S.; et al. A collective European experience with left atrial appendage suture ligation using the LARIAT+ device. Europace 2020, 22, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.K.; Schneeberger, E.W.; Osterday, R.; Miller, D.; Merrill, W.; Flege, J.B., Jr.; Gillinov, A.M. Video-assisted bilateral pulmonary vein isolation and left atrial appendage exclusion for atrial fibrillation. J. Thorac. Cardiovasc. Surg. 2005, 130, 797–802, Erratum in J. Thorac. Cardiovasc. Surg. 2006, 131, 772. [Google Scholar] [CrossRef] [PubMed]
- Zembala, M.O.; Suwalski, P. Minimally invasive surgery for atrial fibrillation. J Thorac. Dis. 2013, 5 (Suppl. S6), S704–S712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avazzadeh, S.; McBride, S.; O’Brien, B.; Coffey, K.; Elahi, A.; O’Halloran, M.; Soo, A.; Quinlan, L.R. Ganglionated Plexi Ablation for the Treatment of Atrial Fibrillation. J. Clin. Med. 2020, 9, 3081. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bisleri, G.; Pandey, A.K.; Verma, S.; Ali Hassan, S.M.; Yanagawa, B.; Khandaker, M.; Gaudino, M.; Russo, A.M.; Verma, A.; Bhatt, D.L.; et al. Combined Minimally Invasive Surgical and Percutaneous Catheter Ablation of Atrial Fibrillation: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Kiankhooy, A.; McMenamy, M.E. The Convergent procedure for AF: A surgeon’s perspective. J. Cardiovasc. Electrophysiol. 2022, 33, 1919–1926. [Google Scholar] [CrossRef] [PubMed]
- Geršak, B.; Podlogar, V.; Prolič Kalinšek, T.; Jan, M. Long-Term Outcomes after Convergent Procedure for Atrial Fibrillation. J. Clin. Med. 2024, 13, 5508. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Praet, K.M.; Nersesian, G.; Kofler, M.; Heil, E.; Unbehaun, A.; Klein, C.; Kempfert, J.; Falk, V.; Gerds-Li, J.H.; Starck, C. Minimally invasive approach to the treatment of atrial fibrillation: Concomitant Convergent and LARIAT procedure. Multimed. Man. Cardiothorac. Surg. 2022, 2022. [Google Scholar] [CrossRef] [PubMed]
- Schena, S.; Lindemann, J.; Carlson, A.; Wilcox, T.; Oujiri, J.; Berger, M.; Gasparri, M. Robotic-enhanced hybrid ablation for persistent and long-standing atrial fibrillation: Early assessment of feasibility, safety, and efficacy. JTCVS Tech. 2024, 25, 81–93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harlaar, N.; Oudeman, M.A.; Trines, S.A.; de Ruiter, G.S.; Mertens, B.J.; Khan, M.; Klautz, R.J.M.; Zeppenfeld, K.; Tjon, A.; Braun, J.; et al. Long-term follow-up of thoracoscopic ablation in long-standing persistent atrial fibrillation. Interact. Cardiovasc. Thorac. Surg. 2022, 34, 990–998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muneretto, C.; Baudo, M.; Rosati, F.; Petruccelli, R.D.; Curnis, A.; Di Bacco, L.; Benussi, S. Thoracoscopic Surgical Ablation of Lone Atrial Fibrillation: Long-term Outcomes at 7 Years. Ann. Thorac. Surg. 2023, 116, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Eranki, A.; Wilson-Smith, A.; Flynn, C.; Williams, M.; Manganas, C. Mid term freedom from atrial fibrillation following hybrid ablation, a systematic review and meta analysis. J. Cardiothorac. Surg. 2023, 18, 155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haldar, S.; Khan, H.R.; Boyalla, V.; Kralj-Hans, I.; Jones, S.; Lord, J.; Onyimadu, O.; Satishkumar, A.; Bahrami, T.; De Souza, A.; et al. Catheter ablation vs. thoracoscopic surgical ablation in long-standing persistent atrial fibrillation: CASA-AF randomized controlled trial. Eur. Heart J. 2020, 41, 4471–4480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ad, N.; Henry, L.; Hunt, S.; Holmes, S.D. Impact of clinical presentation and surgeon experience on the decision to perform surgical ablation. Ann. Thorac. Surg. 2013, 96, 763–768, discussion 768–769. [Google Scholar] [CrossRef] [PubMed]
- McClure, G.R.; Belley-Cote, E.P.; Jaffer, I.H.; Dvirnik, N.; An, K.R.; Fortin, G.; Spence, J.; Healey, J.; Singal, R.K.; Whitlock, R.P. Surgical ablation of atrial fibrillation: A systematic review and meta-analysis of randomized controlled trials. Europace 2018, 20, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Osmancik, P.; Budera, P.; Talavera, D.; Hlavicka, J.; Herman, D.; Holy, J.; Cervinka, P.; Smid, J.; Hanak, P.; Hatala, R.; et al. Five-year outcomes in cardiac surgery patients with atrial fibrillation undergoing concomitant surgical ablation versus no ablation. The long-term follow-up of the PRAGUE-12 Study. Heart Rhythm 2019, 16, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Fedele, D.; Casuso Alvarez, M.; Maida, A.; Vasumini, N.; Amicone, S.; Canton, L.; Di Leo, M.; Basile, M.; Manaresi, T.; Angeli, F.; et al. Prevention of atrial fibrillation with SGLT2 inhibitors across the spectrum of cardiovascular disorders: A meta-analysis of randomised controlled trials. Eur. Heart J. Cardiovasc. Pharmacother. 2025, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Dukkipati, S.R.; Neuzil, P.; Anic, A.; Petru, J.; Funasako, M.; Cochet, H.; Minami, K.; Breskovic, T.; Sikiric, I.; et al. Pulsed Field Ablation of Paroxysmal Atrial Fibrillation: 1-Year Outcomes of IMPULSE, PEFCAT, and PEFCAT II. JACC Clin. Electrophysiol. 2021, 7, 614–627. [Google Scholar] [CrossRef] [PubMed]
Energy Source | Mechanism of Action | Tissue Penetration | Advantages | Limitations |
---|---|---|---|---|
Radiofrequency (RF) | Resistive heating via alternating current | 3–5 mm | Well-established, transmurality can be monitored, available in unipolar and bipolar forms | Risk of charring, incomplete lesions in thick atrial tissue, esophageal and coronary artery injury |
Cryoablation | Freezing leads to ice crystal formation and cellular disruption | 4–6 mm | Preserves tissue architecture, less thrombogenic, good for pulmonary vein isolation | Longer application time, risk of incomplete lesions in warm areas |
High-Intensity Focused Ultrasound | Acoustic energy generates heat at focal point | 3–6 mm | Precise, no direct tissue contact needed, lower collateral damage | Limited availability, risk of esophageal injury |
Microwave | Electromagnetic radiation causes molecular agitation and heat | 3–10 mm | Can create wide, continuous lesions | Less controlled lesion size, possible collateral damage |
Laser | Focused light energy converted into heat | 2–4 mm | High precision, minimal collateral damage | Expensive, limited penetration depth, less widespread use |
Technique | Surgical Approach | Energy Source | Advantages | Limitations |
---|---|---|---|---|
Mini-Thoracotomy Ablation | Left mini-thoracotomy (anterior axillary line) | Bipolar RF/Cryoablation | Direct access to LA, compatible with LAA exclusion, good transmurality | Unilateral access, less flexible for biatrial lesions |
Thoracoscopic Ablation | Bilateral thoracoscopic access | Bipolar RF/Cryoablation | No sternotomy, good visualization, pulmonary vein isolation (PVI) | Technically demanding, requires single-lung ventilation, limited access to LA |
Hybrid Approach (Surgical + EP) | Thoracoscopic + transcatheter (staged or simultaneous) | Bipolar RF/Cryo + Endocardial RF | Comprehensive lesion sets, improved long-term success, tailored per patient | Requires coordination between specialties, multiple procedures |
Convergent Procedure | Subxiphoid or limited thoracoscopic + endocardial | Unipolar RF + Endocardial RF | Posterior LA wall ablation, suitable for persistent AF, less invasive | Limited epicardial access, technically demanding, not for all AF types |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benvegnù, L.; Cibin, G.; Perrone, F.; Tarzia, V.; D’Onofrio, A.; Luciani, G.B.; Gerosa, G.; Onorati, F. Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery. J. Cardiovasc. Dev. Dis. 2025, 12, 289. https://doi.org/10.3390/jcdd12080289
Benvegnù L, Cibin G, Perrone F, Tarzia V, D’Onofrio A, Luciani GB, Gerosa G, Onorati F. Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery. Journal of Cardiovascular Development and Disease. 2025; 12(8):289. https://doi.org/10.3390/jcdd12080289
Chicago/Turabian StyleBenvegnù, Luciana, Giorgia Cibin, Fabiola Perrone, Vincenzo Tarzia, Augusto D’Onofrio, Giovanni Battista Luciani, Gino Gerosa, and Francesco Onorati. 2025. "Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery" Journal of Cardiovascular Development and Disease 12, no. 8: 289. https://doi.org/10.3390/jcdd12080289
APA StyleBenvegnù, L., Cibin, G., Perrone, F., Tarzia, V., D’Onofrio, A., Luciani, G. B., Gerosa, G., & Onorati, F. (2025). Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery. Journal of Cardiovascular Development and Disease, 12(8), 289. https://doi.org/10.3390/jcdd12080289