Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,062)

Search Parameters:
Keywords = tea quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2490 KB  
Article
Integrative Feeding Strategies with Essential Oils and Probiotics to Improve Raw Meat Quality and Carcass Traits in Broiler Chickens
by Lavinia Stef, Nicolae Corcionivoschi, Calin Julean, Todd Callaway, Eliza Simiz, Adela Marcu, Ducu Sandu Stef, Ioan Pet, Iuliana Popescu, Gratiela Gradisteanu Pircalabioru, Florin Dan Simiz and Igori Balta
Agriculture 2025, 15(22), 2356; https://doi.org/10.3390/agriculture15222356 - 13 Nov 2025
Abstract
Essential oils (EOs) have gained recognition as promising alternatives to antibiotics due to their positive effects on bird growth performance, enhanced meat quality, and improved overall health, without producing the negative consequences associated with antibiotics. This study evaluated the effects of dietary supplementation [...] Read more.
Essential oils (EOs) have gained recognition as promising alternatives to antibiotics due to their positive effects on bird growth performance, enhanced meat quality, and improved overall health, without producing the negative consequences associated with antibiotics. This study evaluated the effects of dietary supplementation of tea tree (TTEO) and thyme (TEO) EOs, individually or in combination with the probiotic BioPlus 2b (Bacillus subtilis and Bacillus licheniformis), on poultry broiler performance, including the meat quality. A total of 240 ROSS 308 broilers were assigned to eight dietary treatments over a 35-day trial. Parameters such as body weight (BW), feed conversion ratio (FCR), carcass portion, drip loss, and meat pH were evaluated. TTEO had a significant (p ≤ 0.05) impact on final carcass and breast portion, while in combination with probiotics, specifically TTEO with BioPlus significantly (p ≤ 0.05) reduced meat drip loss. GC-MS analysis identified terpinen-4-ol and γ-terpinene as the major constituents of TTEO, and thymol and carvacrol as the major constituents of TEO. In conclusion, combinations of TTEO, TEO, and probiotics can have beneficial effects on chicken raw meat quality, providing a complementary benefit to the industry and representing a viable alternative to conventional agents. Full article
(This article belongs to the Special Issue Quality Assessment and Processing of Farm Animal Products)
Show Figures

Figure 1

23 pages, 10587 KB  
Article
Impact of Specialized Cultivation Evolution on Ecosystem Services in Anxi Tea Gardens
by Yongqiang Ma, Tiejun Wen, Yujie Liao, Sunbowen Zhang and Shuisheng Fan
Agriculture 2025, 15(22), 2334; https://doi.org/10.3390/agriculture15222334 - 10 Nov 2025
Viewed by 233
Abstract
The specialization of tea gardens represents a significant pathway to enhancing the international competitiveness of agriculture. However, it may also disrupt the supply–demand balance of ecosystem services. This study addresses this gap by focusing on the specialized tea zone of Anxi as a [...] Read more.
The specialization of tea gardens represents a significant pathway to enhancing the international competitiveness of agriculture. However, it may also disrupt the supply–demand balance of ecosystem services. This study addresses this gap by focusing on the specialized tea zone of Anxi as a case study. Using the InVEST model, we quantitatively assessed four key ecosystem services between 1990 and 2020: carbon storage, habitat quality, water yield, and soil conservation. The findings reveal that tea gardens perform relatively well in terms of carbon storage and habitat quality. However, their capacity for water conservation is limited, and soil conservation is highly susceptible to human disturbance. Dynamic transitions between tea gardens and forests have exerted considerable influence on changes in ecosystem services, with policies and practices aimed at converting tea plantations back to forest demonstrating a positive role in ecological restoration. Finally, guided by the principles of nature-based solutions, this study proposes targeted strategies to provide scientific support and practical references for sustainable development in specialized agricultural regions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

17 pages, 2106 KB  
Article
Effects of Light Quality on Anthocyanin Biosynthesis and Related Gene Expression in Camellia sinensis ‘Ziyan’
by Wei Li, Xiaoqin Tan, Jiacheng Huang, Wei Chen, Liqiang Tan and Qian Tang
Int. J. Mol. Sci. 2025, 26(22), 10860; https://doi.org/10.3390/ijms262210860 - 9 Nov 2025
Viewed by 270
Abstract
The purple-leaf tea cultivar ‘Ziyan’ is characterized by its high anthocyanin levels, which confer unique visual traits and health benefits. However, the effects of light quality on anthocyanin production remain poorly understood. This study explored the effects of red and blue light on [...] Read more.
The purple-leaf tea cultivar ‘Ziyan’ is characterized by its high anthocyanin levels, which confer unique visual traits and health benefits. However, the effects of light quality on anthocyanin production remain poorly understood. This study explored the effects of red and blue light on anthocyanin biosynthesis in ‘Ziyan’, with white light as the control, using transcriptomic analysis, enzyme assays, and anthocyanin content measurements. The results showed that anthocyanin content increased under blue and red light, with blue light being the most effective, as the total anthocyanin content reached 81.79 mg/100 g FW, a 29.64% increase compared with white light. Delphinidin, cyanidin, and pelargonidin increased by 27.52%, 42.58%, and 102.72%, respectively. Transcriptome analysis showed red and blue light influenced photoreceptors and light signaling components, with decreased COP1 and increased SPA1 expression. Blue light upregulated key anthocyanin structural genes despite downregulating their transcription factors; it enhanced CHS, F3′H, F3′5′H, and ANS activities but decreased LAR and ANR activities, similar to the effect of red light. This research showed that the underlying mechanism may be achieved by coordinating light perception, gene expression, and enzyme activity. This study provides a theoretical basis for optimizing the light quality in purple tea plant cultivation. Full article
(This article belongs to the Special Issue Tea and Health)
Show Figures

Figure 1

39 pages, 2371 KB  
Review
Plant-Derived Modifiers for Antimicrobial Soft Denture Liners: A Review
by Patrycja Kula, Grzegorz Chladek and Izabela Barszczewska-Rybarek
Int. J. Mol. Sci. 2025, 26(22), 10848; https://doi.org/10.3390/ijms262210848 - 8 Nov 2025
Viewed by 238
Abstract
This review examines strategies to enhance the antifungal properties of commercial soft lining materials (SLMs) through modification with plant-derived oils, extracts, and powders. These natural bioactive compounds act via multiple mechanisms, including disruption of fungal cell membranes, inhibition of biofilm formation, and interference [...] Read more.
This review examines strategies to enhance the antifungal properties of commercial soft lining materials (SLMs) through modification with plant-derived oils, extracts, and powders. These natural bioactive compounds act via multiple mechanisms, including disruption of fungal cell membranes, inhibition of biofilm formation, and interference with Candida albicans metabolism, the pathogen causing denture-associated candidiasis. Their incorporation into SLM provides localized antifungal activity at the denture–mucosa interface. The review highlights Aloe vera (aloe), Azadirachta indica (neem), Ocimum basilicum (basil), Melaleuca alternifolia (tea tree), Cocos nucifera (coconut), Allium sativum (garlic), Thymus vulgaris (thyme), and chitosan as notable sources of phytotherapeutics that consistently inhibit C. albicans growth. In addition to antimicrobial effects, studies assessed both intrinsic (hardness, tensile strength, tear strength) and interfacial (bond strength) mechanical properties, as well as surface roughness. Most formulations maintained acceptable mechanical performance and improved surface smoothness. Key limitations include rapid leaching of active compounds, variability in testing methods, and insufficient in vivo and cytotoxicity data. Future research should prioritize the high-quality purification of natural extracts, the isolation of well-defined bioactive compounds, and the design of systems enabling selective and sustained release of these agents, ensuring reproducibility, enhanced stability, and clinical reliability of next-generation bioactive SLMs. Full article
Show Figures

Graphical abstract

15 pages, 591 KB  
Article
Development of Smoothies Fermented with Kombucha Microorganisms: Sensory Characteristics, Functional Properties, and Microbiological Aspects
by Lorene Simioni Yassin, Camila Gomes Sheleidres, Thaís Estéfane Fischer, Acácio Antonio Ferreira Zielinski, Paulo Ricardo Los, Luiz Gustavo Lacerda, Aline Alberti and Alessandro Nogueira
Fermentation 2025, 11(11), 637; https://doi.org/10.3390/fermentation11110637 - 8 Nov 2025
Viewed by 391
Abstract
Smoothies and kombucha are beverages appreciated by contemporary consumers due to their appealing flavor, convenience, and perceived health benefits. This study aimed to develop fruit- and white tea-based smoothies with high sensory and functional quality, and to evaluate the effects of fermentation with [...] Read more.
Smoothies and kombucha are beverages appreciated by contemporary consumers due to their appealing flavor, convenience, and perceived health benefits. This study aimed to develop fruit- and white tea-based smoothies with high sensory and functional quality, and to evaluate the effects of fermentation with kombucha microorganisms. The smoothie base (70%) was composed of 60% strawberry pulp and 40% cryoconcentrated apple juice. Ten formulations were designed using a centroid simplex approach and subjected to sensory analysis. The two most accepted by consumers (E5: 15% blackberry pulp and 15% white tea; E10: 5% blackberry pulp and 5% acerola pulp, and 20% white tea) were fermented for 10, 15, and 20 h. The formulations were evaluated through sensory analysis. Fermentation led to significant (p < 0.05) reductions in glucose, fructose, and caffeine contents, while significantly (p < 0.05) increasing acidity, total phenolic content, ascorbic acid levels, and color intensity. Moreover, the fermented smoothie exhibited higher α-glucosidase inhibitory potential. One fermented smoothie (E5 fermented for 15 h) showed desirable sensory and functional properties. Therefore, this study demonstrates the successful development of smoothies, fermented or non-fermented with kombucha microorganisms, characterized by strong functional attributes and high sensory acceptance. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

15 pages, 1380 KB  
Article
Transglutaminase Effects on Texture and Flow Behaviour of Fermented Milk During Storage Using Concentrated Kombucha Inoculum
by Mirela Iličić, Jovana Degenek, Vladimir Vukić, Ljubica Dokić, Katarina Kanurić, Rade Popović and Dajana Vukić
Processes 2025, 13(11), 3598; https://doi.org/10.3390/pr13113598 - 7 Nov 2025
Viewed by 150
Abstract
This study investigated the effect of a concentrated kombucha inoculum and transglutaminase (TG) on the rheological and textural properties of fermented milk products and compared their average production costs to commercial yoghurt. Semi-skimmed milk was used, to which microbial TG was added at [...] Read more.
This study investigated the effect of a concentrated kombucha inoculum and transglutaminase (TG) on the rheological and textural properties of fermented milk products and compared their average production costs to commercial yoghurt. Semi-skimmed milk was used, to which microbial TG was added at a level of 0.02% w/w. The kombucha inoculum, prepared from black tea, was concentrated to 55.6% total solids. Four samples were produced: two with TG and two without. The TG-containing samples showed significantly higher textural properties, including firmness and consistency, than the non-TG samples. They also exhibited the largest hysteresis loop area and the highest yield stress, indicating a stronger gel structure. The Herschel–Bulkley model successfully described the flow behaviour of all samples and confirmed their shear-thinning, non-Newtonian nature. Principal Component Analysis (PCA) showed that both TG addition and inoculum concentration significantly influenced the product properties. TG improved the rheological and textural properties and increased the stability during storage. However, the production costs for TG-treated samples were higher than those for non-TG-treated samples and commercial yoghurt. Nevertheless, the higher costs could be justified by the perceived additional nutritional benefits for consumers. Overall, the results show that the combination of concentrated kombucha inoculum with transglutaminase can improve the structural and rheological quality of fermented dairy products, which is potentially of commercial importance. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

19 pages, 2565 KB  
Article
Effects of Various Drying Parameters on the Volatile and Non-Volatile Compositions of ‘Qiancha 1’ White Tea
by Jinlong Luo, Siyu Liao, Fengjiao Ding, Yuqiao Dai, Zhongying Liu, Ting Yang, Tuo Zhang, Shimao Fang, Yan Li, Lulu Pu, Ke Pan, Wanping Fang and Qiang Shen
Foods 2025, 14(21), 3787; https://doi.org/10.3390/foods14213787 - 5 Nov 2025
Viewed by 408
Abstract
‘Qiancha 1’ is an excellent raw material for manufacturing white tea. The effects of different drying parameters on the quality performance of ‘Qiancha 1’ white tea remain poorly understood, which restricts the precise regulation of the quality of ‘Qiancha 1’ white tea. In [...] Read more.
‘Qiancha 1’ is an excellent raw material for manufacturing white tea. The effects of different drying parameters on the quality performance of ‘Qiancha 1’ white tea remain poorly understood, which restricts the precise regulation of the quality of ‘Qiancha 1’ white tea. In this research, we systematically investigated the influence of drying temperature (65 °C, 75 °C, and 90 °C) and drying duration (1 h, 2 h, and 3 h) on its non-volatile and volatile compositions, using sensory evaluation, E-tongue, and non-volatilomic and volatilomic analyses. The results showed that the tea sample dried at 65 °C for 3 h had a sweet, mellow, and fresh flavor and scored 95 points, but high-temperature drying (90 °C) could promote increased bitterness and decreased sweetness. High-temperature drying was closely related to a caramel-like and milk-like flavor, which promoted an increase in the content of terpenoids, heterocycle compounds, and esters. During drying, the flavonoid and phenolic acid content increased markedly, contributing to bitterness and astringency, while nucleotides, amino acids, and their derivatives decreased, leading to a reduced umami intensity. A total of 37 key taste-active metabolites were identified, including bitter compounds (e.g., alkaloids), sweet compounds (e.g., phenolic acids), and umami compounds (e.g., nucleotides), whose dynamic changes directly influenced the taste profile of white tea. High-temperature drying promoted an increase in the content of volatile metabolites, such as terpenoids, heterocyclics, and esters, while low-temperature and long-duration drying was beneficial for preserving volatile metabolites like heptanal. 2-Methoxy-3-(1-methylethyl)-pyrazine was determined as the volatile compound with the highest rOAV, providing a sweetness and caramel-like flavor. Overall, the metabolomic analysis revealed that the content of flavonoids and phenolic acids increased after the drying process, which was related to the bitter and astringent taste of the tea liquor. The content of nucleotides, amino acids, and their derivatives decreased after drying, which caused the umami of the tea liquor to weaken. This study provides a theoretical basis for the optimization of the ‘Qiancha 1’ white tea drying process. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

23 pages, 4378 KB  
Article
Novel Nanocomposites of Carbon Nanomaterials and Poly(Neutral Red) Electropolymerized from Reline for DNA Damage Detection and Beverage Antioxidant Influence Assessment
by Anastasia Malanina, Rufiia Derbisheva, Tatiana Krasnova, Rezeda Shamagsumova, Vladimir Evtugyn, Alexey Ivanov and Anna Porfireva
Biosensors 2025, 15(11), 735; https://doi.org/10.3390/bios15110735 - 3 Nov 2025
Viewed by 286
Abstract
Novel nanocomposites based on carbon black or multi-walled carbon nanotubes functionalized with carboxylic groups and Neutral red electropolymerized from reline were obtained in a one-step protocol and used for DNA biosensor development. The synthesis was carried out in potentiodynamic mode in a deep [...] Read more.
Novel nanocomposites based on carbon black or multi-walled carbon nanotubes functionalized with carboxylic groups and Neutral red electropolymerized from reline were obtained in a one-step protocol and used for DNA biosensor development. The synthesis was carried out in potentiodynamic mode in a deep eutectic solvent reline consisting of a mixture of choline chloride and urea. The nanocomposite based on carbon black and poly(Neutral red) was applied for a voltammetric DNA biosensor developed to discriminate DNA damage. The sensor developed allowed the native, thermally denatured, and chemically oxidized DNA discrimination with either current changes or peak potential shifts. The nature of the DNA used had affected the sensor’s analytical response value. The DNA biosensor suggested was tested for the assessment of antioxidant capacity in such beverages as tea, coffee, white wine, and fruit-based drink purchased from local market. Simple, fast, and inexpensive approach of sensor modifying layer assembly would be demanded in control of food products and beverages quality, as well as for medical purposes. Full article
(This article belongs to the Special Issue Nanotechnology Biosensing in Bioanalysis and Beyond)
Show Figures

Figure 1

36 pages, 2173 KB  
Review
Natural Products in Alzheimer’s Disease: A Systematic Review of Clinical Trials and Underlying Molecular Mechanisms
by Maria T. Bayo Jimenez, Lorenzo Rivas-García, Cristina Sánchez-González, Giuseppe Grosso, Vivian Lipari, Laura Vera-Ramírez, Maurizio Battino, Francesca Giampieri, José L. Quiles and Tamara Y. Forbes-Hernández
Int. J. Mol. Sci. 2025, 26(21), 10631; https://doi.org/10.3390/ijms262110631 - 31 Oct 2025
Viewed by 999
Abstract
This systematic review included 31 clinical trial articles examining the effects of natural compounds on Alzheimer’s disease (AD) and mild cognitive impairment (MCI), involving 3582 participants aged 50–90. Treatment durations ranged from 8 weeks to 2 years, with an average of 12.5 months. [...] Read more.
This systematic review included 31 clinical trial articles examining the effects of natural compounds on Alzheimer’s disease (AD) and mild cognitive impairment (MCI), involving 3582 participants aged 50–90. Treatment durations ranged from 8 weeks to 2 years, with an average of 12.5 months. Notably, 11 studies focused on herbal extracts highlighting their prominence in current research. These extracts showed potential cognitive and neuroprotective benefits, although results varied across compounds and study designs. Other natural compounds—including flavonoids, polyphenols, omega-3 fatty acids, Aloe vera, Spirulina, and citrus phytochemicals—may provide cognitive and neuroprotective benefits, with ginseng and Ginkgo biloba combinations also showing promise. Curcumin and Melissa officinalis had limited effects, resveratrol showed mixed outcomes with some side effects, and matcha green tea may improve cognition and sleep quality. Despite generally favorable results, the studies varied considerably in design and quality; nonetheless, herbal extracts represent a prominent category of natural interventions in AD and MCI, underscoring the need for further large-scale, high-quality clinical trials to confirm their therapeutic potential. Full article
Show Figures

Figure 1

15 pages, 29323 KB  
Article
Non-Destructive Sensing of Tea Pigments in Black Tea Rolling Process
by Xuan Xuan, Ting An, Hanting Zou, Jiancheng Ma, Yongwen Jiang, Haibo Yuan and Haihua Zhang
Foods 2025, 14(21), 3723; https://doi.org/10.3390/foods14213723 - 30 Oct 2025
Viewed by 284
Abstract
Rolling is a critical step in the processing of black tea, marking the beginning of fermentation. At this stage, the formation of tea pigments causes significant changes in the color of the processed leaves, laying the essential groundwork for the development of color [...] Read more.
Rolling is a critical step in the processing of black tea, marking the beginning of fermentation. At this stage, the formation of tea pigments causes significant changes in the color of the processed leaves, laying the essential groundwork for the development of color and flavor quality components in subsequent fermentation processes. However, the rapid and non-destructive sensing of tea pigments during black tea rolling remains challenging. This study focused on black tea products undergoing rolling as its research subject, utilizing electrical characteristic detection technology to collect time-series electrical parameters of rolling leaves at various testing frequencies. The original electrical parameters were preprocessed using multiplicative scatter correction (MSC), min-max normalization (Min-Max), and smoothing (Smooth). Various selection methods, including the competitive adaptive reweighting algorithm (CARS), uninformative variable elimination (UVE), and the variable combination population analysis and iterative retained information variable algorithm (VCPA-IRIV), were employed to identify electrical parameters relevant to the targeted attributes. Quantitative prediction models for the content of tea pigments were established using partial least squares regression (PLSR) and support vector machine regression (SVR). The results demonstrated that the Smooth-VCPA-IRIV-SVR model exhibited superior performance in predicting the contents of theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). Correlation coefficients of prediction (Rp) all exceeded 0.99, and Relative prediction deviation (RPD) values were all above 6.5, indicating that the model enables rapid and non-destructive detection of tea pigment content during black tea rolling. These findings provide preliminary technical support and reference for the digital production of black tea. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) and Machine Learning for Foods)
Show Figures

Figure 1

20 pages, 8688 KB  
Article
DE-YOLOv13-S: Research on a Biomimetic Vision-Based Model for Yield Detection of Yunnan Large-Leaf Tea Trees
by Shihao Zhang, Xiaoxue Guo, Meng Tan, Chunhua Yang, Zejun Wang, Gongming Li and Baijuan Wang
Biomimetics 2025, 10(11), 724; https://doi.org/10.3390/biomimetics10110724 - 30 Oct 2025
Viewed by 487
Abstract
To address the challenges of variable target scale, complex background, blurred image, and serious occlusion in the yield detection of Yunnan large-leaf tea tree, this study proposes a deep learning network DE-YOLOv13-S that integrates the visual mechanism of primates. DynamicConv was used to [...] Read more.
To address the challenges of variable target scale, complex background, blurred image, and serious occlusion in the yield detection of Yunnan large-leaf tea tree, this study proposes a deep learning network DE-YOLOv13-S that integrates the visual mechanism of primates. DynamicConv was used to optimize the dynamic adjustment process of the effective receptive field and channel the gain of the primate visual system. Efficient Mixed-pooling Channel Attention was introduced to simulate the observation strategy of ‘global gain control and selective integration parallel’ of the primate visual system. Scale-based Dynamic Loss was used to simulate the foveation mechanism of primates, which significantly improved the positioning accuracy and robustness of Yunnan large-leaf tea tree yield detection. The results show that the Box Loss, Cls Loss, and DFL Loss of the DE-YOLOv13-S network decreased by 18.75%, 3.70%, and 2.54% on the training set, and by 18.48%, 14.29%, and 7.46% on the test set, respectively. Compared with YOLOv13, its parameters and gradients are only increased by 2.06 M, while the computational complexity is reduced by 0.2 G FLOPs, precision, recall, and mAP are increased by 3.78%, 2.04% and 3.35%, respectively. The improved DE-YOLOv13-S network not only provides an efficient and stable yield detection solution for the intelligent management level and high-quality development of tea gardens, but also provides a solid technical support for the deep integration of bionic vision and agricultural remote sensing. Full article
(This article belongs to the Special Issue Biologically Inspired Vision and Image Processing 2025)
Show Figures

Figure 1

20 pages, 6023 KB  
Article
Genome-Wide Identification, Characterization, and Expression Analysis of Trehalose Metabolism Genes in Tea Plant (Camellia sinensis) Reveals Their Roles in Response to Heat Stress
by Shizhong Zheng, Xiaohui Chen, Ziwei Zhou, Rongzhao Lin, Huangxin Jiang, Liyi Xu and Jingjing Su
Plants 2025, 14(21), 3309; https://doi.org/10.3390/plants14213309 - 29 Oct 2025
Viewed by 369
Abstract
Heat stress exacerbated by global warming severely impairs the growth and tea quality of the tea plant (Camellia sinensis). Trehalose is pivotal for regulating plant growth and enhancing stress resistance. However, the molecular characteristics, expression patterns, and regulatory mechanisms of trehalose [...] Read more.
Heat stress exacerbated by global warming severely impairs the growth and tea quality of the tea plant (Camellia sinensis). Trehalose is pivotal for regulating plant growth and enhancing stress resistance. However, the molecular characteristics, expression patterns, and regulatory mechanisms of trehalose metabolism genes in tea plants under heat stress remain unclear. Therefore, this study conducted a comprehensive investigation of trehalose metabolism genes in the Tieguanyin tea plant genome. A total of 30 trehalose metabolism genes were identified, including 17 trehalose-6-phosphate synthase (CsTPS), 9 trehalose-6-phosphate phosphatase (CsTPP), and 4 trehalase (CsTRE) genes. These genes were characterized in terms of their chromosomal locations and gene structures; the encoded proteins were characterized in terms of their phylogenetic relationships, conserved motifs, functional domains, physicochemical properties, and subcellular distributions. The results showed that these genes exhibit family-specific structural and functional features, laying a foundation for further functional studies. Collinearity analysis identified 20 homologous gene pairs between tea plants and Arabidopsis thaliana, significantly more than the 3 pairs with Oryza sativa, suggesting a closer evolutionary relationship with A. thaliana. Additionally, five intraspecific duplicated gene pairs were identified, all with Ka/Ks values < 1, indicating they have undergone strong purifying selection during evolution, leading to functional stability. Cis-acting element analysis revealed abundant stress-responsive, light-responsive, and phytohormone-responsive elements in the promoter regions of these trehalose metabolism genes, indicating their potential involvement in tea plant stress resistance regulation. Differential expression analyses under heat stress with exogenous trehalose treatment (CK: control, T: water-sprayed heat stress, TT: 5.0 mM trehalose-sprayed heat stress) identified six differentially expressed genes (DEGs). We further analyzed the expression patterns of these DEGs. Specifically, CsTPS1, CsTPS5, and CsTPS12 were increasingly upregulated in CK, T, and TT, respectively, while CsTPP1 and CsTPP2 were upregulated in TT relative to T. Additionally, CsTRE1, CsTRE2, and CsTRE4 showed downregulation in TT compared to T, though they were not classified as DEGs. These findings indicate that exogenous trehalose application modulates trehalose metabolism by promoting CsTPS and CsTPP expression while inhibiting CsTRE expression, thereby increasing endogenous trehalose content in tea plants under heat stress. Yeast heat stress tolerance assays confirmed that CsTPS1, CsTPS5, CsTPS12, and CsTPP1 enhanced yeast survival at 38 °C, verifying their function in improving organismal heat stress tolerance. In conclusion, these results clarify the roles of trehalose metabolism genes in tea plants’ heat stress response, demonstrating that exogenous trehalose modulates their expression to increase endogenous trehalose levels. This study provides a theoretical foundation for exploring trehalose-mediated heat stress resistance mechanisms and improving tea plant stress tolerance via genetic engineering. Full article
Show Figures

Figure 1

13 pages, 2828 KB  
Communication
Efficacy of Melaleuca alternifolia and Pelargonium graveolens Oils Against Staphylococcus aureus and Staphylococcus epidermidis: An In Vitro Study
by Ntombokhanyo Mbanjwa, Gaofetoge Lenetha, Refilwe Molatlhegi and Ntelekwane George Khasapane
Microorganisms 2025, 13(11), 2467; https://doi.org/10.3390/microorganisms13112467 - 29 Oct 2025
Viewed by 431
Abstract
The rise of antibiotic-resistant bacteria around knee implants significantly diminishes patients’ quality of life and mobility, necessitating innovative solutions to combat infections. This study explores the antimicrobial efficacy of tea tree (Melaleuca alternifolia) and geranium (Pelargonium graveolens) essential oils [...] Read more.
The rise of antibiotic-resistant bacteria around knee implants significantly diminishes patients’ quality of life and mobility, necessitating innovative solutions to combat infections. This study explores the antimicrobial efficacy of tea tree (Melaleuca alternifolia) and geranium (Pelargonium graveolens) essential oils against Staphylococcus aureus and Staphylococcus epidermidis. Utilizing bioassay preparation methods and minimal inhibitory concentration (MIC) assays, we found that tea tree oil notably inhibited S. aureus growth, while Geranium oil effectively targeted S. epidermidis. Scanning and transmission electron microscopy revealed substantial morphological alterations in both bacterial strains following treatment with the essential oils. Twenty compounds were identified by GC/MS chemical profiling in tea tree oil, with α-pinene (21.6%), γ-terpinene (21.1%), and terpinen-4-ol (17.3%) being the main ingredients. Forty compounds were found in Geranium oil, with citronellol (42.2%), geraniol (30.5%), and linalool (9.8%) constituting the majority. Our findings suggest that incorporating these essential oils into orthopaedic implants could significantly enhance their antibacterial effectiveness, offering a promising alternative to traditional antibiotic treatments and potentially reducing infection rates associated with knee implants. This research not only contributes to the understanding of natural antimicrobial agents but also paves the way for their practical application in clinical settings, addressing the critical challenge of antibiotic resistance. Full article
(This article belongs to the Special Issue Plant Extracts and Antimicrobials, Second Edition)
Show Figures

Figure 1

19 pages, 5328 KB  
Article
Effects of Solid-State Fermentation with Eurotium cristatum on the Physicochemical, Sensory, and Volatile Profiles of Summer–Autumn Green Tea
by Su Xu, Linyao Song, Yichen Zhao and Degang Zhao
Foods 2025, 14(21), 3681; https://doi.org/10.3390/foods14213681 - 28 Oct 2025
Viewed by 419
Abstract
Summer–autumn green tea (SAGT) is a high-yield green tea often compromised by pronounced bitterness, astringency and a weak aroma, which severely limit its consumer acceptability and economic value. To enhance its quality, this study employed solid-state fermentation with Eurotium cristatum, the core [...] Read more.
Summer–autumn green tea (SAGT) is a high-yield green tea often compromised by pronounced bitterness, astringency and a weak aroma, which severely limit its consumer acceptability and economic value. To enhance its quality, this study employed solid-state fermentation with Eurotium cristatum, the core probiotic fungus in Fu brick tea (FBT), to investigate its effects on the physicochemical, sensory, and volatile profiles of SAGT. The findings showed that after fermentation, the tea leaves developed a golden-yellow color, and the tea infusion turned brown. Moreover, the contents of flavonoids, tea polyphenols, soluble sugars, catechins, and free amino acids showed decreases of 3%, 33%, 38%, 41%, and 48%, respectively, when compared to SAGT. At the same time, the astringency and bitterness levels of the infusions significantly diminished (p < 0.05) post-fermentation, and the 8-day fermented tea sample was the most preferred by the sensory panel. During fermentation, E-nose, GC-MS, and GC-IMS analyses revealed a substantial transformation of the volatile profile, with a total of 104 and 129 volatile organic compounds (VOCs) were identified using GC-MS and GC-IMS techniques, respectively. The ROAV analysis highlighted 22 aroma-active compounds, particularly linalool and methyl salicylate, whose values increased significantly (p < 0.05), reaching values of 19,561.95 and 109.56, respectively, making them key contributors to the prominent floral and minty fragrance in the fermented tea. Additionally, PLS-DA analysis revealed 22 and 33 differential VOCs in the GC-MS and GC-IMS methods, respectively, with the majority stemming from the PAL and MEP metabolic pathways. This study provides theoretical insights aimed at enhancing the flavor quality of SAGT. Full article
Show Figures

Figure 1

15 pages, 3966 KB  
Article
Preparation of Suaeda Tea Through Semi-Solid Fermentation Utilizing Kluyveromyces marxianus, Komagataeibacter europaeus, and Acetobacter schutzenbachii: Physicochemical Characteristics, Process Optimization, and Antioxidant Activity
by Aoqi Dong, Xiaoying Dong, Xinying Dai, Yanru Gao, Yuewen Ning, Xiya Fan and Haiyan Liu
BioTech 2025, 14(4), 83; https://doi.org/10.3390/biotech14040083 - 28 Oct 2025
Viewed by 195
Abstract
Suaeda salsa, an annual herb belonging to the genus Suaeda within the Chenopodiaceae family, is highly salt-tolerant and can thrive in large quantities on saline and alkaline soils. This study presents a novel fermentation technique to produce Suaeda tea, utilizing a synergistic [...] Read more.
Suaeda salsa, an annual herb belonging to the genus Suaeda within the Chenopodiaceae family, is highly salt-tolerant and can thrive in large quantities on saline and alkaline soils. This study presents a novel fermentation technique to produce Suaeda tea, utilizing a synergistic blend of microbial agents: Kluyveromyces marxianus, Komagataeibacter europaeus, and Acetobacter schutzenbachii. The resulting tea demonstrates a potent antioxidant capacity, with a hydroxyl radical scavenging rate of 64.2% and an exceptional 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity of 83.3%, along with increased ferric ion reduction/antioxidant power (FRAP) reducing power (1.82), indicating its superior antioxidant profile. Through the comparison of different microbial strain combinations under varying process parameters such as fermentation temperature and duration, the experiment revealed that fermentation at 37 °C for 24 h results in the highest concentrations of tea polyphenols (TPs) (≥10.87 mg/mL) and free amino acids (26.32 mg/100 mL). The quality of the fermented Suaeda tea meets the stringent GB/T 21733-2008 standards for tea beverages, exhibiting excellent physicochemical indices and sensory attributes. The antioxidant efficacy of the fermented Suaeda tea persists significantly throughout a 180-day duration. The optimization of the fermentation process for Suaeda tea not only provides a theoretical framework for large-scale production but also establishes a foundation for Suaeda salsa in the tea beverage sector. This innovation enriches the market with a diverse range of health-promoting teas, catering to the growing consumer demand for nutritious and beneficial beverages. Full article
Show Figures

Figure 1

Back to TopTop