Efficacy of Melaleuca alternifolia and Pelargonium graveolens Oils Against Staphylococcus aureus and Staphylococcus epidermidis: An In Vitro Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Essential Oils
2.2. Microorganisms
2.3. Chromatographic Analyses
2.4. Bioassay Preparation
2.5. Microdilution Assay
2.6. The Manufacturing Method of the Experimental Ti6Al4V Knee Samples
2.7. Scanning Electron Microscopy (SEM) on the Titanium Implant Materials
2.8. Transmission Electron Microscopy (TEM) on the Titanium Implant Materials
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of the Selected Essential Oils
3.2. Antimicrobial Properties of Essential Oils
3.2.1. Initial Key Findings
3.2.2. Further Testing and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, W.F.; Silva, P.M.S.; Silva, R.C.S.; Silva, G.M.M.; Machado, G.; Coelho, L.C.B.B.; Correia, M.T.S. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J. Hosp. Infect. 2018, 98, 111–117. [Google Scholar] [CrossRef]
- Rohde, H.; Burandt, E.C.; Siemssen, N.; Frommelt, L.; Burdelski, C.; Wurster, S.; Scherpe, S.; Davies, A.P.; Harris, L.G.; Horstkotte, M.A.; et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007, 28, 1711–1720. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation, and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Allizond, V.; Comini, S.; Cuffini, A.M.; Banche, G. Current knowledge on biomaterials for orthopedic applications modified to reduce bacterial adhesive ability. Antibiotics 2022, 11, 529. [Google Scholar] [CrossRef]
- Dhar, J.; Thai, A.L.; Ghoshal, A.; Giomi, L.; Sengupta, A. Self-regulation of phenotypic noise synchronizes emergent organization and active transport in confluent microbial environments. Nat. Phys. 2022, 18, 945–951. [Google Scholar] [CrossRef]
- Gondil, V.S.; Subhadra, B. Biofilms and their role in diseases. BMC Microbiol. 2023, 23, 203. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhai, Z.; Zhou, P.; Li, W.; Hu, W.; Gong, W. Antimicrobial Resistance and New Antimicrobial Agents: A Review of the Literature. Curr. Med. Chem. 2025, 32, 6497–6516. [Google Scholar] [CrossRef] [PubMed]
- Khasapane, N.G.; Nkhebenyane, J.; Mnisi, Z.; Kwenda, S.; Thekisoe, O. Comprehensive whole genome analysis of Staphylococcus aureus isolates from dairy cows with subclinical mastitis. Front. Microbiol. 2024, 15, 1376620. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A. Antimicrobial resistance: A growing serious threat to global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Chinemerem Nwobodo, D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- Setlhare, G.G. An Investigation of Essential Oils as Antimicrobial Agents Against Antibiotic-resistant Bacteria Isolated at South African Hospices. Ph.D. Thesis, Central University of Technology, Bloemfontein, Free State, South Africa, 2017. [Google Scholar]
- Liu, J.; Zhang, X.; Niu, J.; Han, Z.; Bi, C.; Mehmood, K.; Al Farraj, D.A.; Alzaidi, I.; Iqbal, R.; Qin, J. Complete Genome of Multi-Drug Resistant Staphylococcus Aureus in Bovine Mastitic Milk in Anhui, China. Pak. Vet. J. 2023, 43, 456–462. [Google Scholar]
- Muhammad, U.J.; Muhammad, I.; Arslan, A.; Hamza, R.; Muhammad, J.S.; Ali, A.J. Molecular Dynamics and Antimicrobial Resistance Pattern of β-lactam Resistant Coagulase Positive Staphylococcus aureus Isolated from Goat Mastitis. Pak. Vet. J. 2024, 44, 423–429. [Google Scholar]
- Sonola, V.S.; Misinzo, G.; Matee, M.I. Occurrence of multidrug-resistant Staphylococcus aureus among humans, rodents, chickens, and household soils in Karatu, Northern Tanzania. Int. J. Environ. Res. Public Health 2021, 18, 8496. [Google Scholar] [CrossRef]
- Iseppi, R.; Mariani, M.; Condò, C.; Sabia, C.; Messi, P. Essential oils: A natural weapon against antibiotic-resistant bacteria responsible for nosocomial infections. Antibiotics 2021, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Ghavam, M.; Bacchetta, G.; Castangia, I.; Manca, M.L. Evaluation of the composition and antimicrobial activities of essential oils from four species of Lamiaceae Martinov native to Iran. Sci. Rep. 2022, 12, 17044. [Google Scholar] [CrossRef]
- Nawzat Abozaid Issa, Evaluation the Antimicrobial Activity of essential oils against Veterinary Pathogens, Multidrug-resistant Bacteria and Dermatophytes. Pak. Vet. J. 2024, 44, 260–265.
- Mohamed, A.E.; Abdelrahman, S.M.; Mohamed, A.H.; Youssef, H.A.; Wafa, S.M.; Aljahdali, A.O.S.; Latifa, A.H.; Mohammed, A.A.; Mashail, A.A.; Amani, O.A.; et al. Biochemical and Molecular Characterization of Five Basil cultivars Extract for Enhancing the Antioxidant, Antiviral, Anticancer, Antibacterial, and Antifungal Activities. Pak. Vet. J. 2024, 44, 1105–1119. [Google Scholar]
- Perna, S.; Alawadhi, H.; Riva, A.; Allegrini, P.; Petrangolini, G.; Gasparri, C.; Alalwan, T.A.; Rondanelli, M. In vitro and in vivo anticancer activity of basil (Ocimum spp.): Current insights and future prospects. Cancers 2022, 14, 2375. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, G.; Abdulrahim, R.H.; Syeda, S.S.; Salma, S.; Tayyaba, S.; Waqas, B.; Azhar, R. Antibacterial Activity of Aqueous and Methanolic Extract of Mentha piperita against Pervasive Bacteria Isolated from Urial the Ovis vignei. Pak. Vet. J. 2023, 43, 103–108. [Google Scholar]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid. Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef]
- Gleń-Karolczyk, K.; Boligłowa, E. Comparison of fungicidal properties of geranium and Tea tree oils. J. Res. Appl. Agric. Eng. 2015, 60, 57–62. [Google Scholar]
- Yadav, E.; Kumar, S.; Mahant, S.; Khatkar, S.; Rao, R. Tea tree oil: A promising essential oil. J. Essent. Oil Res. 2017, 29, 201–213. [Google Scholar] [CrossRef]
- Ren, J.; Wang, Y.M.; Zhang, S.B.; Lv, Y.Y.; Zhai, H.C.; Wei, S.; Ma, P.A.; Hu, Y.S. Terpinen-4-ol from Tea tree oil prevents Aspergillus flavus growth in postharvest wheat grain. Int. J. Food Microbiol. 2024, 418, 110741. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; DeVico, B.; Mannan, M.; Chang, M.; Rada Santacruz, C.; Siragusa, C.; Everhart, S.; Fazen, C.H. Tea tree Essential Oil Kills Escherichia coli and Staphylococcus epidermidis Persisters. Biomolecules 2023, 13, 1404. [Google Scholar] [CrossRef] [PubMed]
- Celi, D.; Quiroz, E.; Beltrán-Noboa, A.; Machado, A.; Tejera, E.; Fernandez-Soto, P. A chemical analysis of the Pelargonium species: P. odoratissimum, P. graveolens, and P. zonale identifies secondary metabolites with activity against gram-positive bacteria with multidrug-resistance. PLoS ONE 2024, 19, e0306637. [Google Scholar] [CrossRef]
- Bigos, M.; Wasiela, M.; Kalemba, D.; Sienkiewicz, M. Antimicrobial activity of geranium oil against clinical strains of Staphylococcus aureus. Molecules 2012, 17, 10276–10291. [Google Scholar] [CrossRef]
- Oliva, A.; Costantini, S.; De Angelis, M.; Garzoli, S.; Božović, M.; Mascellino, M.T.; Vullo, V.; Ragno, R. High potency of melaleuca alternifolia essential oil against multi-drug resistant gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Molecules 2018, 23, 2584. [Google Scholar] [CrossRef]
- Kirbaşlar, F.G.; Tavman, A.; Dülger, B.; Türker, G. Antimicrobial activity of Turkish citrus peel oils. Pak. J. Bot. 2009, 41, 3207–3212. [Google Scholar]
- Kock, J.L.; Sebolai, O.M.; Pohl, C.H.; Van Wyk, P.W.; Lodolo, E.J. Oxylipin studies Expose aspirin as antifungal. FEMS Yeast Res. 2009, 7, 1207–1217. [Google Scholar] [CrossRef]
- Abidin, Z.Z.; Shamsudin, N.S.; Madehi, N.; Sobri, S. Optimisation of a method to extract the active coagulant agent from Jatropha curcas seeds for use in turbidity removal. Ind. Crops Prod. 2013, 41, 319–323. [Google Scholar] [CrossRef]
- Desam, N.R.; Al-Rajab, A.J.; Sharma, M.; Mylabathula, M.M.; Gowkanapalli, R.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha× Piperita L. (peppermint) essential oils. J. King Saud Univ.-Sci. 2019, 31, 528–533. [Google Scholar] [CrossRef]
- Dzogbewu, T.C. Laser powder bed fusion of Ti6Al4V-xCu: Process parameters. J. Met. Mater. Miner. 2021, 31, 62–70. [Google Scholar] [CrossRef]
- Visan, A.I.; Negut, I. Coatings based on essential oils for combating antibiotic resistance. Antibiotics 2024, 13, 625. [Google Scholar] [CrossRef]
- Ncango, D.M.; Swart, C.W.; Pohl, C.H.; Wyk, P.V.; Kock, J.L. Mitochondrion activity and dispersal of Aspergillus fumigatus and Rhizopus oryzae. Afr. J. Microbiol. Res. 2010, 4, 830–835. [Google Scholar]
- Wingfield, M.J.; Van Wyk, P.S. A new species of Ophiostoma from Protea infructescences in South Africa. Mycol. Res. 1993, 97, 709–716. [Google Scholar] [CrossRef]
- Badr, M.M.; Taktak, N.E.; Badawy, M.E. Comparison of the antimicrobial and antioxidant activities of tea tree (Melaleuca alternifolia) oil and its main component terpinen-4-ol with their nanoemulsions. Egypt. J. Chem. 2023, 66, 111–120. [Google Scholar] [CrossRef]
- Kamel, R.; Afifi, S.M.; Abdou, A.M.; Esatbeyoglu, T.; AbouSamra, M.M. Nanolipogel loaded with Tea tree oil for the management of burn: GC-MS analysis, in vitro and in vivo evaluation. Molecules 2022, 27, 6143. [Google Scholar] [CrossRef]
- Fayoumi, L.; Khalil, M.; Ghareeb, D.; Chokr, A.; Bouaziz, M.; El-Dakdouki, M.H. Phytochemical constituents and therapeutic effects of the essential oil of rose geranium (Pelargonium hybrid) cultivated in Lebanon. S. Afr. J. Bot. 2022, 147, 894–902. [Google Scholar] [CrossRef]
- Yasin, M.; Younis, A.; Javed, T.; Akram, A.; Ahsan, M.; Shabbir, R.; Ali, M.M.; Tahir, A.; El-Ballat, E.M.; Sheteiwy, M.S.; et al. River tea tree oil: Composition, antimicrobial and antioxidant activities, and potential applications in agriculture. Plants 2021, 10, 2105. [Google Scholar] [CrossRef]
- Abdelhamed, F.M.; Abdeltawab, N.F.; ElRakaiby, M.T.; Shamma, R.N.; Moneib, N.A. Antibacterial and anti-inflammatory activities of Thymus vulgaris essential oil nanoemulsion on acne vulgaris. Microorganisms 2022, 10, 1874. [Google Scholar] [CrossRef]
- Mahboubi, M. Rosa damascena as holy ancient herb with novel applications. J. Tradit. Complement. Med. 2016, 6, 10–16. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Hamdi, N. Phytochemical composition and antimicrobial activities of the essential oils and organic extracts from Pelargonium graveolens growing in Tunisia. Lipids Health Dis. 2012, 11, 167. [Google Scholar] [CrossRef]
- Elghali, F.; Ibrahim, I.; Guesmi, M.; Frikha, F.; Mnif, S. Unveiling the impact of selected EO’s on MRSA strain ATCC 33591: Antibacterial efficiency, biofilm disruption, and staphyloxanthin inhibition. Braz. J. Microbiol. 2024, 55, 2057–2069. [Google Scholar] [PubMed]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef]
- Zainal Abidin, M.; Shamsuddin, R.; Othman, Z.; Abdul Rahman, R. Effect of postharvest storage of whole fruit on physico-chemical and microbial changes of fresh-cut cantaloupe (Cucumis melo L. reticulatus cv. Glamour). Int. Food Res. J. 2013, 20, 953–960. [Google Scholar]
- Malizos, K.N.; Kirketerp-Møller, K. Incidence and socioeconomic impact of Bone and Joint Infections (BJIs): The European perspective. In Periprosthetic Joint Infections: Changing Paradigms; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–18. [Google Scholar]
- Magunga, B.T. An Investigation of Alternative Antifungals against Phyllosticta citricarpa Kiely and Guignardia mangiferae. Ph.D. Dissertation, Central University of Technology, Bloemfontein, Free State, South Africa, 2016. [Google Scholar]
- Ntondini, S.S.; Lenetha, G.; Dzogbewu, T.C. Antimicrobial Activity of Salvia Officinalis against Streptococcus Mutans Causing Dental Implant Failure: An in vitro Study. Int. Oral Health 2021, 13, 499–507. [Google Scholar] [CrossRef]
- Al Sevik, R.; Akarca, G.; Kilinc, M.; Ascioglu, Ç. Chemical composition of Tea tree (Melaleuca alternifolia)(Maiden & Betche) cheel essential oil and its antifungal effect on foodborne molds isolated from meat products. J. Essent. Oil Bear. Plants 2021, 24, 561–570. [Google Scholar]




| Compound | Relative (%) | RI |
|---|---|---|
| α-pinene | 21.64 | 937.1 |
| γ-terpinene | 21.09 | 1063.5 |
| limonene | 9.37 | 1033.9 |
| γ-Eudesmol | 8.4 | 1650 |
| Geranyl valerate | 8.0 | 1630 |
| Citronellyl tiglate | 5.6 | 1692 |
| Geranyl propionate | 4.5 | 1476 |
| Trans-Ascaridol glycol | 4.2 | 1088 |
| limonene dioxide | 2.8 | 987 |
| α-Terpineol | 2.2 | 1204.4 |
| Globulol | 1.9 | 1090 |
| β-Myrcene | 1.1 | 990.1 |
| Ethanone,1-(6-methyl-7-oxabicyclo [4.1.0]hept-1-yl)- | 1.0 | 978 |
| 3-Thujene | 0.7 | 980.5 |
| 1,4-dihydroxy-p-menth-2-ene | 0.5 | 1118 |
| β-Pinene | 0.4 | 979 |
| Sobrerol | 0.3 | 1087 |
| Geranyl tiglate | 0.1 | 1675 |
| Cymene | 0.1 | 1015 |
| p-value | 1.86123 × 10−5 |
| Compound | Relative (%) | RI |
|---|---|---|
| Citronellol | 22.4 | 1217 |
| Geraniol | 5.7 | 1243 |
| Isomenthone | 5.3 | 1144 |
| citronellyl formate | 4.0 | 1261 |
| Linalool | 2.18 | 1086 |
| geranyl formate | 2.0 | 1283 |
| Phenylethyl tiglate | 2.0 | 1554 |
| geranyl tiglate | 1.4 | 1675 |
| Neryl formate | 1.2 | 1264 |
| Geranial | 1.1 | 1246 |
| Selina-4(15),7(11)-diene | 1.1 | 1530 |
| α-Pinene | 1.0 | 929 |
| Geranyl propionate | 1.0 | 1452 |
| α-Terpineo | 0.9 | 1173 |
| δ-Cadinene | 0.9 | 1515 |
| Geranyl butyrate | 0.7 | 1537 |
| Alloaromadendrene | 0.6 | 1459 |
| Isomenthone | 0.4 | 1144 |
| Nerol | 0.3 | 1220 |
| β-Pinene | 0.2 | 979 |
| Zonarene | 0.2 | 1518 |
| 10-epi-γ-eudesmol | 0.2 | 1613 |
| Isomenthol | 0.1 | 1168 |
| p-value | 2.02 × 10−6 |
| Essential Oils | Inhibition Zones in Diameters (mm) of Bacteria | |
|---|---|---|
| S. epidermidis | S. aureus | |
| Geranium oil | 24.6 | 32.8 |
| Tea Tree | 20.5 | 39.1 |
| p-value | 0.070 | |
| Tea Tree Oil and Geranium Essential Oil on S. aureus and Control (μg/mL) | ≥12.5 | ≥6.25 | ≥3.13 | ≥1.6 | ≥0.8 | ≥0.4 | ≥0.2 | ≥0.1 |
|---|---|---|---|---|---|---|---|---|
| Tea tree | - | - | - | - | - | - | ++ | +++ |
| Geranium | - | - | - | - | - | - | ++ | +++ |
| Control | +++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
| Tea Tree Oil and Geranium Essential Oil on S. epidermis and Control (μg/mL) | ≥12.5 | ≥6.25 | ≥3.13 | ≥1.6 | ≥0.8 | ≥0.4 | ≥0.2 | ≥0.1 |
|---|---|---|---|---|---|---|---|---|
| Geranium | - | - | - | - | - | - | - | ++ |
| Tea tree | - | - | - | - | - | - | +++ | +++ |
| Control | +++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbanjwa, N.; Lenetha, G.; Molatlhegi, R.; Khasapane, N.G. Efficacy of Melaleuca alternifolia and Pelargonium graveolens Oils Against Staphylococcus aureus and Staphylococcus epidermidis: An In Vitro Study. Microorganisms 2025, 13, 2467. https://doi.org/10.3390/microorganisms13112467
Mbanjwa N, Lenetha G, Molatlhegi R, Khasapane NG. Efficacy of Melaleuca alternifolia and Pelargonium graveolens Oils Against Staphylococcus aureus and Staphylococcus epidermidis: An In Vitro Study. Microorganisms. 2025; 13(11):2467. https://doi.org/10.3390/microorganisms13112467
Chicago/Turabian StyleMbanjwa, Ntombokhanyo, Gaofetoge Lenetha, Refilwe Molatlhegi, and Ntelekwane George Khasapane. 2025. "Efficacy of Melaleuca alternifolia and Pelargonium graveolens Oils Against Staphylococcus aureus and Staphylococcus epidermidis: An In Vitro Study" Microorganisms 13, no. 11: 2467. https://doi.org/10.3390/microorganisms13112467
APA StyleMbanjwa, N., Lenetha, G., Molatlhegi, R., & Khasapane, N. G. (2025). Efficacy of Melaleuca alternifolia and Pelargonium graveolens Oils Against Staphylococcus aureus and Staphylococcus epidermidis: An In Vitro Study. Microorganisms, 13(11), 2467. https://doi.org/10.3390/microorganisms13112467

