Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (272)

Search Parameters:
Keywords = tank’s wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4098 KB  
Article
A Finite Element-Inspired Method to Characterize Foreign Object Debris (FOD) in Carbon Fiber Composites
by Sina Hassanpoor, Rachel E. Van Lear, Mahsa Khademi and David A. Jack
Appl. Sci. 2026, 16(3), 1459; https://doi.org/10.3390/app16031459 - 31 Jan 2026
Viewed by 138
Abstract
This study investigates ultrasonic wave propagation in carbon fiber reinforced polymer (CFRP) composites containing foreign object debris (FOD) by introducing a novel method to characterize the depth and size of FOD, from a single captured waveform generated by an out-of-focus spherically focused transducer. [...] Read more.
This study investigates ultrasonic wave propagation in carbon fiber reinforced polymer (CFRP) composites containing foreign object debris (FOD) by introducing a novel method to characterize the depth and size of FOD, from a single captured waveform generated by an out-of-focus spherically focused transducer. Current methods of inspection utilize a raster approach to both detect and quantify FOD, which is limited to identifying FOD smaller than 4 mm. The method introduced in the present paper allows for a single point scan to detect and quantify FOD, as small as 0.5 mm, with the highest error in the depth estimation being less than 8%. This paper presents experimental testing to inform a finite element analysis of a full waveform simulation of an immersion tank inspection environment and compares waveforms between testing and simulation. A transient pressure acoustic model is developed in the COMSOL Multiphysics environment to simulate wave propagations. Simulation results provide waveform reflection and transmission at material interfaces, which will occur when there is an acoustic mismatch between materials. The transmitted ultrasonic wave is partially reflected toward the transducer upon encountering material interfaces between the water, CFRP laminate, and the FOD. Simulation results show that the acoustic profile and pressure of the reflected wave captured by the transducer allows an accurate identification of FOD depth and size within the composite structure, suggesting an alternative method of inspection to quantify FOD characteristics faster than through conventional approaches. Results show an increase in captured signal pressure of over 125% between the 0.5 mm FOD and the 1 mm FOD located on the mid-plane of the laminate, and 500% between the same 0.5 mm FOD and 1 mm FOD placed near the front wall. These results suggest the potential sensitivity limits for physical component. This work demonstrates that small FOD, which are often difficult to resolve and quantify under conventional raster-based inspection, can be reliably identified by intentionally positioning the specimen within the defocused region of a spherically focused transducer. Results are presented to correlate the reflected acoustic pressure amplitude to defect depth, transducer–specimen distance, and FOD size, providing an approach to quantitatively discriminate small defects that would otherwise produce ambiguous signals. Full article
Show Figures

Figure 1

17 pages, 3184 KB  
Article
Numerical Simulation for Lightweight Design of a Liquid Hydrogen Weighing Tank for Flow Standard
by Xiang Li, Menghui Wu, Xianlei Chen, Yu Meng, Xiaobin Zhang, Weijie Chen, Shanyi Xu, Naifeng Nie, Yongcheng Zhu, Jianan Zhou, Yanbo Peng, Yalei Zhao, Chengxu Tu and Fubing Bao
Appl. Sci. 2026, 16(2), 1111; https://doi.org/10.3390/app16021111 - 21 Jan 2026
Viewed by 87
Abstract
To improve the accuracy of gravimetric liquid hydrogen flow standard devices, the self-weight of the weighing tank must be minimized, because the total mass of the liquid hydrogen contained in the tank is far smaller than the structural mass of the tank itself, [...] Read more.
To improve the accuracy of gravimetric liquid hydrogen flow standard devices, the self-weight of the weighing tank must be minimized, because the total mass of the liquid hydrogen contained in the tank is far smaller than the structural mass of the tank itself, which severely compromises the sensitivity of gravimetric measurement. In this study, a three-dimensional finite element model of a vacuum-insulated liquid-hydrogen weighing tank was developed in ABAQUS. The inner and outer shells were modeled with 06Cr19Ni10 (304) and 06Cr17Ni12Mo2 (316) austenitic stainless steels, and Polyamide 6 (PA6) was used for the internal support. Three operating stages were considered: evacuation of the annulus (interlayer pressure reduced from 0.1 MPa to 0 MPa), pre-cooling to −253 °C, and pressurization of the inner tank (internal pressure increased from 0.1 MPa to 1 MPa). The equivalent stress and deformation were compared for different materials and wall thicknesses to evaluate structural safety and weight-reduction potential. The proposed configuration (inner shell 1.6 mm and outer shell 1.0 mm) achieves a mass reduction of more than 50% relative to the 3 mm minimum wall thickness commonly adopted for cryogenic vessels, while keeping stresses below the allowable limits. This reduction enables the use of higher-resolution load cells and thereby lowering the measurement uncertainty of the liquid hydrogen flow standard device and providing technical support for lightweight and cost-effective design, with potential applicability to other cryogenic tank systems. Full article
Show Figures

Figure 1

26 pages, 15207 KB  
Article
Solid–Liquid Flow Analysis Using Simultaneous Two-Phase PIV in a Stirred Tank Bioreactor
by Mohamad Madani, Angélique Delafosse, Sébastien Calvo and Dominique Toye
Fluids 2026, 11(1), 17; https://doi.org/10.3390/fluids11010017 - 8 Jan 2026
Viewed by 384
Abstract
Solid–liquid stirred tanks are widely used in multiphase processes, including bioreactors for mesenchymal stem cell (MSC) culture, yet simultaneous experimental data for both dispersed and carrier phases remain limited. Here, a refractive index-matched (RIM) suspension of PMMA microparticles ( [...] Read more.
Solid–liquid stirred tanks are widely used in multiphase processes, including bioreactors for mesenchymal stem cell (MSC) culture, yet simultaneous experimental data for both dispersed and carrier phases remain limited. Here, a refractive index-matched (RIM) suspension of PMMA microparticles (dp=168μm, ρp/ρl0.96) in an NH4SCN solution is studied at an intermediate Reynolds number (Re5000), low Stokes number (St=0.078), and particle volume fractions 0.1αp0.5 v%. This system was previously established and studied for the effect of addition of particles on the carrier phase. In this work, a dual-camera PIV set-up provides simultaneous velocity fields of the liquid and particle phases in a stirred tank equipped with a three-blade down-pumping HTPGD impeller. The liquid mean flow and circulation loop remained essentially unchanged with particle loading, whereas particle mean velocities were lower than single-phase and liquid-phase values in the impeller discharge. Turbulence levels diverged between phases: liquid-phase turbulent kinetic energy (TKE) in the impeller region increased modestly with αp, while solid-phase TKE was attenuated. Slip velocity maps showed that particles lagged the fluid in the impeller jet and deviated faster from the wall in the upward flow, with slip magnitudes increasing with αp. An approximate axial force balance indicated that drag dominates over lift in the impeller and wall regions, while the balance is approximately satisfied in the tank bulk, providing an experimental benchmark for refining drag and lift models in this class of stirred tanks. Full article
Show Figures

Figure 1

11 pages, 6726 KB  
Article
Bench-Scale Study of Magnetically Influenced Dynamic Response in a Sloshing Tank
by Harun Tayfun Söylemez and İbrahim Özkol
Appl. Sci. 2026, 16(1), 360; https://doi.org/10.3390/app16010360 - 29 Dec 2025
Viewed by 200
Abstract
Liquid sloshing in partially filled tanks is commonly studied because of its influence on vehicle stability, structural loading, and control performance. In experimental investigations, sloshing measurements can be contaminated by mechanically induced fluid–structure interactions originating from the actuation system itself. This study presents [...] Read more.
Liquid sloshing in partially filled tanks is commonly studied because of its influence on vehicle stability, structural loading, and control performance. In experimental investigations, sloshing measurements can be contaminated by mechanically induced fluid–structure interactions originating from the actuation system itself. This study presents a bench-scale experimental investigation of the interaction between static magnetic fields and the dynamic response of a mechanically excited water-tank system, with particular emphasis on distinguishing sloshing-related motion from higher-frequency mechanical effects. A rectangular acrylic tank was subjected to near-resonant horizontal excitation at a fixed fill height. A ferromagnetic steel plate was mounted externally beneath the tank and kept identical in all experiments, while either permanent magnets or mass-matched nonmagnetic dummies were attached externally to one sidewall. Two configurations were examined: a symmetric split-wall layout (15 + 15) magnets and a single-wall high-field arrangement with 30 magnets (Mag–30@L) together with its dummy control (Dummy–30@L). The center-of-gravity motion CGy(t) was reconstructed from four load cells and analyzed in the time and frequency domains. Band-limited analysis of the primary sloshing mode near 0.55 Hz revealed no statistically significant influence of the magnetic field, indicating that static magnets do not measurably affect the fundamental sloshing dynamics under the present conditions. In contrast, a higher-frequency response component in the 10–20 Hz range, attributed to mechanically induced fluid–structure interaction associated with actuator reversal dynamics, was consistently attenuated when magnets were present; this component is absent in corresponding CFD simulations and is, therefore, not associated with sloshing motion. Given the extremely small magnetic Reynolds and Stuart numbers for water, the observations do not support any volumetric magnetohydrodynamic mechanism; instead, they demonstrate a modest magnetic influence on a mechanically excited, high-frequency coupled mode specific to the present experimental system. The study is intentionally limited to bench scale and provides a reproducible dataset that may inform future investigations of magnetically influenced fluid–structure interactions in experimental sloshing rigs. Full article
Show Figures

Figure 1

39 pages, 2777 KB  
Review
Challenges and Innovations in Liquefied Gases and Cryogenic Tanks: A Comprehensive Review
by Marian-Cristian Staicu, Nicoleta Lucica Bogatu, Viorica Ghisman and Daniela Laura Buruiana
Technologies 2026, 14(1), 19; https://doi.org/10.3390/technologies14010019 - 26 Dec 2025
Viewed by 650
Abstract
Cryogenic technologies are a crucial field of modern engineering, with applications in liquefied gas transport, renewable energy, aerospace, and high-precision medicine. Their advancement relies heavily on the performance and reliability of cryogenic tanks, which ensure the safe storage and handling of fluids at [...] Read more.
Cryogenic technologies are a crucial field of modern engineering, with applications in liquefied gas transport, renewable energy, aerospace, and high-precision medicine. Their advancement relies heavily on the performance and reliability of cryogenic tanks, which ensure the safe storage and handling of fluids at extremely low temperatures. This paper presents a concise review of recent engineering innovations, focusing on fluid behavior in single- and two-phase regimes, boil-off mechanisms, advanced thermal insulation, and energy loss control strategies. Recent numerical and experimental studies indicate that optimized insulation configurations, such as the placement of a low-emissivity intermediate layer near the cold wall, can reduce radiative heat loads by approximately 40–60%, thereby significantly mitigating cryogenic liquid boil-off. Developments in structural materials, functional coatings, and numerical simulations are also discussed, as they contribute to enhancing tank efficiency under demanding operational conditions. Particular emphasis is placed on material selection and surface engineering solutions aimed at reducing corrosion, improving cryogenic resistance, and extending service life. These approaches not only lower maintenance costs but also strengthen safety and sustainability in cryogenic applications. In addition, current industry trends are highlighted, including equipment miniaturization, integration into mobile platforms, and the adoption of international standards for safety and efficiency. The paper aims to provide an interdisciplinary synthesis that supports both academic research and the development of durable, high-performance cryogenic systems. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Graphical abstract

23 pages, 3569 KB  
Article
Performance Assessment and Heat Loss Analysis of Anaerobic Digesters in Wastewater Treatment Plants—Case Study
by Ewelina Stefanowicz, Agnieszka Chmielewska and Małgorzata Szulgowska-Zgrzywa
Energies 2026, 19(1), 106; https://doi.org/10.3390/en19010106 - 24 Dec 2025
Viewed by 369
Abstract
This study investigates the energy performance of anaerobic digesters in a municipal wastewater treatment plant by integrating empirical data from two tanks located at different distances from the heat source with simulation results. The analysis of measurements enabled the determination of heat transferred [...] Read more.
This study investigates the energy performance of anaerobic digesters in a municipal wastewater treatment plant by integrating empirical data from two tanks located at different distances from the heat source with simulation results. The analysis of measurements enabled the determination of heat transferred to the raw sludge, total heat losses of both systems, and provided input data for an hourly simulation of the thermal balance of the digester envelope. An analytical model was developed, including separate equations for the sludge and biogas phases, considering heat losses caused by mass transfer, conduction, convection, and radiation, as well as solar heat gains. The results show that the temperature difference between sludge and biogas exhibits seasonal variation, with a maximum value of 10.5 K, while the desired operational temperature of sludge fermentation is maintained at 38 °C. The total annual heat balance of the anaerobic digester in 2024 was estimated at 202.8 MWh, with the following structure: aboveground walls 46%, ground-contact partitions 30%, and dome 24%. Model validation using data from one of the digesters indicated a total system energy demand of 1812.0 MWh, distributed as follows: heat transferred to raw sludge 88.6%, heat transfer losses 0.2%, and digester envelope balance 11.2%. Replacing the thermal insulation of the aboveground section could reduce heat losses by 70.7 MWh, decreasing the total energy demand of the system by 3.9%. Comparison with the second digester revealed an energy gap of 166.3 MWh, which may be attributed to higher transmission losses or degradation of the insulation layer. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

25 pages, 5009 KB  
Article
CFD-Based Hydraulic Performance Improvement of a Chlorine Contact Tank: The Case Study of a Southern Italy Plant
by Ali Tafarojnoruz, Pierpaolo Loprieno, Attilio Fiorini Morosini, Elisa Leone, Antonio Francone, Nadir Fella, Francesca Lupo, Fabrizio Dell’Anna, Agostino Lauria and Giuseppe Roberto Tomasicchio
Fluids 2025, 10(12), 328; https://doi.org/10.3390/fluids10120328 - 12 Dec 2025
Viewed by 554
Abstract
Chlorine contact tanks are crucial for wastewater disinfection, with performance strongly influenced by internal hydraulic characteristics. This study applies Computational Fluid Dynamics (CFD) to analyze and improve the hydraulics of the chlorination contact tank in a Wastewater Treatment Plant in the Southern Italy. [...] Read more.
Chlorine contact tanks are crucial for wastewater disinfection, with performance strongly influenced by internal hydraulic characteristics. This study applies Computational Fluid Dynamics (CFD) to analyze and improve the hydraulics of the chlorination contact tank in a Wastewater Treatment Plant in the Southern Italy. A three-dimensional transient CFD model was developed using the Reynolds-Averaged Navier–Stokes (RANS) equations with the Renormalized Group (RNG) turbulence closure. The model simulated flow patterns, tracer transport, and chlorine decay kinetics under the existing configuration and two alternative configurations. Conservative tracer pulse simulations enabled the calculation of Residence Time Distributions (RTDs) and hydraulic efficiency indicators, including the Baffling Factor (θ10), Morrill index (Mo), and Aral–Demirel index (AD). A typical contact tanks geometry exhibits specific hydraulic characteristics, including recirculation behind baffles and stagnant zones in sharp corners, which inevitably affects the contact time. The first alternative, namely featuring rounded corners, moderately reduced dead zones, but did not substantially mitigate recirculation. The second alternative, herein called combining rounded corners with perforated baffle walls, substantially improved hydraulic performance, yielding flow patterns closer to plug-flow. RTD peaks were higher and narrower for the modified designs, and hydraulic indices improved, with Mo decreasing by approximately 5%. These hydraulic enhancements are expected to increase disinfection efficiency by providing more uniform chlorine exposure. The results demonstrate that geometric modifications effectively optimize contact tank hydraulics and highlight the role of CFD as a design and retrofit tool for water and wastewater disinfection systems. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

25 pages, 19561 KB  
Article
Emergency Plugging and Killing of Blowout Preventer Failure
by Xuliang Zhang, Zhi Zhang, Qingfeng Li, Haitao Wang, Hangbo Cui, Hua Wang and Fumin Gao
Processes 2025, 13(12), 3959; https://doi.org/10.3390/pr13123959 - 7 Dec 2025
Viewed by 397
Abstract
The blowout preventer (BOP) is the most important and the last line of safety defense in drilling engineering. Once a blowout occurs and the BOP fails, engineers will lose control of the entire wellbore pressure, and combustible fluids in the formation will continuously [...] Read more.
The blowout preventer (BOP) is the most important and the last line of safety defense in drilling engineering. Once a blowout occurs and the BOP fails, engineers will lose control of the entire wellbore pressure, and combustible fluids in the formation will continuously sprayed out, which can easily cause huge losses of life and property. At present, reliable and highly recognized emergency measures for BOP failure are lacking. Therefore, we propose a plugging method after the failure of the BOP that can maintain good control within the secondary well control. Numerical and experimental results indicate that using a small-to-medium displacement (1–2 m3/min) during the early stage of plugging and applying multiple plugging and killing cycles significantly improves plugging stability and killing efficiency. PEEK (polyether ether ketone) was selected as the bridging material for field plugging tests on full-scale blowout preventers, verifying its sealing effectiveness at pressures up to 80 MPa. Subsequently, the CFD–DEM was used to simulate the well killing process after plugging. This study mainly focused on the transportation of particles in a pipeline and the analysis of the process of well killing after plugging. The research results indicate that PEEK demonstrates sufficient pressure-bearing capacity under real blowout conditions. Also reveal that PEEK’s exceptional wear resistance and impact strength help maintain sealing stability during repeated particle–wall collisions, effectively reducing secondary erosion and prolonging the operational lifespan of temporary plugging structures. After undergoing six high-pressure tests of 70 MPa and two high-pressure tests of 80 MPa within 25 min, it remained intact. Both cylindrical and spherical particles can smoothly pass through the storage tank and double-bend pipeline at different displacements. Considering the retention effect of the plugging material, it is recommended to use 1–2 m3/min of pumping the plugging material at medium and small displacements in the early stage of plugging. During the process of plugging and killing, it is recommended to use alternating plugging and killing across multiple operations to prevent further blowouts to achieve the best plugging and killing effect. Full article
(This article belongs to the Special Issue Multiphase Flow Process and Separation Technology)
Show Figures

Figure 1

28 pages, 15411 KB  
Article
Turbulent Hydrofoil Cavitation Simulations: Applications of RANS with Eddy Viscosity and Interfacial Turbulence Damping and LES
by Ville Viitanen, Petteri Peltonen, Mika Nuutinen, Jan Hallander and Timo Siikonen
J. Mar. Sci. Eng. 2025, 13(12), 2311; https://doi.org/10.3390/jmse13122311 - 5 Dec 2025
Viewed by 583
Abstract
The performance of various turbulence modelling methods for simulating cavitating flow over a hydrofoil was investigated. VOF mixture modelling was applied for the multiphase flow, along with a standard two-equation turbulence model, a hybrid RANS-LES method, and a wall-modeled LES approach. The simulations [...] Read more.
The performance of various turbulence modelling methods for simulating cavitating flow over a hydrofoil was investigated. VOF mixture modelling was applied for the multiphase flow, along with a standard two-equation turbulence model, a hybrid RANS-LES method, and a wall-modeled LES approach. The simulations were conducted in a numerical cavitation tank with experimental data available for a range of Reynolds numbers and cavitation conditions. A Reboud damping for eddy viscosity was applied (hereafter referred to as SST-R). A less common approach, incorporating interfacial turbulence damping based on physical arguments regarding the wall-like behavior of phase interfaces, was also applied (referred to here as SST-D). Our results indicate that the standard RANS method fails to predict the breakdown of lift with decreasing cavitation numbers, a phenomenon observed in the experiments and in earlier studies. Incorporating turbulence damping at the cavity interface or directly on the eddy viscosity improves predictions for both URANS and hybrid RANS-LES methods. Both the SST-D and SST-R agreed well with available experimental data, and the LES method consistently provided accurate results across all numerical grids. Full article
(This article belongs to the Special Issue Cavitation Control in Marine Engineering: Modelling and Experiment)
Show Figures

Figure 1

27 pages, 7755 KB  
Article
Characterization of a Multi-Diffuser Fine-Bubble Aeration Reactor: Influence of Local Parameters and Hydrodynamics on Oxygen Transfer
by Oscar Prades-Mateu, Guillem Monrós-Andreu, Delia Trifi, Jaume Luis-Gómez, Salvador Torró, Raúl Martínez-Cuenca and Sergio Chiva
Water 2025, 17(24), 3448; https://doi.org/10.3390/w17243448 - 5 Dec 2025
Viewed by 702
Abstract
Fine-bubble aeration is a core process in wastewater treatment plants (WWTPs). However, the physical mechanisms linking bubble plume hydrodynamics to oxygen transfer performance remain insufficiently quantified under configurations representative of full-scale installations. This study presents a local multi-sensor experimental characterization of a multiple [...] Read more.
Fine-bubble aeration is a core process in wastewater treatment plants (WWTPs). However, the physical mechanisms linking bubble plume hydrodynamics to oxygen transfer performance remain insufficiently quantified under configurations representative of full-scale installations. This study presents a local multi-sensor experimental characterization of a multiple bubble plume system using a 4 × 4 array of commercial membrane diffusers in a pilot-scale aeration tank (2 m3), emulating WWTP diffuser density and geometry. Airflow rate was varied to analyze its effects on mixing and oxygen transfer efficiency. The experimental methodology combines three complementary measurement approaches. Oxygen transfer performance is quantified using a dissolved oxygen probe. Liquid-phase velocity fields are then mapped using Acoustic Doppler Velocimetry (ADV). Finally, local two-phase measurements are obtained using dual-tip Conductivity Probe (CP) arrays, which provide bubble size, bubble velocity, void fraction, and Interfacial Area Concentration (IAC). Based on these observations, a zonal hydrodynamic model is proposed to describe plume interaction, wall-driven recirculation, and the formation of a collective plume core at higher airflows. Quantitatively, the results reveal a 29% reduction in Standard Oxygen Transfer Efficiency (SOTE) between 10 and 40 m3/h, driven by a 41% increase in bubble size and an 18% rise in bubble velocity. Bubble chord length also increased with height, by 33%, 19%, and 15% over 0.8 m for 10, 20, and 40 m3/h, respectively. These trends indicate that increasing airflow enhances turbulent mixing but simultaneously enlarges bubbles and accelerates their ascent, thereby reducing residence time and negatively affecting oxygen transfer. Overall, the validated multiphase datasets and mechanistic insights demonstrate the dominant role of diffuser interaction in dense layouts, supporting improved parameterization and experimental benchmarking of fine-bubble aeration systems in WWTPs. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

30 pages, 16292 KB  
Article
Seawater Flow-Freezing Characteristics in Open Container Injection Under Low-Temperature Conditions
by Yuhao Fan, Bei Peng, Puyu Jiang, Jiahui Ren, Yuesen Lin, Longlong Gao and Baoren Li
J. Mar. Sci. Eng. 2025, 13(12), 2289; https://doi.org/10.3390/jmse13122289 - 1 Dec 2025
Viewed by 314
Abstract
The phenomenon of seawater flow-freezing exists during ballast water injection and drainage in polar vessels, but the heat transfer and ice evolution behaviors under low-temperature flow conditions remain unclear. This study developed a computational model for ballast tank freezing using the volume of [...] Read more.
The phenomenon of seawater flow-freezing exists during ballast water injection and drainage in polar vessels, but the heat transfer and ice evolution behaviors under low-temperature flow conditions remain unclear. This study developed a computational model for ballast tank freezing using the volume of fluid (VOF) and enthalpy–porosity method, and constructed a scaled experimental platform for the simulation model validation. Based on this model, the flow-heat transfer and ice evolution process in the ballast tank are analyzed in detail, with a focus on the influence of injection velocity, pipe diameter, and position on seawater freezing characteristics. The results show that during low-temperature water injection, phase change occurs preferentially in the tank bottom region, with ice presenting as a slurry morphology; when injection velocity increases from 0.25 m/s to 3.5 m/s, the maximum ice-phase volume fraction increases by 48.9%, indicating faster flow accelerates phase-change freezing; compared to other diameters, DN150 piping exhibits the highest turbulent kinetic energy (0.054 m2/s2) and the maximum shear stress (12.49 Pa), demonstrating optimal freezing resistance; compared to bottom injection, sidewall injection intensifies heat transfer/icing near tank walls and increases ice-clogging risk around ports. This study reveals intrinsic mechanisms of dynamic ice-blockage evolution, providing theoretical basis for anti-clogging design in polar ship systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 6942 KB  
Article
Application of the Akaike Information Criterion to Ultrasonic Measurement of Liquid Volume in a Cylindrical Tank
by Krzysztof J. Opieliński and Tomasz Świetlik
Sensors 2025, 25(23), 7191; https://doi.org/10.3390/s25237191 - 25 Nov 2025
Viewed by 636
Abstract
The ultrasonic sensor method is the most significant and widely accepted technique for measuring liquid levels in tanks. Ultrasonic waves are particularly advantageous in the case of explosive, flammable, or aggressive liquids because of the possibility of introducing ultrasonic pulses through the tank [...] Read more.
The ultrasonic sensor method is the most significant and widely accepted technique for measuring liquid levels in tanks. Ultrasonic waves are particularly advantageous in the case of explosive, flammable, or aggressive liquids because of the possibility of introducing ultrasonic pulses through the tank wall safely. Often, the measurement of these liquids should be performed automatically using electronic devices to ensure that the tank remains sealed. In the case of ultrasound, measurements are made using the echo method, with a transmitting-receiving (transceiver) ultrasonic transducer that sends vibration pulses into the tank. The measured delay between the transmitted pulse and the pulse reflected from the liquid surface is proportional to the liquid level in the tank. The volume of liquid can be calculated on the basis of the dimensions of the tank. In this method, it is very important to accurately determine the delay by detecting the beginning of the reflected pulse, which determines the accuracy of the measurement of the level of the liquid and its quantity in the tank. To improve this accuracy, this paper proposes the use of the Akaike Information Criterion (AIC) used in statistics for model selection. As part of the research, ultrasonic test measurements were performed for a tank filled with water and extraction gasoline. This allowed a favorable comparison of the AIC method with the most commonly used threshold method and for determining the accuracy of liquid volume measurements in the tank using both methods in relation to the parameters of several selected ultrasonic sensors. The accuracy obtained using the AIC method was found to be better than that of the fixed-fractional amplitude threshold method. Furthermore, the AIC method is more versatile because it is less sensitive to interference and is capable of detecting the onset of a pulse regardless of its shape and frequency, even in noise. It is suitable for real-time embedded systems for liquid level measurement as well. Full article
(This article belongs to the Special Issue Nondestructive Sensing and Imaging in Ultrasound—Second Edition)
Show Figures

Figure 1

24 pages, 11690 KB  
Article
Research on Vibration and Noise of Oil Immersed Transformer Considering Influence of Transformer Oil
by Xueyan Hao, Sheng Ma, Xuefeng Zhu, Yubo Zhang, Ruge Liu and Bo Zhang
Energies 2025, 18(23), 6155; https://doi.org/10.3390/en18236155 - 24 Nov 2025
Viewed by 599
Abstract
This study investigates the vibration and noise characteristics of oil-immersed power transformers, with a particular focus on the influence of transformer oil on structural dynamics and acoustic emission. The research integrates multi-physics modelling, finite-element simulation, and field measurements to analyze the vibration transmission [...] Read more.
This study investigates the vibration and noise characteristics of oil-immersed power transformers, with a particular focus on the influence of transformer oil on structural dynamics and acoustic emission. The research integrates multi-physics modelling, finite-element simulation, and field measurements to analyze the vibration transmission paths from the core and windings to the tank wall. A fluid–structure interaction (FSI) model is developed to account for the damping effect of insulating oil, and a correction factor is introduced to adjust modal parameters. Simulation results reveal that oil significantly enhances vibration propagation, especially in the vertical direction, while structural ribs and clamping configurations affect local vibration intensity. Noise simulations show that magnetostriction is the dominant source of audible sound, with harmonic components sensitive to load and voltage variations. Experimental validation using a portable sound level meter confirms the simulation trends and highlights the spatial variability of acoustic pressure. The findings provide a theoretical and practical basis for optimizing sensor placement and developing voiceprint-based diagnostic tools for transformer condition monitoring. Full article
Show Figures

Figure 1

19 pages, 7394 KB  
Article
Jar-RetinexNet: A System for Non-Uniform Low-Light Enhancement of Hot Water Heater Tank Inner Walls
by Wenxin Cao, Lei Guo, Juanhua Cao and Weijun Wu
Sensors 2025, 25(23), 7121; https://doi.org/10.3390/s25237121 - 21 Nov 2025
Viewed by 502
Abstract
The manual inspection of electric water heater enamel is inefficient and unreliable, a challenge stemming from the tank’s narrow (approx. 50 mm) aperture that creates extremely dim, non-uniform lighting. Existing enhancement algorithms struggle with such complex industrial imagery. To address this, we propose [...] Read more.
The manual inspection of electric water heater enamel is inefficient and unreliable, a challenge stemming from the tank’s narrow (approx. 50 mm) aperture that creates extremely dim, non-uniform lighting. Existing enhancement algorithms struggle with such complex industrial imagery. To address this, we propose an integrated hardware-software system: the three-axis Image Acquisition Robot (IAR) and Interactive Visualization Enhancement Software (IVES). Using this system, we constructed and released the first Heater Tank Inner Wall (HTIW) dataset, containing 900 real-world images. We further introduce jar-RetinexNet, a Retinex-based network featuring a Feature Preservation Attention Module (FPAM), a Cascaded Channel-Spatial Attention Module (CSAM) for precise decomposition, and a Random Affine Generation (RAG) module for generalization. Experiments show that jar-RetinexNet significantly outperforms state-of-the-art methods, achieving the best no-reference quantitative scores on our HTIW dataset: a BRISQUE of 25.4457 and a CLIPIQA of 0.3160. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

30 pages, 4153 KB  
Article
Gas Disturbance Model and Industrial Application of the BH Packing
by Qunsheng Li, Huifang Zhang, Qiulian Chang, Kehan Wang and Yuxin Zhang
Separations 2025, 12(12), 325; https://doi.org/10.3390/separations12120325 - 21 Nov 2025
Viewed by 416
Abstract
This study presents the development and comprehensive evaluation of a novel structured packing, termed ‘BH’ packing (derived from Beijing University of Chemical Technology), alongside the introduction of an innovative gas disturbance model and its successful industrial implementation. Addressing inherent limitations of traditional structured [...] Read more.
This study presents the development and comprehensive evaluation of a novel structured packing, termed ‘BH’ packing (derived from Beijing University of Chemical Technology), alongside the introduction of an innovative gas disturbance model and its successful industrial implementation. Addressing inherent limitations of traditional structured packings—such as liquid film aging and high mass transfer resistance in straight corrugated channels—the BH packing incorporates a uniquely designed alternating-angle corrugation (45°–30°–45°). This structural innovation actively disrupts the liquid film, intensifies gas–liquid interaction, and significantly enhances mass transfer efficiency. Experimental assessments demonstrate that the BH-250 packing outperforms conventional corrugated plate packings in gas distribution uniformity. Furthermore, the newly developed gas disturbance model can accurately capture the gas mixing dynamics within the packed bed. Its prediction results are more accurate than those of traditional mixing tank models, especially in regions near the tower wall. In industrial practice, the application of BH packing has led to remarkable improvements in product purity: methanol purity reached 99.95%, hexafluorobutene achieved 6N grade, and dichlorosilane impurities were reduced to parts per trillion (ppt) levels. These outcomes underscore the substantial contribution of BH packing to advancing separation efficiency and product quality in high-purity chemical production. Full article
(This article belongs to the Special Issue Novel Solvents and Methods in Distillation Process)
Show Figures

Figure 1

Back to TopTop