Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,650)

Search Parameters:
Keywords = synchrotrons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2512 KB  
Article
Synchrotron Radiation–Excited X-Ray Fluorescence (SR-XRF) Imaging for Human Hepatocellular Carcinoma Specimens
by Masakatsu Tsurusaki, Keitaro Sofue, Kazuhiro Kitajima, Takamichi Murakami and Noboru Tanigawa
Cancers 2026, 18(2), 311; https://doi.org/10.3390/cancers18020311 - 20 Jan 2026
Abstract
Background/Objectives: Trace metals, including copper (Cu) and zinc, are associated with the development and prognosis of hepatocellular carcinoma (HCC). However, their interference with magnetic resonance imaging (MRI) limits their use as potential biomarkers. This study investigated the usefulness of Synchrotron Radiation–excited X-ray Fluorescence [...] Read more.
Background/Objectives: Trace metals, including copper (Cu) and zinc, are associated with the development and prognosis of hepatocellular carcinoma (HCC). However, their interference with magnetic resonance imaging (MRI) limits their use as potential biomarkers. This study investigated the usefulness of Synchrotron Radiation–excited X-ray Fluorescence (SR-XRF) imaging in studying the distribution of trace metals in HCC. Methods: This case–control study analyzed 33 specimens from 32 patients with HCC who underwent surgical resection (n = 29) or biopsy (n = 3) at Kobe University Hospital between December 1999 and November 2002. The findings of SR-XRF were compared with those of MRI and histopathology. Results: SR-XRF provided two-dimensional mapping of trace metal distribution with high spatial resolution (1.0 µm). The mean tumor-to-liver ratio (TLR) of Cu content was significantly higher in well-differentiated HCCs than in moderately and poorly differentiated HCCs (p < 0.05). Moreover, the mean TLRs of Cu content were significantly higher in high-intensity lesions than in iso- or low-intensity lesions on T1-weighted imaging (p < 0.05). Conclusions: This study supports previous evidence of the involvement of Cu in HCC development, suggesting its potential as a clinical biomarker for diagnosis and disease progression. Additionally, the results demonstrate that SR-XRF has potential for clinical application due to its ability to map trace metal distribution at high resolution. These findings suggest, rather than demonstrate, the association among Cu accumulation, tumor differentiation, and MRI signal characteristics. Full article
(This article belongs to the Special Issue Radiologic Imaging of Hepatocellular Carcinomas)
Show Figures

Graphical abstract

27 pages, 6733 KB  
Article
Structural and Chemical Degradation of Archeological Wood: Synchrotron XRD and FTIR Analysis of a 26th Dynasty Egyptian Polychrome Wood Statuette
by Dina M. Atwa, Rageh K. Hussein, Ihab F. Mohamed, Shimaa Ibrahim, Emam Abdullah, G. Omar, Moez A. Ibrahim and Ahmed Refaat
Polymers 2026, 18(2), 258; https://doi.org/10.3390/polym18020258 - 17 Jan 2026
Viewed by 153
Abstract
This study investigates a 26th Dynasty Ptah–Sokar–Osiris wooden statuette excavated from the Tari cemetery, Giza Pyramids area, to decode ancient Egyptian manufacturing techniques and establish evidence-based conservation strategies of such wooden objects. Using minimal sampling (1.0–2.0 mm2), integrated XRF, synchrotron-based X-ray [...] Read more.
This study investigates a 26th Dynasty Ptah–Sokar–Osiris wooden statuette excavated from the Tari cemetery, Giza Pyramids area, to decode ancient Egyptian manufacturing techniques and establish evidence-based conservation strategies of such wooden objects. Using minimal sampling (1.0–2.0 mm2), integrated XRF, synchrotron-based X-ray diffraction, FTIR, and confocal microscopy distinguished original technological choices from burial-induced alterations. The 85 cm Vachellia nilotica sculpture exhibits moderate structural preservation (cellulose crystallinity index 62.9%) with partial chemical deterioration (carbonyl index 2.22). Complete pigment characterization identified carbon black, Egyptian Blue (cuprorivaite, 55 ± 5 wt %), atacamite-dominated green (65 ± 5 wt %) with residual malachite (10 ± 2 wt %), orpiment (60 ± 5 wt %), red ochre (hematite, 60% ± 5 wt %), white pigments (93 ± 5 wt % calcite), and metallic gold (40 ± 5 wt %). Confocal microscopy revealed sophisticated multi-pigment mixing strategies, with black carbon systematically blended with chromophores for nuanced color effects. Atacamite predominance over malachite provides evidence for chloride-mediated diagenetic transformation over 2600 years of burial. Consistent calcite detection (~ 20–45%) across colored layers confirms systematic ground layer application, establishing technological baseline data for 26th Dynasty Lower Egyptian workshops. Near-complete organic binder loss, severe lignin oxidation, and ongoing salt-mediated mineral transformations indicate urgent conservation needs requiring specialized consolidants, paint layer stabilization, and controlled environmental storage. This investigation demonstrates synchrotron methods’ advantages while establishing a minimally invasive framework for studying polychrome wooden artifacts. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials, 4th Edition)
Show Figures

Figure 1

13 pages, 2743 KB  
Article
Cryogenic X-Ray Microtomography of Early-Stage Polyurethane Foaming: 3D Analysis of Cell Structure Development
by Paula Cimavilla-Román, Suset Barroso-Solares, Mercedes Santiago-Calvo and Miguel Angel Rodriguez-Perez
Polymers 2026, 18(2), 245; https://doi.org/10.3390/polym18020245 - 16 Jan 2026
Viewed by 148
Abstract
Laboratory-scale cryogenic X-ray microtomography was employed for the first time to investigate the early structural evolution of polyurethane (PU) foams. This method enables ex situ studying the internal morphology of the frozen reactive mixture at various times before cell impingement. In this work, [...] Read more.
Laboratory-scale cryogenic X-ray microtomography was employed for the first time to investigate the early structural evolution of polyurethane (PU) foams. This method enables ex situ studying the internal morphology of the frozen reactive mixture at various times before cell impingement. In this work, the precision of the method was evaluated by studying the early bubble formation and growth under different blowing agents and catalyst contents. It was detected that tripling the catalyst weight content doubled cell nucleation density, from 8.9 × 105 to 1.8 × 106 cells cm−3. Yet, doubling the water content has lesser impact on nucleation but leads to fast speeds of cell growth and, in turn, lower relative density at equal reaction times. Overall, it is demonstrated that laboratory cryogenic microtomography can be used to democratise the 3D investigation of the internal structure of foams which was until now only possible in synchrotron facilities. In addition, this method can help elucidate the mechanisms of nucleation and degeneration via directly measuring the density of bubbles and distance between them in the reactive mixture. Finally, this methodology could be extended to recent laboratory nanotomography systems utilizing X-ray tubes with nanometric spot sizes, thereby enabling the confident identification of nucleation events. Full article
Show Figures

Graphical abstract

25 pages, 5496 KB  
Article
Plant-Based Protein Bioinks with Transglutaminase Crosslinking: 3D Printability and Molecular Insights from NMR and Synchrotron-FTIR
by Jaksuma Pongsetkul, Sarayut Watchasit, Tanyamon Petcharat, Marcellus Arnold, Yolanda Victoria Rajagukguk, Passakorn Kingwascharapong, Supatra Karnjanapratum, Pimonpan Kaewprachu, Lutz Grossmann, Young Hoon Jung, Saroat Rawdkuen and Samart Sai-Ut
Foods 2026, 15(2), 322; https://doi.org/10.3390/foods15020322 - 15 Jan 2026
Viewed by 112
Abstract
The increasing demand for sustainable and functional plant-based foods has driven interest in 3D food printing technologies, which require bioinks with tailored rheological and structural properties. This study investigated the effects of transglutaminase (TGase) on the structure–function relationships of plant protein bioinks from [...] Read more.
The increasing demand for sustainable and functional plant-based foods has driven interest in 3D food printing technologies, which require bioinks with tailored rheological and structural properties. This study investigated the effects of transglutaminase (TGase) on the structure–function relationships of plant protein bioinks from fava bean, mung bean, pea, and soybean. TNBS assays showed a dose-dependent increase in crosslinking (27.46–64.57%), with soybean and pea proteins exhibiting the highest reactivity (p < 0.05). 1H-NMR confirmed protein-specific ε-(γ-glutamyl)lysine bond formation, and synchrotron FTIR revealed TGase-induced α-helix reduction and β-sheet enrichment, indicative of network formation across all proteins. SDS-PAGE analysis demonstrated TGase-mediated polymerization with high-molecular-weight aggregates, particularly pronounced in soybean, while SEM images revealed denser, more continuous protein networks compared to untreated samples. Rheological characterization showed enhanced viscoelasticity and shear-thinning behavior in all bioinks, supporting extrusion and post-printing stability. Textural analysis indicated improvements in hardness, springiness, cohesiveness, and chewiness across all proteins, with soybean and fava showing the most pronounced increases. These results demonstrate that TGase is a versatile tool for reinforcing plant protein networks, improving printability, structural integrity, and texture in 3D-printed foods, while highlighting protein-specific differences in response. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

14 pages, 3893 KB  
Article
High-Speed X-Ray Imager ‘Hayaka’ and Its Application for Quick Imaging XAFS and in Coquendo 4DCT Observation
by Akio Yoneyama, Midori Yasuda, Wataru Yashiro, Hiroyuki Setoyama, Satoshi Takeya and Masahide Kawamoto
Sensors 2026, 26(2), 434; https://doi.org/10.3390/s26020434 - 9 Jan 2026
Viewed by 165
Abstract
A lens-coupled high-speed X-ray camera, “Hayaka”, was developed for quick imaging of X-ray absorption fine structure (XAFS) and time-resolved high-speed computed tomography (CT) using synchrotron radiation (SR). This camera is a lens-coupled type, composed of a scintillator, an imaging lens system, and a [...] Read more.
A lens-coupled high-speed X-ray camera, “Hayaka”, was developed for quick imaging of X-ray absorption fine structure (XAFS) and time-resolved high-speed computed tomography (CT) using synchrotron radiation (SR). This camera is a lens-coupled type, composed of a scintillator, an imaging lens system, and a high-speed visible light sCMOS, capable of imaging with a minimum exposure time of 1 μs and a maximum frame rate of 5000 frames/s (fps). A feasibility study using white and monochromatic SR at the beamline BL07 of the SAGA Light Source showed that fine X-ray images with a spatial resolution of 77 μm can be captured with an exposure time of 10 μs. Furthermore, quick imaging XAFS, combined with high-speed energy scanning of a small Ge double crystal monochromator of the same beamline, enabled spectral image data to be acquired near the Cu K-edge in a minimum of 0.5 s. Additionally, an in coquendo 4DCT (time-resolved 3D observation of cooking processes) observation combined with a high-speed rotation table revealed the boiling process of Japanese somen noodles over 150 s with a time resolution of 0.5 s. Full article
(This article belongs to the Special Issue Recent Advances in X-Ray Sensing and Imaging)
Show Figures

Figure 1

17 pages, 6494 KB  
Article
Wide-Spectral-Range, Multi-Directional Particle Detection by the High-Energy Particle Detector on the FY-4B Satellite
by Qingwen Meng, Guohong Shen, Chunqin Wang, Qinglong Yu, Lin Quan, Huanxin Zhang and Ying Sun
Atmosphere 2026, 17(1), 48; https://doi.org/10.3390/atmos17010048 - 30 Dec 2025
Viewed by 181
Abstract
The FY-4B satellite, launched in June 2021 as China’s new-generation geostationary meteorological satellite, carries three identical High-Energy Particle Detectors (HEPDs) that enable multi-directional, wide-spectral measurements of energetic electrons. The three units are mounted in the zenith (−Z), flight (+X with a +Y offset [...] Read more.
The FY-4B satellite, launched in June 2021 as China’s new-generation geostationary meteorological satellite, carries three identical High-Energy Particle Detectors (HEPDs) that enable multi-directional, wide-spectral measurements of energetic electrons. The three units are mounted in the zenith (−Z), flight (+X with a +Y offset of 30°), and anti-flight (−X with a −Y offset of 30°) directions, allowing simultaneous observations from nine look directions over a field of view close to 180° in the 0.4–4 MeV energy range (eight energy channels). This paper systematically presents the design principles of the HEPD electron detector, the ground calibration scheme, and preliminary in-orbit validation results. The probe employs a multi-layer silicon semiconductor telescope technique to achieve high-precision measurements of electron energy spectra, fluxes, and directional anisotropy in the 0.4–4 MeV range. Ground synchrotron calibration shows that the energy resolution is better than 16% for energies above 1 MeV, and the angular resolution is about 20°, providing a solid basis for subsequent quantitative inversion. During in-orbit operation, HEPD remains stable under both quiet conditions and strong geomagnetic storms: the measured electron fluxes, differential energy spectra, and directional distributions show good agreement with GOES-16 observations in the same energy bands during quiet periods and for the first time provide from geostationary orbit pitch-angle-resolved images of the minute-scale evolution of electron enhancement events. These results demonstrate that HEPD is capable of long-term monitoring of the geostationary radiation environment and can supply high-quality, continuous, and reliable data to support studies of radiation-belt particle dynamics, data assimilation in space weather models, and radiation warnings for satellites in orbit. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

22 pages, 22980 KB  
Article
Potential of Higher Resolution Synchrotron Radiation Tomography Using Crystal Analyzer-Based Imaging Techniques for Differential Diagnosis of Human Lung Cancers
by Eunjue Yi, Naoki Sunaguchi, Jeong Hyeon Lee, Miyoung Woo, Youngjin Kang, Seung-Jun Seo, Daisuke Shimao and Sungho Lee
Cancers 2026, 18(1), 82; https://doi.org/10.3390/cancers18010082 - 26 Dec 2025
Viewed by 250
Abstract
Background: Conventional absorption-based computed tomography has a limited ability to resolve lung microarchitectures that are critical for histological subtype discrimination. This study evaluated the potential of X-ray Dark-Field Imaging Computed Tomography (XDFI CT) using synchrotron radiation for non-destructive, three-dimensional visualization of human lung [...] Read more.
Background: Conventional absorption-based computed tomography has a limited ability to resolve lung microarchitectures that are critical for histological subtype discrimination. This study evaluated the potential of X-ray Dark-Field Imaging Computed Tomography (XDFI CT) using synchrotron radiation for non-destructive, three-dimensional visualization of human lung cancer microstructures. Methods: Surgically resected human lung cancer specimens (n = 4) were examined, including acinar-predominant adenocarcinoma (n = 1), adenocarcinoma after concurrent chemoradiation therapy (n = 1), keratinizing squamous cell carcinoma (n = 1), and metastatic hepatocellular carcinoma in the lung (n = 1). Image acquisition was performed at beamline BL-14B of the Photon Factory (Tsukuba, Japan), using a monochromatic 19.8 keV synchrotron X-ray beam and a crystal analyzer-based refraction-contrast optical system. Imaging findings were qualitatively correlated with corresponding histopathological sections. Results: Synchrotron radiation XDFI CT enabled clear visualization of normal distal lung microanatomy, including alveolar walls and associated vascular structures, which served as internal references adjacent to tumor regions. Distinct microstructural features—such as invasive growth patterns, fibrotic or keratinized stroma, necrosis, and treatment-related remodeling—were identifiable and varied according to histological subtype. Tumor–normal tissue transitional zones were consistently delineated in all specimens. Conclusions: Synchrotron radiation XDFI CT provides high-resolution, non-destructive volumetric imaging of lung cancer tissues and reveals subtype-associated microarchitectural features. This technique may complement conventional histopathology by enabling three-dimensional virtual histologic assessment of lung cancer specimens. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

15 pages, 3511 KB  
Article
Oxygen Bridge Governs OER via Deep Self-Reconstruction in Fe–Co Oxyhydroxides
by Mingyu Liu, Bowen Pei, Hongyu Ba, Wei Ni, Huaheng Zhao, Shuang Chen, Jiamin Zhao and Jinsheng Zhao
Molecules 2026, 31(1), 96; https://doi.org/10.3390/molecules31010096 - 25 Dec 2025
Viewed by 434
Abstract
The oxygen evolution reaction (OER) in water splitting involves complex multi-electron–proton transfer processes and represents the rate-determining step limiting overall electrolysis efficiency. Developing non-noble-metal catalysts with high activity and stability is therefore essential. Herein, a heterogeneous synthesis strategy was employed to in situ [...] Read more.
The oxygen evolution reaction (OER) in water splitting involves complex multi-electron–proton transfer processes and represents the rate-determining step limiting overall electrolysis efficiency. Developing non-noble-metal catalysts with high activity and stability is therefore essential. Herein, a heterogeneous synthesis strategy was employed to in situ construct an iron-rich layered sulfate precursor (Fe0.42Co0.58-SO4/NF) on nickel foam, which underwent deep self-reconstruction in alkaline electrolyte to form nanoflower-like Fe0.42Co0.58OOH/NF. The optimized catalyst maintained its iron-rich composition and hierarchical structure, delivering outstanding OER performance with an overpotential of 220 mV at 10 mA·cm−2, a Tafel slope of 31.9 mV·dec−1, and stability exceeding 12 h at 600 mA·cm−2. Synchrotron analyses revealed dynamic transitions between mono-μ-O and di-μ-O Fe–M (M = Fe, Co) oxygen bridges during reconstruction, which enhanced both structural robustness and active-site density. The Fe-rich environment promoted the formation of Fe3+–O–Fe3+ units that synergized with Co4+ species to activate the lattice oxygen mechanism (LOM), thereby accelerating OER kinetics. This work elucidates the key role of oxygen-bridge geometry in optimizing catalytic activity and durability, providing valuable insights into the rational design of Fe–Co-based non-noble-metal catalysts with high iron content for efficient water oxidation. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrocatalysis)
Show Figures

Graphical abstract

16 pages, 3563 KB  
Article
Multiple Diffraction in a Basic Co-Rich Decagonal Al-Co-Ni Quasicrystal
by Changzeng Fan
Metals 2025, 15(12), 1386; https://doi.org/10.3390/met15121386 - 18 Dec 2025
Viewed by 376
Abstract
To reveal its influence on quasicrystal structure analysis, multiple diffraction effects in a basic Co-rich decagonal Al-Co-Ni quasicrystal have been investigated in-house and with synchrotron radiation. Two weak reflections were chosen as the main reflections in the in-house measurements, and 40° ψ-scans [...] Read more.
To reveal its influence on quasicrystal structure analysis, multiple diffraction effects in a basic Co-rich decagonal Al-Co-Ni quasicrystal have been investigated in-house and with synchrotron radiation. Two weak reflections were chosen as the main reflections in the in-house measurements, and 40° ψ-scans of one main reflection have been performed with synchrotron radiation. As well as being known for periodic crystals and the icosahedral quasicrystal, it is also observed for this decagonal quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous and the coupling reflections are both strong. The occurrence of multiple diffraction events during collection of a full data set as well as the ψ-scans measurements have been studied based on an average structure model and the kinematical multiple diffraction theory. The present experimental and simulation efforts on the effects of multiple diffraction suggest that it is insufficient on its own to explain the discrepancy in weak-reflection intensities; alternative explanations like the phasonic disorder should be paid more attention in future. Full article
(This article belongs to the Special Issue Research Progress of Crystal in Metallic Materials)
Show Figures

Figure 1

22 pages, 5738 KB  
Review
Probing Membrane Structure of Lipid Nanomedicines Using Solution Small-Angle X-Ray Scattering: Applications and Prospects
by Ke-Meng Li, Panqi Song, Xiao-Peng He and Na Li
Membranes 2025, 15(12), 382; https://doi.org/10.3390/membranes15120382 - 16 Dec 2025
Viewed by 802
Abstract
Lipid-based nanomedicines are already widely used in antitumor therapy and gene delivery. However, their complex structural features demand advanced mesoscopic structural characterization tools for effective research and development (R&D) and quality control. Synchrotron small-angle X-ray scattering (SAXS) is a powerful, non-invasive technique for [...] Read more.
Lipid-based nanomedicines are already widely used in antitumor therapy and gene delivery. However, their complex structural features demand advanced mesoscopic structural characterization tools for effective research and development (R&D) and quality control. Synchrotron small-angle X-ray scattering (SAXS) is a powerful, non-invasive technique for probing nanoscale membrane organizations, monitoring in situ dynamic membrane assembly, and exploring the interactions of components in lipid-based drug delivery systems, including liposomes, lipoplexes, lipid nanoparticles (LNPs), and lyotropic liquid crystals (LLCs). Recent advances in high-flux synchrotron facilities, high-frequency detectors, and automated SAXS data processing pipelines permit a detailed structural characterization of lamellarity, bilayer spacing, internal phases, core–shell morphology, as well as “pump-probe” dynamic process studies for lipid nanomedicines. Though major challenges remain in sample polydispersity and model fitting, the advances in time-resolved synchrotron SAXS, high-throughput automation, and artificial intelligence (AI)-assisted modeling are rapidly reducing this barrier. This review summarizes SAXS methodology and introduces representative case studies in the field of lipid nanomedicines. The performance of BioSAXS beamline BL19U2 in the Shanghai synchrotron radiation facility (SSRF) and prospects of AI-guided drug screening at BL19U2 are highlighted to advance intelligent R&D and quality control for lipid nanomedicines. Full article
Show Figures

Graphical abstract

13 pages, 1817 KB  
Article
In Situ Characterization of the Growth of Passivation Films by Electrochemical-Synchrotron Radiation Methods
by Zhengyi Li, Zhiping Zhou, Wen Zhao, Xiaoming Liu, Yuhang Wang and Lei Wen
Coatings 2025, 15(12), 1477; https://doi.org/10.3390/coatings15121477 - 15 Dec 2025
Viewed by 359
Abstract
This study employed a combined electrochemical-Raman and synchrotron GIXRD-electrochemical approach to characterize the passive film growth on Fe-30Cr in situ. During passivation, adsorbed species such as (Cr,Fe)-OH ads and FeOOH evolved into stable oxides (Cr2O3, Fe2O3 [...] Read more.
This study employed a combined electrochemical-Raman and synchrotron GIXRD-electrochemical approach to characterize the passive film growth on Fe-30Cr in situ. During passivation, adsorbed species such as (Cr,Fe)-OH ads and FeOOH evolved into stable oxides (Cr2O3, Fe2O3, FeCr2O4), forming a dense, protective layer. The results provide direct evidence of the passivation mechanism of Cr-containing alloys in marine environments and offer insights into the structural evolution and corrosion resistance of passive films. Full article
Show Figures

Figure 1

21 pages, 668 KB  
Article
The EPSI R&D: Development of an Innovative Electron–Positron Discrimination Technique for Space Applications
by Oscar Adriani, Lucia Baldesi, Eugenio Berti, Pietro Betti, Massimo Bongi, Alberto Camaiani, Massimo Chiari, Raffaello D’Alessandro, Giacomo De Giorgi, Noemi Finetti, Leonardo Forcieri, Elena Gensini, Andrea Paccagnella, Lorenzo Pacini, Paolo Papini, Oleksandr Starodubtsev, Anna Vinattieri and Chiara Volpato
Particles 2025, 8(4), 101; https://doi.org/10.3390/particles8040101 - 12 Dec 2025
Viewed by 322
Abstract
The study of the antimatter component in cosmic rays is essential for the understanding of their acceleration and propagation mechanisms, and is one of the most powerful tools for the indirect search of dark matter. Current methods rely on magnetic spectrometers for charge-sign [...] Read more.
The study of the antimatter component in cosmic rays is essential for the understanding of their acceleration and propagation mechanisms, and is one of the most powerful tools for the indirect search of dark matter. Current methods rely on magnetic spectrometers for charge-sign discrimination, but these are not suitable for extending measurements to the TeV region within a short timeframe of a few decades. Since most of present and upcoming high-energy space experiments use large calorimeters, it is crucial to develop an alternative charge-sign discrimination technique that can be integrated with them. The Electron/Positron Space Instrument (EPSI) project, a two-year R&D initiative launched in 2023 with EU recovery funds, aims to address this challenge. The basic idea is to exploit the synchrotron radiation emitted by charged particles moving through Earth’s magnetic field. The simultaneous detection of an electron/positron with an electromagnetic calorimeter and synchrotron photons with an X-ray detector is enough to discriminate between the two particles at the event level. The main challenge is to develop an X-ray detector with a very large active area, high X-ray detection efficiency, and a low-energy detection threshold, compliant with space applications. In this paper, we give an overview of the EPSI project, with a focus on the general idea of the detection principle, the concept of the space instrument, and the design of the X-ray detector. Full article
Show Figures

Figure 1

24 pages, 1956 KB  
Article
Mobility of Carriers in Strong Inversion Layers Associated with Threshold Voltage for Gated Transistors
by Hsin-Chia Yang, Sung-Ching Chi, Bo-Hao Huang, Tung-Cheng Lai and Han-Ya Yang
Micromachines 2025, 16(12), 1393; https://doi.org/10.3390/mi16121393 - 9 Dec 2025
Viewed by 378
Abstract
NMOSFET, whose gate is on the top of the n-p-n junction with gate oxide in between, is called the n-channel transistor. This bipolar junction underneath the gate oxide may provide an n-n-n-conductive channel as the gate is applied with a positive bias over [...] Read more.
NMOSFET, whose gate is on the top of the n-p-n junction with gate oxide in between, is called the n-channel transistor. This bipolar junction underneath the gate oxide may provide an n-n-n-conductive channel as the gate is applied with a positive bias over the threshold voltage (Vth). Conceptually, the definition of an n-type or p-type semiconductor depends on whether the corresponding Fermi energy is higher or lower than the intrinsic Fermi energy, respectively. The positive bias applied to the gate would bend down the intrinsic Fermi energy until it is lower than the original p-type Fermi energy, which means that the p-type becomes strongly inverted to become an n-type. First, the thickness of the inversion layer is derived and presented in a planar 40 nm MOSFET, a 3D 240 nm FinFET, and a power discrete IGBT, with the help of the p (1/m3) of the p-type semiconductor. Different ways of finding p (1/m3) are, thus, proposed to resolve the strong inversion layers. Secondly, the conventional formulas, including the triode region and saturation region, are already modified, especially in the triode region from a continuity point of view. The modified formulas then become necessary and available for fitting the measured characteristic curves at different applied gate voltages. Nevertheless, they work well but not well enough. Thirdly, the electromagnetic wave (EM wave) generated from accelerating carriers (radiation by accelerated charges, such as synchrotron radiation) is proposed to demonstrate phonon scattering, which is responsible for the Source–Drain current reduction at the adjoining of the triode region and saturation region. This consideration of reduction makes the fitting more perfect. Fourthly, the strongly inverted layer may be formed but not conductive. The existing trapping would stop carriers from moving (nearly no mobility, μ) unless the applied gate bias is over the threshold voltage. The quantum confinement addressing the quantum well, which traps the carriers, is to be estimated. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

14 pages, 1507 KB  
Article
Implementation and Performance of a Synchronized Undulator–Monochromator Scanning System at a Soft X-Ray Beamline
by Shuo Zhao, Ying Zhao, Yamei Wang, Chun Hu, Jiefeng Cao, Zhaohong Zhang and Chunpeng Wang
Appl. Sci. 2025, 15(24), 12931; https://doi.org/10.3390/app152412931 - 8 Dec 2025
Viewed by 280
Abstract
The performance of synchrotron beamlines critically depends on the optimal coupling between the undulator and the monochromator. This work presents the implementation and quantitative characterization of a synchronized scanning system for the elliptically polarizing undulator (EPU) and the variable-line-spacing plane-grating monochromator at the [...] Read more.
The performance of synchrotron beamlines critically depends on the optimal coupling between the undulator and the monochromator. This work presents the implementation and quantitative characterization of a synchronized scanning system for the elliptically polarizing undulator (EPU) and the variable-line-spacing plane-grating monochromator at the BL07U beamline of the Shanghai Synchrotron Radiation Facility (SSRF). The system ensures that the monochromator’s narrow bandwidth dynamically tracks the brilliant central cone of the undulator radiation. A linear correlation between the monochromator energy and the undulator gap, justified theoretically for small scan ranges and reinforced by a robust real-time calibration procedure, forms the control basis. The automation is built upon a standard software stack comprising EPICS for device control, the Bluesky Suite for experimental orchestration, and Phoebus for the human–machine interface. Through comparative X-ray absorption spectroscopy (XAS) measurements at the Fe L2,3-edges, the synchronized mode is shown to enhance beam brilliance by 37% and stabilize the incident flux, reducing its variation from 4.2% to 1.8%. This directly results in absorption spectra with superior lineshape fidelity, a 40% reduction in noise, and the elimination of pre- and post-edge artifacts, unequivocally isolating the synchronization effect. This advancement provides a stable, high-brilliance photon source essential for high-quality XAS and X-ray magnetic circular/linear dichroism (XMCD/XMLD) studies. Full article
Show Figures

Figure 1

19 pages, 4311 KB  
Article
Effect of Initial Relative Density on Liquid-Phase Sintering Behaviors of Al Powder Using Al–Cu Eutectic Alloy Aid: In Situ Observations Using Tomography and Microscopy
by Ryotaro Kusunoki, Erika Matsumoto, Takeshi Higaki, Asuka Suzuki, Makoto Kobashi, Yukiko Ozaki, Masato Hoshino and Masayuki Uesugi
Materials 2025, 18(24), 5499; https://doi.org/10.3390/ma18245499 - 7 Dec 2025
Viewed by 458
Abstract
Aluminum (Al) powder with low sinterability is difficult to use in binder jetting (BJT) additive manufacturing, which involves sintering a metal powder after forming a green body. A liquid-phase sintering process for Al powder using Al–Cu eutectic alloy powder as a sintering aid [...] Read more.
Aluminum (Al) powder with low sinterability is difficult to use in binder jetting (BJT) additive manufacturing, which involves sintering a metal powder after forming a green body. A liquid-phase sintering process for Al powder using Al–Cu eutectic alloy powder as a sintering aid has recently been developed. In this study, to clarify the applicability of liquid-phase sintering to BJT additive manufacturing, the effect of the initial relative density of green bodies (ρrel,0 = 50–90%) on the final relative density was investigated. The final relative density was not significantly affected by ρrel,0 and achieved 96–97% after sintering at 630 °C for 1800 s. However, pores are likely to remain in the sintered body with a high ρrel,0 of 90%. In situ observations using synchrotron radiation X-ray computed tomography revealed that large pores were formed at the early sintering stage of the green body with ρrel,0 of 90% and partially retained after sintering. By contrast, the green body with ρrel,0 of 50% exhibited a significant rearrangement at the early sintering stage, promoting the densification. This study provides a deep understanding of liquid-phase sintering of Al powder, which is considered a suitable post-processing method for BJT additive manufacturing. Full article
Show Figures

Figure 1

Back to TopTop