High-Speed X-Ray Imager ‘Hayaka’ and Its Application for Quick Imaging XAFS and in Coquendo 4DCT Observation
Highlights
- Developed a lens-coupled high-speed X-ray camera, “Hayaka,” capable of high-resolution imaging with a 1 μs minimum exposure time and a 5000 fps maximum frame rate.
- Demonstrated high-speed energy scanning for QXAFS near the Cu K-edge in 0.5 s and achieved in situ 4D-CT observation of the somen noodle boiling process with a 0.5 s time resolution.
- The “Hayaka” camera system enables the observation of ultra-fast structural changes and chemical state transitions.
- This high-speed 4D-CT technique opens new possibilities for real-time, three-dimensional analysis of complex dynamic processes in food science and materials engineering.
Abstract
1. Introduction
2. High-Speed X-Ray Imager ‘Hayaka’
3. Results
3.1. Evaluation of Imaging Performance of Hayaka
3.2. Quick Imaging XAFS
3.3. In Coquendo 4DCT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Willmott, P. Imaging Techniques. In An Introduction to Synchrotron Radiation; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 367–402. [Google Scholar]
- Tanida, H.; Yamashige, H.; Orikasa, Y.; Oishi, M.; Takanashi, Y.; Fujimoto, T.; Sato, K.; Takamatsu, D.; Murayama, H.; Arai, H.; et al. In situ two-dimensional imaging quick-scanning XAFS with pixel array detector. J. Synchrotron Radiat. 2011, 18, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Katayama, M.; Sumiwaka, K.; Hayashi, K.; Ozutsumi, K.; Ohta, T.; Inada, Y. Development of a two-dimensional imaging system of X-ray absorption fine structure. J. Synchrotron Radiat. 2012, 19, 717–721. [Google Scholar] [CrossRef] [PubMed]
- Sekizawa, O.; Uruga, T.; Takagi, Y.; Nitta, K.; Kato, K.; Tanida, H.; Uesugi, K.; Hoshino, M.; Ikenaga, E.; Takeshita, K.; et al. SPring-8 BL36XU: Catalytic Reaction Dynamics for Fuel Cells. J. Phys. Conf. Ser. 2016, 712, 012142. [Google Scholar] [CrossRef]
- Nakamura, T.; Watanabe, T.; Amezawa, K.; Tanida, H.; Ohara, K.; Uchimoto, Y.; Ogumi, Z. Evaluation of the effective reaction zone in a composite cathode for lithium ion batteries. Solid State Ion. 2014, 262, 66–69. [Google Scholar] [CrossRef]
- Fakkao, M.; Chiba, K.; Kimura, Y.; Nakamura, T.; Okumura, T.; Nitta, K.; Terada, Y.; Uchimoto, Y.; Amezawa, K. Visualization of the reaction distribution in a composite cathode for an all-solid-state lithium-ion battery. J. Ceram. Soc. Jpn. 2017, 125, 299–302. [Google Scholar] [CrossRef]
- Matsui, H.; Maejima, N.; Ishiguro, N.; Tan, Y.; Uruga, T.; Sekizawa, O.; Sakata, T.; Tada, M. Operando XAFS Imaging of Distribution of Pt Cathode Catalysts in PEFC MEA. Chem. Rec. 2019, 19, 1380–1392. [Google Scholar] [CrossRef]
- Grunwaldt, J.-D.; Kimmerle, B.; Baiker, A.; Boye, P.; Schroer, C.G.; Glatzel, P.; Borca, C.N.; Beckmann, F. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy. Catal. Today 2009, 145, 267–278. [Google Scholar] [CrossRef]
- Alizadehfanaloo, S.; Garrevoet, J.; Seyrich, M.; Murzin, V.; Becher, J.; Doronkin, D.E.; Sheppard, T.L.; Grunwaldt, J.-D.; Schroer, C.G.; Schropp, A. Tracking dynamic structural changes in catalysis by rapid 2D-XANES microscopy. J. Synchrotron Radiat. 2021, 28, 1518–1527. [Google Scholar] [CrossRef]
- Meirer, F.; Cabana, J.; Liu, Y.; Mehta, A.; Andrews, J.C.; Pianetta, P. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Radiat. 2011, 18, 773–781. [Google Scholar] [CrossRef]
- Wang, J.; Chen-Wiegart, Y.-c.K.; Wang, J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy. Nat. Commun. 2014, 5, 4570. [Google Scholar] [CrossRef]
- Nitta, K.; Suga, H.; Sekizawa, O. Present status of micro-spectroscopy at BL37XU. Radiat. Phys. Chem. 2023, 211, 111028. [Google Scholar] [CrossRef]
- Briois, V.; Itie, J.P.; Polian, A.; King, A.; Traore, A.S.; Marceau, E.; Ersen, O.; La Fontaine, C.; Barthe, L.; Beauvois, A.; et al. Hyperspectral full-field quick-EXAFS imaging at the ROCK beamline for monitoring micrometre-sized heterogeneity of functional materials under process conditions. J. Synchrotron Radiat. 2024, 31, 1084–1104. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, N.; Totsuka, T.; Uematsu, H.; Sekizawa, O.; Yamamoto, K.; Iriyama, Y.; Takahashi, Y. Comprehensive Operando Visualization of the Electrochemical Events in the Cathode/Anode Layers in Thin-Film-Type All-Solid-State Lithium-Ion Batteries. ACS Appl. Energy Mater. 2023, 6, 8306–8315. [Google Scholar] [CrossRef]
- Ishiguro, N.; Matsui, H.; Wakamatsu, K.; Suzuki, Y.; Sekizawa, O.; Nitta, K.; Terada, Y.; Uruga, T.; Tada, M. Oxidation and phase transfer of individual Cr-doped dendritic FeOx particles visualized by full-field nano-XAFS spectroimaging. Phys. Chem. Chem. Phys. 2023, 25, 17197–17206. [Google Scholar] [CrossRef]
- García-Moreno, F.; Neu, T.R.; Kamm, P.H.; Banhart, J. X-ray Tomography and Tomoscopy on Metals: A Review. Adv. Eng. Mater. 2023, 25, 2201355. [Google Scholar] [CrossRef]
- Tekseth, K.R.; Mirzaei, F.; Lukic, B.; Chattopadhyay, B.; Breiby, D.W. Multiscale drainage dynamics with Haines jumps monitored by stroboscopic 4D X-ray microscopy. Proc. Natl. Acad. Sci. USA 2024, 121, e2305890120. [Google Scholar] [CrossRef]
- Piovesan, A.; Van De Looverbosch, T.; Verboven, P.; Achille, C.; Parra Cabrera, C.; Boller, E.; Cheng, Y.; Ameloot, R.; Nicolai, B. 4D synchrotron microtomography and pore-network modelling for direct in situ capillary flow visualization in 3D printed microfluidic channels. Lab Chip 2020, 20, 2403–2411. [Google Scholar] [CrossRef]
- Chavez Panduro, E.A.; Cordonnier, B.; Gawel, K.; Børve, I.; Iyer, J.; Carroll, S.A.; Michels, L.; Rogowska, M.; McBeck, J.A.; Sørensen, H.O.; et al. Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions. Environ. Sci. Technol. 2020, 54, 8323–8332. [Google Scholar] [CrossRef]
- Garcia-Moreno, F.; Kamm, P.H.; Neu, T.R.; Banhart, J. Time-resolved in situ tomography for the analysis of evolving metal-foam granulates. J. Synchrotron Radiat. 2018, 25, 1505–1508. [Google Scholar] [CrossRef]
- García-Moreno, F.; Kamm, P.H.; Neu, T.R.; Bülk, F.; Mokso, R.; Schlepütz, C.M.; Stampanoni, M.; Banhart, J. Using X-ray tomoscopy to explore the dynamics of foaming metal. Nat. Commun. 2019, 10, 3762. [Google Scholar] [CrossRef]
- García-Moreno, F.; Kamm, P.H.; Neu, T.R.; Bülk, F.; Noack, M.A.; Wegener, M.; von der Eltz, N.; Schlepütz, C.M.; Stampanoni, M.; Banhart, J. Tomoscopy: Time-Resolved Tomography for Dynamic Processes in Materials. Adv. Mater. 2021, 33, 2104659. [Google Scholar] [CrossRef] [PubMed]
- Verma, U.; Riley, I.M.; Lukić, B.; Broche, L.; Verboven, P.; Delcour, J.A.; Nicolaï, B.M. High-speed computed tomography to visualise the 3D microstructural dynamics of oil uptake in deep-fried foods. Nat. Commun. 2025, 16, 2600. [Google Scholar] [CrossRef] [PubMed]
- Mashita, R.; Bito, Y.; Uesugi, K.; Hoshino, M.; Kageyuki, I.; Kishimoto, H.; Yashiro, W.; Kanaya, T. Insights into the cavitation morphology of rubber reinforced with a nano-filler. Sci. Rep. 2023, 13, 5805. [Google Scholar] [CrossRef] [PubMed]
- Momose, A.; Yashiro, W.; Harasse, S.; Kuwabara, H. Four-dimensional X-ray phase tomography with Talbot interferometry and white synchrotron radiation: Dynamic observation of a living worm. Opt. Express 2011, 19, 8423–8432. [Google Scholar] [CrossRef]
- dos Santos Rolo, T.; Ershov, A.; van de Kamp, T.; Baumbach, T. In vivo X-ray cine-tomography for tracking morphological dynamics. Proc. Natl. Acad. Sci. USA 2014, 111, 3921–3926. [Google Scholar] [CrossRef]
- Fitzgerald, R. Phase-Sensitive X-Ray Imaging. Phys. Today 2000, 53, 23–26. [Google Scholar] [CrossRef]
- Cloetens, P.; Ludwig, W.; Baruchel, J.E.; Guigay, J.-P.; Pernot-Rejmánková, P.; Salomé-Pateyron, M.; Schlenker, M.; Buffière, J.-Y.; Maire, E.; Peix, G. Hard X-ray phase imaging using simple propagation of a coherent synchrotron radiation beam. J. Phys. D Appl. Phys. 1999, 32, A145. [Google Scholar] [CrossRef]
- Momose, A.; Kawamoto, S.; Koyama, I.; Hamaishi, Y.; Takai, K.; Suzuki, Y. Demonstration of X-Ray Talbot Interferometry. Jpn. J. Appl. Phys. 2003, 42, L866–L868. [Google Scholar] [CrossRef]
- Yashiro, W.; Noda, D.; Kajiwara, K. Sub-10-ms X-ray tomography using a grating interferometer. Appl. Phys. Express 2017, 10, 052501. [Google Scholar] [CrossRef]
- Ritschl, L.; Sawall, S.; Knaup, M.; Hess, A.; Kachelriess, M. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior. Phys. Med. Biol. 2012, 57, 1517–1525. [Google Scholar] [CrossRef]
- Eyndhoven, G.V.; Batenburg, K.J.; Kazantsev, D.; Nieuwenhove, V.V.; Lee, P.D.; Dobson, K.J.; Sijbers, J. An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging. IEEE Trans. Image Process. 2015, 24, 4446–4458. [Google Scholar] [CrossRef] [PubMed]
- Buzmakov, A.; Krivonosov, Y.; Grigoriev, M.; Mogilevskiy, E.; Chukalina, M.; Nikolaev, D.; Asadchikov, V. Iterative Algorithm for 4D Tomography Reconstruction Using a Single Projection per Time Step. IEEE Access 2022, 10, 46963–46974. [Google Scholar] [CrossRef]
- Ruhlandt, A.; Töpperwien, M.; Krenkel, M.; Mokso, R.; Salditt, T. Four dimensional material movies: High speed phase-contrast tomography by backprojection along dynamically curved paths. Sci. Rep. 2017, 7, 6487. [Google Scholar] [CrossRef] [PubMed]
- Voegeli, W.; Kajiwara, K.; Kudo, H.; Shirasawa, T.; Liang, X.; Yashiro, W. Multibeam X-ray optical system for high-speed tomography. Optica 2020, 7, 514–517. [Google Scholar] [CrossRef]
- Kaneyasu, T.; Takabayashi, Y.; Iwasaki, Y.; Koda, S. Status and development of the SAGA Light Source. In Proceedings of the IPAC 2011—2nd International Particle Accelerator Conference, San Sebastián, Spain, 4–9 September 2011. [Google Scholar]
- Koda, S.; Iwasaki, Y.; Takabayashi, Y.; Kaneyasu, T. Progress and Status of Synchrotron Radiation Facility SAGA Light Source. In Proceedings of the IPAC 2010, Kyoto, Japan, 23–28 May 2010. [Google Scholar]
- Kawamoto, M.; Sumitani, K.; Okajima, T. The Design of Superconducting Wiggler Beamline BL7 at SAGA-LS. AIP Conf. Proc. 2010, 1234, 355–358. [Google Scholar] [CrossRef]
- Yoneyama, A.; Baba, R.; Kawamoto, M. Quantitative analysis of the physical properties of CsI, GAGG, LuAG, CWO, YAG, BGO, and GOS scintillators using 10-, 20- and 34-keV monochromated synchrotron radiation. Opt. Mater. Express 2021, 11, 398. [Google Scholar] [CrossRef]
- Shirasawa, T.; Xiaouyu, L.; Voegeli, W.; Arakawa, E.; Kajiwara, K.; Yashiro, W. High-speed multi-beam X-ray imaging using a lens coupling detector system. Appl. Phys. Express 2020, 13, 077002. [Google Scholar] [CrossRef]
- Liang, X.; Voegeli, W.; Kudo, H.; Arakawa, E.; Shirasawa, T.; Kajiwara, K.; Abukawa, T.; Yashiro, W. Sub-millisecond 4D X-ray tomography achieved with a multibeam X-ray imaging system. Appl. Phys. Express 2023, 16, 072001. [Google Scholar] [CrossRef]
- Yoneyama, A.; Takeya, S.; Lwin, T.T.; Takamatsu, D.; Baba, R.; Konishi, K.; Fujita, R.; Kobayashi, K.; Shima, A.; Kawamoto, M.; et al. Advanced X-ray imaging at beamline 07 of the SAGA Light Source. J. Synchrotron Radiat. 2021, 28, 1966–1977. [Google Scholar] [CrossRef]
- Momose, A.; Takeda, T.; Yoneyama, A.; Koyama, I.; Itai, Y. Wide-area phase-contrast X-ray imaging using large X-ray interferometers. Nucl. Instrum. Methods Phys. Res. Sect. A 2001, 467, 917–920. [Google Scholar] [CrossRef]
- Akeyama, K.; Kuroda, H.; Kosugi, N. Cu K-edge XANES and Electronic Structure of Trivalent, Divalent, and Monovalent Cu Oxides. Jpn. J. Appl. Phys. 1993, 32, 98. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Yasuda, M.; Yoneyama, A.; Takeya, S.; Tabata, M.; Kawasaki, M.; Ehara, N.; Hirosawa, I.; Seno, Y. Microstructual analysis of the texture of Machine-made somen noodle. Nippon Shokuhin Kagaku Kogaku Kaishi 2023, 70, 147–159. [Google Scholar] [CrossRef]










| Number of Pixels | 1280 × 864 | Frame Rate | 3660 fps for Full Image 5000 fps for 800 × 400 Image |
|---|---|---|---|
| Pixel size | 13.7 μm | Interface | CoaXPress 2.0 @ 12.5 Gbit/s |
| Exposure time | 1 μs~1 s | Cooling | Air-cooling |
| Pixel data width | 10 bits | Mount | C-mount |
| No. | Model No. | Focal Length | F Number | Supported Sensor Size | Mount |
|---|---|---|---|---|---|
| 1 | 43F2409M-MP C | 24 mm | 0.9 | 4/3′′ | C-Mount |
| 2 | 43F2408M-MP | 24 mm | 0.8 | 4/3′′ | M42 P1.0 |
| 3 | VS-50085/C | 50 mm | 0.85 | 4/3′′ | C-Mount |
| No. | Pixel Size [μm] | Effective Width [mm] | Effective Height [mm] | Required Exposure Time for White SR [μs] | Required Exposure Time for Mono. SR [ms] | Spatial Resolution [μm] |
|---|---|---|---|---|---|---|
| ① | 13.7 | 4.5 | 2.0 | 15 | 36 | 70 |
| ② | 13.7 | 5.4 | 2.3 | 12 | 32 | 77 |
| ③ | 26.5 | 11.9 | 2.7 | 11 | 30 | 90 |
| ④ | 6.8 | 6.3 | 2.6 | 40 | 88 | 55 |
| ⑤ | 6.8 | 6.9 | 2.8 | 32 | 68 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yoneyama, A.; Yasuda, M.; Yashiro, W.; Setoyama, H.; Takeya, S.; Kawamoto, M. High-Speed X-Ray Imager ‘Hayaka’ and Its Application for Quick Imaging XAFS and in Coquendo 4DCT Observation. Sensors 2026, 26, 434. https://doi.org/10.3390/s26020434
Yoneyama A, Yasuda M, Yashiro W, Setoyama H, Takeya S, Kawamoto M. High-Speed X-Ray Imager ‘Hayaka’ and Its Application for Quick Imaging XAFS and in Coquendo 4DCT Observation. Sensors. 2026; 26(2):434. https://doi.org/10.3390/s26020434
Chicago/Turabian StyleYoneyama, Akio, Midori Yasuda, Wataru Yashiro, Hiroyuki Setoyama, Satoshi Takeya, and Masahide Kawamoto. 2026. "High-Speed X-Ray Imager ‘Hayaka’ and Its Application for Quick Imaging XAFS and in Coquendo 4DCT Observation" Sensors 26, no. 2: 434. https://doi.org/10.3390/s26020434
APA StyleYoneyama, A., Yasuda, M., Yashiro, W., Setoyama, H., Takeya, S., & Kawamoto, M. (2026). High-Speed X-Ray Imager ‘Hayaka’ and Its Application for Quick Imaging XAFS and in Coquendo 4DCT Observation. Sensors, 26(2), 434. https://doi.org/10.3390/s26020434

