Cryogenic X-Ray Microtomography of Early-Stage Polyurethane Foaming: 3D Analysis of Cell Structure Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials of the Composite PU Foams
2.2. Preparation of PU Foams
2.3. Sample Preparation and Freezing for Cryogenic X-Ray Tomography
2.4. Cryogenic X-Ray Tomography
2.5. Image Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bernal, M.M.; Lopez-Manchado, M.A.; Verdejo, R. In Situ Foaming Evolution of Flexible Polyurethane Foam Nanocomposites. Macromol. Chem. Phys. 2011, 212, 971–979. [Google Scholar] [CrossRef]
- Szycher, M. Szycher’s Handbook of Polyurethanes, 2nd ed.; Taylor & Francis Group: London, UK, 2013; ISBN 0442216297. [Google Scholar]
- Neff, R.A.; Macosko, C.W. Simultaneous Measurement of Viscoelastic Changes and Cell Opening during Processing of Flexible Polyurethane Foam. Rheol. Acta 1996, 35, 656–666. [Google Scholar] [CrossRef]
- Brondi, C.; Santiago-Calvo, M.; Di Maio, E.; Rodríguez-Perez, M.Á. Role of Air Bubble Inclusion on Polyurethane Reaction Kinetics. Materials 2022, 15, 3135. [Google Scholar] [CrossRef]
- Brondi, C.; Di Maio, E.; Bertucelli, L.; Parenti, V.; Mosciatti, T. Competing Bubble Formation Mechanisms in Rigid Polyurethane Foaming. Polymer 2021, 228, 123877. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.; Wang, X.; Mi, J. Evaluation of Nanoparticle Effect on Bubble Nucleation in Polymer Foaming. J. Phys. Chem. C 2016, 120, 26841–26851. [Google Scholar] [CrossRef]
- Niyogi, D.; Kumar, R.; Gandhi, K.S. Modeling of Bubble-Size Distribution in Water and Freon Co-Blown Free Rise Polyurethane Foams. J. Appl. Polym. Sci. 2014, 131, 9098–9110. [Google Scholar] [CrossRef]
- Reignier, J.; Alcouffe, P.; Méchin, F.; Fenouillot, F. The Morphology of Rigid Polyurethane Foam Matrix and Its Evolution with Time during Foaming—New Insight by Cryogenic Scanning Electron Microscopy. J. Colloid Interface Sci. 2019, 552, 153–165. [Google Scholar] [CrossRef]
- Hamann, M.; Andrieux, S.; Schütte, M.; Telkemeyer, D.; Ranft, M.; Drenckhan, W. Directing the Pore Size of Rigid Polyurethane Foam via Controlled Air Entrainment. J. Cell. Plast. 2023, 59, 201–214. [Google Scholar] [CrossRef]
- Chae, J.; Lee, Y.; Choi, S.Q. Pore Size Control Mechanism of a Rigid Polyurethane Foam. Korean J. Chem. Eng. 2024, 41, 3139–3150. [Google Scholar] [CrossRef]
- Hamann, M.; Cotte-Carluer, G.; Andrieux, S.; Telkemeyer, D.; Ranft, M.; Schütte, M.; Drenckhan, W. Fluorocarbon-Driven Pore Size Reduction in Polyurethane Foams: An Effect of Improved Bubble Entrainment. Colloid Polym. Sci. 2023, 302, 585–596. [Google Scholar] [CrossRef]
- Hamann, M.; Carvalho, A.; Schmutz, M.; Fiorucci, L.; Telkemeyer, D.; Schütte, M.; Drenckhan-Andreatta, W. Role of Fluorocarbons in PUR Foams: A Cryo-SEM Study. Colloid Polym. Sci. 2025, 303, 2463–2479. [Google Scholar] [CrossRef]
- Krishnan, V.G.; Fiorucci, L.; Sarbu, A.; Drenckhan-Andreatta, W. Characterizing the Foaming Process of Polymers: Review of Experimental Methods. Adv. Colloid Interface Sci. 2025, 344, 103579. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Alonso, S.; Solórzano, E.; Estravís, S.; Rodríguez-Perez, M.A.; de Saja, J.A. In Situ Evidence of the Nanoparticle Nucleating Effect in Polyurethane–Nanoclay Foamed Systems. Soft Matter 2012, 8, 11262. [Google Scholar] [CrossRef]
- Pérez-Tamarit, S.; Solórzano, E.; Mokso, R.; Rodríguez-Pérez, M.A. In-Situ Understanding of Pore Nucleation and Growth in Polyurethane Foams by Using Real-Time Synchrotron X-Ray Tomography. Polymer 2019, 166, 50–54. [Google Scholar] [CrossRef]
- Cimavilla-Román, P.; Álvarez-Zapatero, P.; Barroso-Solares, S.; Vananroye, A.; Moldenaers, P.; Rodriguez-Pérez, M.Á. The Influence of Viscosity Buildup on the Foaming Dynamics of Rigid Polyurethane Foams. J. Appl. Polym. Sci. 2025, 142, e56302. [Google Scholar] [CrossRef]
- Cimavilla-Román, P.; Santiago-Calvo, M.; Rodríguez-Pérez, M.Á. Dynamic Mechanical Analysis during Polyurethane Foaming: Relationship between Modulus Build-up and Reaction Kinetics. Polym. Test. 2021, 103, 107336. [Google Scholar] [CrossRef]
- Pinto, J.; Solorzano, E.; Rodriguez-Perez, M.A.; de Saja, J.A. Characterization of the Cellular Structure Based on User-Interactive Image Analysis Procedures. J. Cell. Plast. 2013, 49, 555–575. [Google Scholar] [CrossRef]
- Mikula, R.J.; Munoz, V.A. Characterization of Emulsions and Suspensions in the Petroleum Industry Using Cryo-SEM and CLSM. Colloids Surf. A Physicochem. Eng. Asp. 2000, 174, 23–36. [Google Scholar] [CrossRef]
- Corral, A.; Balcerzyk, M.; Parrado-Gallego, Á.; Fernández-Gómez, I.; Lamprea, D.R.; Olmo, A.; Risco, R. Assessment of the Cryoprotectant Concentration inside a Bulky Organ for Cryopreservation Using X-Ray Computed Tomography. Cryobiology 2015, 71, 419–431. [Google Scholar] [CrossRef]
- De Schryver, T.; Dierick, M.; Heyndrickx, M.; Van Stappen, J.; Boone, M.A.; Van Hoorebeke, L.; Boone, M.N. Motion Compensated Micro-CT Reconstruction for in-Situ Analysis of Dynamic Processes. Sci. Rep. 2018, 8, 7655. [Google Scholar] [CrossRef]
- Vlassenbroeck, J.; Dierick, M.; Masschaele, B.; Cnudde, V.; Van Hoorebeke, L.; Jacobs, P. Software Tools for Quantification of X-Ray Microtomography at the UGCT. Nucl. Instrum. Methods Phys. Res. Sect. A 2007, 580, 442–445. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Legland, D.; Arganda-Carreras, I.; Andrey, P. MorphoLibJ: Integrated Library and Plugins for Mathematical Morphology with ImageJ. Bioinformatics 2016, 32, 3532–3534. [Google Scholar] [CrossRef]
- Kumar, V.; Suh, N.P. A Process for Making Microcellular Thermoplastic Parts. Polym. Eng. Sci. 1990, 30, 1323–1329. [Google Scholar] [CrossRef]
- Dougherty, R.; Kunzelmann, K.-H. Computing Local Thickness of 3D Structures with ImageJ. Microsc. Microanal. 2007, 13, 1678–1679. [Google Scholar] [CrossRef]
- Grünbauer, H.J.M.; Thoen, J.A.; Folmer, J.C.W.; Van Lieshout, H.C. Polymer Morphology of Water-Blown Rigid Polyurethane Foams: Development of New Polyols. J. Cell. Plast. 1992, 28, 36–47. [Google Scholar] [CrossRef]
- Mahmood, N.; Kressler, J.; Busse, K. Structure Analysis in Polyurethane Foams at Interfaces. J. Appl. Polym. Sci. 2005, 98, 1280–1289. [Google Scholar] [CrossRef]
- Garcia-Moreno, F.; Mukherjee, M.; Jiménez, C.; Rack, A.; Banhart, J. Metal Foaming Investigated by X-Ray Radioscopy. Metals 2011, 2, 10–21. [Google Scholar] [CrossRef]
- Verdejo, R.; Tapiador, F.J.; Helfen, L.; Bernal, M.M.; Bitinis, N.; Lopez-Manchado, M. Fluid Dynamics of Evolving Foams. Phys. Chem. Chem. Phys. 2009, 11, 10860–10866. [Google Scholar] [CrossRef] [PubMed]
- Merillas, B.; Villafañe, F.; Rodríguez-Pérez, M.Á. Nanoparticles Addition in PU Foams: The Dramatic Effect of Trapped-Air on Nucleation. Polymers 2021, 13, 2952. [Google Scholar] [CrossRef]
- Feng, H.; Wang, Y.; Zhang, T.; Wang, J.; Jia, Z.; Jiang, S.; Han, X. Review on Research Progress on Bio-Based Self-Healing Polyurethane. ACS Mater. Lett. 2025, 7, 3461–3488. [Google Scholar] [CrossRef]




| Sample | Isocyanate (g) | Polyol (g) | Surfactant (g) | Gelling Catalyst (g) | Water (g) |
|---|---|---|---|---|---|
| REF | 23.67 | 15.78 | 0.16 | 0.08 | 0.32 |
| BAF | 26.06 | 13.09 | 0.13 | 0.07 | 0.66 |
| GCF | 23.58 | 15.72 | 0.16 | 0.24 | 0.31 |
| Sample | ρ (kg m−3) | Φ3D (µm) | AR | Nv (Cells·cm−3) | (Cells·cm−3) | |
|---|---|---|---|---|---|---|
| REF | 59.7 ± 1.6 | 0.051 | 416.0 ± 91.8 | 1.2 | 2.5 × 104 | 4.5 × 105 |
| BAF | 34.4 ± 0.2 | 0.030 | 488.3 ± 151.9 | 1.4 | 1.6 × 104 | 4.8 × 105 |
| GCF | 52.3 ± 1.1 | 0.045 | 322.5 ± 73.7 | 1.3 | 5.4 × 104 | 1.1 × 106 |
| Sample | Reaction Time (s) | ρr | φ (µm) | SD/φ | Nv (Cells·cm−3) | (Cells·cm−3) | δ (µm) |
|---|---|---|---|---|---|---|---|
| REF | 50 | 0.93 ± 0.01 | 39.5 ± 18.1 | 0.46 | 8.1 ± 0.6 × 105 | 8.7 ± 0.6 × 105 | 148.4 ± 40.9 |
| 60 | 0.91 ± 0.02 | 43.6 ± 20.3 | 0.47 | 8.5 ± 0.5 × 105 | 9.3 ± 0.5 × 105 | 139.9 ± 41.0 | |
| 70 | 0.91 ± 0.02 | 49.3 ± 20.7 | 0.42 | 8.0 ± 0.7 × 105 | 8.9 ± 0.8 × 105 | 143.6 ± 42.6 | |
| BAF | 50 | 0.96 ± 0.01 | 31.2 ± 13.5 | 0.43 | 1.1 ± 0.1 × 106 | 1.2 ± 0.1 × 106 | 138.8 ± 38.9 |
| 60 | 0.90 ± 0.02 | 56.4 ± 20.3 | 0.36 | 1.0 ± 0.4 × 106 | 1.1 ± 0.4 × 106 | 106.9 ± 39.1 | |
| 70 | 0.77 ± 0.02 | 62.9 ± 24.5 | 0.39 | 1.1 ± 0.1 × 106 | 1.4 ± 0.1 × 106 | 70.5 ± 29.0 | |
| GCF | 25 | 0.87 ± 0.01 | 51.9 ± 18.1 | 0.35 | 1.3 ± 0.1 × 106 | 1.5 ± 0.1 × 106 | 93.9 ± 47.5 |
| 32 | 0.78 ± 0.03 | 60.3 ± 20.7 | 0.34 | 1.3 ± 0.2 × 106 | 1.7 ± 0.3 × 106 | 69.9 ± 30.6 | |
| 40 | 0.71 ± 0.05 | 70.5 ± 18.5 | 0.26 | 1.3 ± 0.2 × 106 | 1.8 ± 0.3 × 106 | 63.6 ± 31.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cimavilla-Román, P.; Barroso-Solares, S.; Santiago-Calvo, M.; Rodriguez-Perez, M.A. Cryogenic X-Ray Microtomography of Early-Stage Polyurethane Foaming: 3D Analysis of Cell Structure Development. Polymers 2026, 18, 245. https://doi.org/10.3390/polym18020245
Cimavilla-Román P, Barroso-Solares S, Santiago-Calvo M, Rodriguez-Perez MA. Cryogenic X-Ray Microtomography of Early-Stage Polyurethane Foaming: 3D Analysis of Cell Structure Development. Polymers. 2026; 18(2):245. https://doi.org/10.3390/polym18020245
Chicago/Turabian StyleCimavilla-Román, Paula, Suset Barroso-Solares, Mercedes Santiago-Calvo, and Miguel Angel Rodriguez-Perez. 2026. "Cryogenic X-Ray Microtomography of Early-Stage Polyurethane Foaming: 3D Analysis of Cell Structure Development" Polymers 18, no. 2: 245. https://doi.org/10.3390/polym18020245
APA StyleCimavilla-Román, P., Barroso-Solares, S., Santiago-Calvo, M., & Rodriguez-Perez, M. A. (2026). Cryogenic X-Ray Microtomography of Early-Stage Polyurethane Foaming: 3D Analysis of Cell Structure Development. Polymers, 18(2), 245. https://doi.org/10.3390/polym18020245

