Oxygen Bridge Governs OER via Deep Self-Reconstruction in Fe–Co Oxyhydroxides
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Characterization of the Precursor Fe0.42Co0.58-SO4/NF
2.2. Composition and Local Structure of Self-Reconstructed Fe0.42Co0.58OOH/NF
2.3. Oxygen Evolution Reaction Performance
2.4. Mechanistic Investigation of the OER
3. Experimental Section
3.1. Materials and Chemicals
3.2. Catalyst Preparation
3.2.1. Synthesis of Fe0.42Co0.58OOH/NF
3.2.2. Synthesis of Fe0.26Co0.74OOH/NF
3.2.3. Synthesis of FeOOH/NF
3.3. Catalyst Characterization
3.4. Electrochemical Measurements
3.5. pH-Dependent Electrochemical Measurements
3.6. TurnOver Number (TON)
3.7. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, L.; Wang, Q.; Yuan, S.; Mei, X.; Wang, Q.; Zou, X.; Zhang, K.; Huo, X.; Shi, X.; Pan, Z.; et al. Unrevealing the interaction between electrode degradation and bubble behaviors in an anion exchange membrane water electrolyzer. Adv. Sci. 2025, 12, 2412962. [Google Scholar] [CrossRef]
- Kurtz, D.A.; Hunter, B.M. Forming O-O bonds. Joule 2022, 6, 2272–2292. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Xue, Q.; Xue, Y.Y.; Ding, Y.; Li, F.M.; Jin, P.; Chen, P.; Chen, Y. Iridium nanotubes as bifunctional electrocatalysts for oxygen evolution and nitrate reduction reactions. ACS Appl. Mater. Interfaces 2020, 12, 14064–14070. [Google Scholar] [CrossRef]
- Zhang, K.; Zou, R. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, S.; Li, L.; Lv, T.; Liu, X.; Zhao, H.; Han, Z.; Tan, X.; Mu, Y.; et al. Fe coordination environment modulating oxygen evolution reaction properties of cobalt site. Small 2025, 21, 2500121. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Xu, H.; Dai, J.; Guan, D.; Hu, Z.; She, S.; Chen, C.T.; Ran, R.; Zhou, W.; Shao, Z. A dynamically stable self-assembled CoFe (oxy)hydroxide-based nanocatalyst with boosted electrocatalytic performance for the oxygen-evolution reaction. J. Mater. Chem. A 2024, 12, 24308–24317. [Google Scholar] [CrossRef]
- Badreldin, A.; Abusrafa, A.E.; Abdel-Wahab, A. Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting. ChemSusChem 2021, 14, 10–32. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, J.; Zhang, S.F.; Zhang, Z.J.; Sun, J.F.; Li, T.T.; Kang, J.L.; Liu, H.; Bai, S. In situ constructing lamella-heterostructured nanoporous CoFe/CoFe2O4 and CeO2−x as bifunctional electrocatalyst for high-current-density water splitting. Rare Met. 2025, 44, 1053–1066. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, Y.K. Understanding highly active and durable Fe-decorated Co(OH)2 catalysts in alkaline oxygen evolution reaction by in situ XANES studies. Chem. Eng. J. 2024, 490, 151701. [Google Scholar] [CrossRef]
- Bo, X.; Li, Y.; Chen, X.; Zhao, C. Operando Raman spectroscopy reveals Cr-induced-phase reconstruction of NiFe and CoFe oxyhydroxides for enhanced electrocatalytic water oxidation. Chem. Mater. 2020, 32, 4303–4311. [Google Scholar] [CrossRef]
- Dionigi, F.; Zeng, Z.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M.B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D.; et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522. [Google Scholar] [CrossRef]
- Smith, R.D.; Pasquini, C.; Loos, S.; Chernev, P.; Klingan, K.; Kubella, P.; Mohammadi, M.R.; Gonzalez-Flores, D.; Dau, H. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nat. Commun. 2017, 8, 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Xue, W.; Cui, X.; Wang, P.; Zuo, S.; Mo, F.; Li, C.; Liu, G.; Ouyang, S.; Zhan, S.; et al. Oxygen-bridging Fe, Co dual-metal dimers boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries. Proc. Natl. Acad. Sci. USA 2024, 121, e2404013121. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Twight, L.P.; Samanta, B.; Liu, L.; Biswas, S.; Fehrs, J.L.; Sagui, N.A.; Villalobos, J.; Morales-Santelices, J.; Antipin, D.; et al. Cooperative Fe sites on transition metal (oxy) hydroxides drive high oxygen evolution activity in base. Nat. Commun. 2023, 14, 7688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Dongfang, N.; Huang, C.; Erni, R.; Li, J.; Zhao, H.; Pan, L.; Iannuzzi, M.; Patzke, G.R. Operando monitoring of the functional role of tetrahedral cobalt centers for the oxygen evolution reaction. Nat. Commun. 2025, 16, 580. [Google Scholar] [CrossRef]
- Zhan, Y.; Yang, T.; Liu, S.; Yang, L.; Wang, E.; Yu, X.; Wang, H.; Chou, K.C.; Hou, X. In situ characterization method to reveal the surface reconstruction process of an electrocatalyst. Nanomaterials 2025, 15, 917. [Google Scholar] [CrossRef]
- Grimaud, A.; Demortière, A.; Saubanère, M.; Dachraoui, W.; Duchamp, M.; Doublet, M.L.; Tarascon, J.M. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2016, 2, 16189. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.; Zhou, J.; Wang, Q.; Han, J. Deep sulfur doping induces the rapid electrochemical self-reconstruction of Ni–Fe hydroxide to drive water oxidation. Green Chem. 2023, 25, 10684–10692. [Google Scholar] [CrossRef]
- Sheng, J.; Kang, J.; Jiang, P.; Meinander, K.; Hong, X.; Jiang, H.; Nonappa; Ikkala, O.; Komsa, H.P.; Peng, B.; et al. Guided heterostructure growth of CoFe LDH on Ti3C2Tx MXene for durably high oxygen evolution activity. Small 2025, 21, 2404927. [Google Scholar] [CrossRef]
- Li, Z.; Lin, G.; Wang, L.; Lee, H.; Du, J.; Tang, T.; Ding, G.; Ren, R.; Li, W.; Cao, X.; et al. Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density. Nat. Catal. 2024, 7, 944–952. [Google Scholar] [CrossRef]
- Yu, M.; Weidenthaler, C.; Wang, Y.; Budiyanto, E.; Sahin, E.O.; Chen, M.; DeBeer, S.; Rüdiger, O.; Tüysüz, H. Surface boron modulation on cobalt oxide nanocrystals for electrochemical oxygen evolution reaction. Angew. Chem. Int. Ed. 2022, 61, e202211543. [Google Scholar] [CrossRef]
- El-Seidy, A.M.; El-Okaily, M.S.; Nabil, I.M.; Mostafa, A.A. New binary and ternary SiO2 composites with Fe2O3 and Co2.74O4 and the evaluation of their γ-radiation shielding properties. Sci. Rep. 2025, 15, 13714. [Google Scholar] [CrossRef] [PubMed]
- Vinothkumar, V.; Koventhan, C.; Chen, S.M.; Abinaya, M.; Kesavan, G.; Sengottuvelan, N. Preparation of three dimensional flower-like cobalt phosphate as dual functional electrocatalyst for flavonoids sensing and supercapacitor applications. Ceram. Int. 2021, 47, 29688–29706. [Google Scholar] [CrossRef]
- Ye, S.; Lei, Y.; Xu, T.; Zheng, L.; Chen, Z.; Yang, X.; Ren, X.; Li, Y.; Zhang, Q.; Liu, J. Deeply self-reconstructing CoFe (H3O)(PO4)2 to low-crystalline Fe0.5Co0.5OOH with Fe3+–O–Fe3+ motifs for oxygen evolution reaction. Appl. Catal. B Environ. 2022, 304, 120986. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, J.; Sun, W.; Gong, S.; Liu, X.; Tian, Y.; Wang, D. Spatial configuration of Fe–Co dual-sites boosting catalytic intermediates coupling toward oxygen evolution reaction. Proc. Natl. Acad. Sci. USA 2024, 121, e2317247121. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Sherman, D.M.; Gilkes, R.J.; Wells, M.A.; Mosselmans, J.F.W. Incorporation of Cr, Mn and Ni into goethite (α-FeOOH): Mechanism from extended X-ray absorption fine structure spectroscopy. Clay Miner. 2002, 37, 639–649. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, H.; Zhang, Q.; Zhang, Q.; Wu, C.; Yu, J.; Ma, Y.; An, H.; Wang, H.; Zou, Y.; et al. High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation. Nat. Commun. 2024, 15, 1383. [Google Scholar] [CrossRef]
- Zuo, S.; Wu, Z.; Zhang, G.; Chen, C.; Ren, Y.; Liu, Q.; Zheng, L.; Zhang, J.; Han, Y.; Zhang, H. Correlating structural disorder in metal (oxy)hydroxides and catalytic activity in electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 2024, 63, e202316762. [Google Scholar] [CrossRef]
- Chen, S.; Ma, L.; Huang, Z.; Liang, G.; Zhi, C. In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts. Cell Rep. Phys. Sci. 2022, 3, 100729. [Google Scholar] [CrossRef]
- Cai, Z.; Zhou, D.; Wang, M.; Bak, S.-M.; Wu, Y.; Wu, Z.; Tian, Y.; Xiong, X.; Li, Y.; Liu, W.; et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem. Int. Ed. 2018, 130, 9536–9540. [Google Scholar] [CrossRef]
- Sui, M.; Wang, F.; Liu, C.; Hao, Q.; Li, Y.; Liu, H.; Liang, L. Interfacial electron coupling in Au nanoparticle/CoFe layered double hydroxide nanosheet heterostructures as water oxidation catalysts. ACS Appl. Nano Mater. 2024, 7, 22444–22452. [Google Scholar] [CrossRef]
- Zhao, N.; Ou, Z.; Chen, J.; Tang, C.; Yu, D. Facile synthesis of Co3O4 nanocrystals with superior lithium storage properties from bis (8-hydroxyquinoline) cobalt complex as anode materials for lithium-ion batteries. Scripta Mater. 2024, 238, 115766. [Google Scholar] [CrossRef]
- Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W.T.; Lee, Y.-L.; Giordano, L.; Stoerzinger, K.A.; Koper, M.T.M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465. [Google Scholar] [CrossRef]
- Reith, L.; Hausmann, J.N.; Mebs, S.; Mondal, I.; Dau, H.; Driess, M.; Menezes, P.W. In situ detection of iron in oxidation states ≥ IV in cobalt-iron oxyhydroxide reconstructed during oxygen evolution reaction. Adv. Energy Mater. 2023, 13, 2203886. [Google Scholar] [CrossRef]
- Rao, R.R.; Corby, S.; Bucci, A.; García-Tecedor, M.; Mesa, C.A.; Rossmeisl, J.; Giménez, S.; Lloret-Fillol, J.; Stephens, I.E.L.; Durrant, J.R. Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 2022, 144, 7622–7633. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Bediako, D.K.; Hadt, R.G.; Hayes, D.; Kempa, T.J.; von Cube, F.; Bell, D.C.; Chen, L.X.; Nocera, D.G. Influence of iron doping on tetravalent nickel content in catalytic oxygen-evolving films. Proc. Natl. Acad. Sci. USA 2017, 114, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
- Diao, F.; Kraglund, M.R.; Cao, H.; Yan, X.; Liu, P.; Engelbrekt, C.; Xiao, X. Moderate heat treatment of CoFe Prussian blue analogues for enhanced oxygen evolution reaction performance. J. Energy Chem. 2023, 78, 476–486. [Google Scholar] [CrossRef]
- Li, M.; Gu, Y.; Chang, Y.; Gu, X.; Tian, J.; Wu, X.; Feng, L. Iron doped cobalt fluoride derived from CoFe layered double hydroxide for efficient oxygen evolution reaction. Chem. Eng. J. 2021, 425, 130686. [Google Scholar] [CrossRef]
- Yao, R.; Wu, J.; Kansara, S.; Sun, Z.; Kang, H.; Liu, F.; Wang, K.; Hu, J.; Li, X.; Wu, D.; et al. Recycling defunct lithium-ion battery cathodes to quaternary layered double hydroxides for efficient oxygen evolution reaction. Adv. Sci. 2025, 12, e2501957. [Google Scholar] [CrossRef]
- Li, X.; Xiao, L.; Zhou, L.; Xu, Q.; Weng, J.; Xu, J.; Liu, B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide@2D black phosphorus for overall water splitting. Angew. Chem. Int. Ed. 2020, 132, 21292–21299. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Li, W.; Ma, H.; Fang, P.; Xiong, R.; Pan, C.; Wei, J. In situ interfacial engineering of MnIn2S4@In2S3 hollow nanotubes for enhanced photocatalytic production of H2O2 and antibiotic degradation. J. Colloid Interface Sci. 2025, 682, 1–10. [Google Scholar] [CrossRef]
- Thangasamy, P.; Oh, S.; Nam, S.; Randriamahazaka, H.; Oh, I.K. Ferrocene-incorporated cobalt sulfide nanoarchitecture for superior oxygen evolution reaction. Small 2020, 16, 2001665. [Google Scholar] [CrossRef]
- Yang, S.; Lu, L.; Zhan, P.; Si, Z.; Chen, L.; Zhuang, Y.; Qin, P. Amorphous hetero-structure iron/cobalt oxyhydroxide with atomic dispersed palladium for oxygen evolution reaction. Appl. Catal. B Environ. Energy 2024, 355, 124213. [Google Scholar] [CrossRef]
- Wu, L.; Qin, H.; Ji, Z.; Zhou, H.; Shen, X.; Zhu, G.; Yuan, A. Nitrogen-Doped Carbon Dots Modified Fe–Co Sulfide Nanosheets as High-Efficiency Electrocatalysts toward Oxygen Evolution Reaction. Small 2024, 20, 2305965. [Google Scholar] [CrossRef]
- Huo, J.; Wang, Y.; Yan, L.; Xue, Y.; Li, S.; Hu, M.; Jiang, Y.; Zhai, Q.-G. In situ semi transformation from heterometallic MOFs to Fe-Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Nanoscale 2020, 12, 14514–14523. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Duan, S.; Wang, T.; Li, Q. Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping. Chin. J. Catal. 2020, 41, 847–852. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, M.; Pei, B.; Ba, H.; Ni, W.; Zhao, H.; Chen, S.; Zhao, J.; Zhao, J. Oxygen Bridge Governs OER via Deep Self-Reconstruction in Fe–Co Oxyhydroxides. Molecules 2026, 31, 96. https://doi.org/10.3390/molecules31010096
Liu M, Pei B, Ba H, Ni W, Zhao H, Chen S, Zhao J, Zhao J. Oxygen Bridge Governs OER via Deep Self-Reconstruction in Fe–Co Oxyhydroxides. Molecules. 2026; 31(1):96. https://doi.org/10.3390/molecules31010096
Chicago/Turabian StyleLiu, Mingyu, Bowen Pei, Hongyu Ba, Wei Ni, Huaheng Zhao, Shuang Chen, Jiamin Zhao, and Jinsheng Zhao. 2026. "Oxygen Bridge Governs OER via Deep Self-Reconstruction in Fe–Co Oxyhydroxides" Molecules 31, no. 1: 96. https://doi.org/10.3390/molecules31010096
APA StyleLiu, M., Pei, B., Ba, H., Ni, W., Zhao, H., Chen, S., Zhao, J., & Zhao, J. (2026). Oxygen Bridge Governs OER via Deep Self-Reconstruction in Fe–Co Oxyhydroxides. Molecules, 31(1), 96. https://doi.org/10.3390/molecules31010096

