Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (558)

Search Parameters:
Keywords = switching current measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2473 KiB  
Article
Self-Calibrating TSEP for Junction Temperature and RUL Prediction in GaN HEMTs
by Yifan Cui, Yutian Gan, Kangyao Wen, Yang Jiang, Chunzhang Chen, Qing Wang and Hongyu Yu
Nanomaterials 2025, 15(14), 1102; https://doi.org/10.3390/nano15141102 - 16 Jul 2025
Abstract
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter [...] Read more.
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter (TSEP) model that uses gate leakage current (IG) to estimate junction temperature with high accuracy, uniquely addressing aging effects overlooked in prior studies. By integrating IG, aging-induced degradation, and failure-in-time (FIT) models, the approach achieves a junction temperature estimation error of less than 1%. Long-term hard-switching tests confirm its effectiveness, with calibrated RDS_ON measurements enabling precise remaining useful life (RUL) predictions. This methodology significantly improves GaN HEMT reliability assessment, enhancing their performance in resilient power electronics systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 2498 KiB  
Article
Evaluation of Dynamic On-Resistance and Trapping Effects in GaN on Si HEMTs Using Rectangular Gate Voltage Pulses
by Pasquale Cusumano, Alessandro Sirchia and Flavio Vella
Electronics 2025, 14(14), 2791; https://doi.org/10.3390/electronics14142791 - 11 Jul 2025
Viewed by 146
Abstract
Dynamic on-resistance (RON) of commercial GaN on Si normally off high-electron-mobility transistor (HEMT) devices is a very important parameter because it is responsible for conduction losses that limit the power conversion efficiency of high-power switching converters. Due to charge trapping effects, [...] Read more.
Dynamic on-resistance (RON) of commercial GaN on Si normally off high-electron-mobility transistor (HEMT) devices is a very important parameter because it is responsible for conduction losses that limit the power conversion efficiency of high-power switching converters. Due to charge trapping effects, dynamic RON is always higher than in DC, a behavior known as current collapse. To study how short-time dynamics of charge trapping and release affects RON we use rectangular 0–5 V gate voltage pulses with durations in the 1 μs to 100 μs range. Measurements are first carried out for single pulses of increasing duration, and it is found that RON depends on both pulse duration and drain current ID, being higher at shorter pulse durations and lower ID. For a train of five pulses, RON decreases with pulse number, reaching a steady state after a time interval of 100 μs. The response to a five pulses train is compared to that of a square-wave signal to study the time evolution of RON toward a dynamic steady state. The DC RON is also measured, and it is a factor of ten smaller than dynamic RON at the same ID. This confirms that a reduction in trapped charges takes place in DC as compared to the square-wave switching operation. Additional off-state stress tests at VDS = 55 V reveal the presence of residual surface traps in the drain access region, leading to four times increase in RON in comparison to pristine devices. Finally, the dynamic RON is also measured by the double-pulse test (DPT) technique with inductive load, giving a good agreement with results from single-pulse measurements. Full article
Show Figures

Figure 1

17 pages, 7969 KiB  
Article
Methodology for Designing Broadband DC Link Filters for Voltage Source Converters
by Sebastian Raab, Sebastian Weickert and Henning Kasten
Electronics 2025, 14(14), 2743; https://doi.org/10.3390/electronics14142743 - 8 Jul 2025
Viewed by 209
Abstract
This paper presents a new methodology for the design process of DC ripple filters for voltage source converters. It focuses on fast-switching, wide-bandgap-material-based converters. Therefore, a wide frequency range of up to 100 MHz is taken into consideration during the whole process. Different [...] Read more.
This paper presents a new methodology for the design process of DC ripple filters for voltage source converters. It focuses on fast-switching, wide-bandgap-material-based converters. Therefore, a wide frequency range of up to 100 MHz is taken into consideration during the whole process. Different tools like analytic calculations, time-domain modelling, and the finite element method are used for different tasks in order to generate a realistic model in terms of filter effect and reliability. The models are validated by small-signal measurements using a vector network analyser as well as realistic high-power tests. The contribution of this paper is to provide a tool for DC link filter design to estimate the filter efficiency and the current stress on the filter elements with a special focus on WBG hardware. Full article
(This article belongs to the Special Issue Gallium Nitride (GaN)-Based Power Electronic Devices and Systems)
Show Figures

Figure 1

28 pages, 25499 KiB  
Article
A Combined CFD, Theoretical, and Experimental Approach for Improved Hydrodynamic Performance of a Clam Dredge System
by Rui You and Nathan H. Kennedy
J. Mar. Sci. Eng. 2025, 13(7), 1305; https://doi.org/10.3390/jmse13071305 - 4 Jul 2025
Viewed by 625
Abstract
This paper addresses the need for an integrated approach to develop an improved clam dredge system. Current designs often rely on empirical methods, resulting in a disconnect between theoretical models, computational simulations, and experimental validation. To bridge this gap, the study integrates computational [...] Read more.
This paper addresses the need for an integrated approach to develop an improved clam dredge system. Current designs often rely on empirical methods, resulting in a disconnect between theoretical models, computational simulations, and experimental validation. To bridge this gap, the study integrates computational fluid dynamics (CFD), experimental tests, and analytical methods to develop a clam dredge system. Firstly, the paper introduces an analytical tool that facilitates decision making by evaluating pump parameters, and to determine the operating point for various hose and nozzle parameters. This guides the parameter selection of pump, hose and jets for maximum performance. Secondly, CFD is utilized to analyze flow behavior, enabling the design of internal nozzle geometries that minimize head losses and maximize the scouring effect. A full-scale experimental measurement was conducted to validate computational results. Furthermore, a replica manifold is constructed using 3D printing and tested, demonstrating improvements in jet speed with both original and new nozzle designs. Analytical results indicate that increasing hose length reduces BHP, flow rate, and jet velocity, while increasing hose or jet diameter boosts BHP and flow but reduces jet speed due to pressure drops. Switching pumps reduced power consumption by 10.5% with minimal speed loss. The CFD analysis optimized nozzle design, reducing jet loss and enhancing efficiency. The proposed slit nozzle design reduces the loss coefficient by 85.24% in small-scale runs and by 83% in full-scale runs compared to the original circular jet design. The experiments confirmed the pressure differences between the CFD and experimental tests are within 10%, and demonstrated that rectangular jets increase speed by 9% and seafloor force by 19%. This paper improved the hydrodynamic design of the clam dredge system, and provides a framework for future dredge system designs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 3217 KiB  
Article
Geometry-Optimized VoltagePlanar Sensors Integrated into PCBs
by Nicolas E. Gonzalez, Joshua Cooper and Jane Lehr
Eng 2025, 6(7), 144; https://doi.org/10.3390/eng6070144 - 1 Jul 2025
Viewed by 216
Abstract
The recent advancements in high-frequency, high-power switching devices require the development of non-invasive, cost-effective sensors for signal diagnostics. In this context, planar sensors have emerged as promising candidates for voltage and current sensing due to their compatibility with printed circuit boards (PCBs). However, [...] Read more.
The recent advancements in high-frequency, high-power switching devices require the development of non-invasive, cost-effective sensors for signal diagnostics. In this context, planar sensors have emerged as promising candidates for voltage and current sensing due to their compatibility with printed circuit boards (PCBs). However, previously proposed voltage planar sensors exhibit trade-offs between high bandwidths and responsivity, limiting their usage to sub-GHz applications. This study introduces a planar voltage sensor that leverages geometric optimization using software-assisted design to enhance bandwidth without compromising sensitivity. The optimized sensors demonstrate an extended bandwidth response up to 4 GHz and accurate recovery of fast transient signals validated through experimental measurements, which represents a significant step forward in broadband sensing for high-power applications. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

16 pages, 8603 KiB  
Article
Acoustic Noise Characterization of a Switched Reluctance Motor Using Sound Power and Psychoacoustic Metric Measurements
by Moien Masoumi and Berker Bilgin
Acoustics 2025, 7(3), 41; https://doi.org/10.3390/acoustics7030041 - 27 Jun 2025
Viewed by 267
Abstract
This paper presents an experimental acoustic noise characterization of a switched reluctance motor (SRM) designed for a wind turbine pitch angle control application. It details the fixture design for holding and positioning the sound intensity probes, along with the essential hardware setup for [...] Read more.
This paper presents an experimental acoustic noise characterization of a switched reluctance motor (SRM) designed for a wind turbine pitch angle control application. It details the fixture design for holding and positioning the sound intensity probes, along with the essential hardware setup for conducting acoustic noise experiments. Additionally, the software configuration is described to ensure compliance with specific measurement requirements. To study the effect of speed and load variations on the motor’s acoustic noise characteristics, tests are conducted at various operating points. The tests employ pulse-width modulation (PWM) current control, operating at a switching frequency of 12.5 kHz. Sound pressure and sound intensity are measured across different operating conditions to determine the sound power and psychoacoustic metrics. Furthermore, the effect of different factors on the motor’s sound power level, as well as on psychoacoustic metrics such as sharpness, loudness, and roughness, is analyzed and discussed. Full article
Show Figures

Figure 1

27 pages, 8144 KiB  
Article
Discrete vs. Discretized Control in Voltage Source Inverters for UPS Systems
by Zbigniew Rymarski, Wojciech Oliwa and Grzegorz Wieczorek
Energies 2025, 18(13), 3336; https://doi.org/10.3390/en18133336 - 25 Jun 2025
Viewed by 206
Abstract
Digital control in UPS systems is currently the only reasonable way of controlling a voltage source inverter (VSI). The control frequency range is restricted to up to about 1 kHz owing to the output low-pass LC filter, which should also maintain the output [...] Read more.
Digital control in UPS systems is currently the only reasonable way of controlling a voltage source inverter (VSI). The control frequency range is restricted to up to about 1 kHz owing to the output low-pass LC filter, which should also maintain the output voltage during one switching period for the step unload. The measurement channels in the low-pass frequency range can be modeled as delays equal to some switching periods. A reasonably high (about 50 kHz) switching frequency minimizes the delays of the measurement channels. Two control systems will be compared—the pure discrete control, in this case a one-sample-ahead preview deadbeat control (OSAP), and a discretized passivity-based control (PBC). The OSAP control is easy to realize, is very fast, and enables one to obtain a steady state in a restricted number of steps after disturbance. However, the single-input single-output deadbeat control version is useless because it depends very strongly on the parameters of the inverter. The multi-input single-output OSAP (MISO-OSAP) control is directly based on discrete state equations (we treat the output voltage, output current, and inductor current as the measured state variables) and works perfectly for the nonlinear rectifier RC load (PF = 0.7) in a system without delay. The version of this with a linear prediction of state variables by means of a full-order state Luenberger observer (MISO-OSAP-LO) will be used in systems with different delays and compared with the discretized MISO passivity-based control without prediction for relatively high switching frequency (about 50 kHz). The aim and the novelty of the paper are in enabling a choice between one of these control systems for high switching frequency VSI with delays in the measurement channels. Full article
(This article belongs to the Special Issue Management and Optimization for Renewable Energy and Power Systems)
Show Figures

Figure 1

29 pages, 7562 KiB  
Review
COSS Losses in Resonant Converters
by Giuseppe Samperi, Antonio Laudani, Nunzio Salerno, Alfio Scuto, Marco Ventimiglia and Santi Agatino Rizzo
Energies 2025, 18(13), 3312; https://doi.org/10.3390/en18133312 - 24 Jun 2025
Viewed by 212
Abstract
High efficiency and high power density are key targets in modern power conversion. Operating power converters at high switching frequencies enables the use of smaller passive components, which, in turn, facilitate achieving high power density. However, the concurrent increase in switching frequency and [...] Read more.
High efficiency and high power density are key targets in modern power conversion. Operating power converters at high switching frequencies enables the use of smaller passive components, which, in turn, facilitate achieving high power density. However, the concurrent increase in switching frequency and power density leads to efficiency and overheating issues. Soft switching techniques are typically employed to minimize switching losses and significantly improve efficiency by reducing power losses. However, the hysteresis behavior of the power electronics devices’ output capacitance, COSS, is the cause of regrettable losses in Super-Junction (SJ) MOSFETs, SiC MOSFETs, and GaN HEMTs, which are usually adopted in soft switching-based conversion schemes. This paper reviews the techniques for measuring hysteresis traces and power losses, as well as the understanding of the phenomenon to identify current research trends and open problems. A few studies have reported that GaN HEMTs tend to exhibit the lowest hysteresis losses, while Si superjunction (SJ) MOSFETs often show the highest. However, this conclusion cannot be generalized by comparing the results from different works because they are typically made across devices with different (when the information is reported) breakdown voltages, on-state resistances, die sizes, and test conditions. Moreover, some recent investigations using advanced TCAD simulations have demonstrated that newer Si-SJ MOSFETs employing trench-filling epitaxial growth can achieve significantly reduced hysteresis losses. Similarly, while multiple studies confirm that hysteresis losses increase with increasing dv/dt and decreasing temperature, the extent of this dependence varies significantly with device structure and test methodology. This difficulty in obtaining a general conclusion is due to the lack of proper figures of merit that account for hysteresis losses, making it problematic to evaluate the suitability of different devices in resonant converters. This problem highlights the primary current challenge, which is the development of a standard and automated method for characterizing COSS hysteresis. Consequently, significant research effort must be invested in addressing this main challenge and the other challenges described in this study to enable power electronics researchers and practitioners to develop resonant converters properly. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

23 pages, 4811 KiB  
Article
In2S3/C3N4 Nanocomposite and Its Photoelectric Properties in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(6), 718; https://doi.org/10.3390/coatings15060718 - 14 Jun 2025
Viewed by 342
Abstract
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response [...] Read more.
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were investigated using Au electrodes and the carbon electrodes with 5B pencil drawings. This study shows that the aggregation states of the In2S3/C3N4 nanocomposite possess photocurrent switching responses in the broadband region of the light spectrum. Combining two types of partially visible light-absorbing material extends utilisation to the near-infrared region. Impurities or defects embody an electron-donating effect. Since the energy levels of defects or impurities with an electron-donating effect are close to the conduction band, low-energy lights (especially NIR) can be utilised. The non-equilibrium carrier concentration (photogenerated electrons) of the nanocomposites increases significantly under NIR photoexcitation conditions. Thus, photoconductive behaviour is manifested. A good photoelectric signal was still measured when zero bias was applied. This demonstrates self-powered photoelectric response characteristics. Different sulphur sources significantly affect the photoelectric performance, suggesting that they create different defects that affect charge transport and base current noise. It is believed that interfacial interactions in the In2S3/C3N4 nanocomposite create a built-in electric field that enhances the separation and transfer of electrons and holes produced by light stimulation. The presence of the built-in electric field also leads to energy band bending, which facilitates the utilisation of the light with longer wavelengths. This study provides a reference for multidisciplinary applications. Full article
Show Figures

Figure 1

18 pages, 6134 KiB  
Article
Large- and Small-Scale Beam-Steering Phased Array Antennas Using Variable Phase BLC for Millimeter-Wave Applications
by Fayyadh H. Ahmed and Salam K. Khamas
Sensors 2025, 25(12), 3714; https://doi.org/10.3390/s25123714 - 13 Jun 2025
Viewed by 587
Abstract
This paper presents a novel switchable branch-line coupler (BLC) designed to achieve variable phase shifts while maintaining a constant output power. The proposed design incorporates low stepwise phase shifters with incremental phase shifts of 10° to 20°, covering phase ranges from −3° to [...] Read more.
This paper presents a novel switchable branch-line coupler (BLC) designed to achieve variable phase shifts while maintaining a constant output power. The proposed design incorporates low stepwise phase shifters with incremental phase shifts of 10° to 20°, covering phase ranges from −3° to 150°. The initial structure is based on a 3 dB branch-line coupler with arm electrical lengths of 3λg/2. A novel delay line structure is integrated within the BLC arms, consisting of a λg/4 section bridged by a tapered stripline to accommodate a PIN diode switch, thereby altering the current path direction. Additionally, two interdigital capacitors (IDCs), uniquely mounted on a crescent-shaped extension, are implemented alongside the tapered line to elongate the current path when the PIN diode is in the OFF state. By controlling the PIN diode states, the delay time is differentially adjusted, resulting in variable differential phase shifts at the output ports. To validate the functionality, the proposed BLC was integrated with a two-element antenna array to demonstrate differential beam steering. The measurement results confirm that the phased array antenna can switch its main beam between −27° and 25° in the elevation plane, achieving an average realized gain of approximately 7 dBi. The BLC was designed and simulated using CST Microwave Studio and was fabricated on an RO4003C Roger substrate (εr = 3.55, 0.406 mm). The proposed design is well-suited for future Butler matrix-based beamforming networks in antenna array systems, particularly for 5G wireless applications. Full article
(This article belongs to the Special Issue Antenna Technologies for Microwave and Millimeter-Wave Sensing)
Show Figures

Figure 1

22 pages, 13557 KiB  
Article
Switching Loss Model for SiC MOSFETs Based on Datasheet Parameters Enabling Virtual Junction Temperature Estimation
by Claudio Bianchini, Mattia Vogni, Alessandro Chini and Giovanni Franceschini
Sensors 2025, 25(12), 3605; https://doi.org/10.3390/s25123605 - 8 Jun 2025
Viewed by 511
Abstract
SiC MOSFETs are widely employed in power converters due to their superior efficiency and reliability at high temperatures. For this reason, it is crucial to implement accurate thermal models capable of indirectly estimating the junction temperature and its fluctuations: both are caused by [...] Read more.
SiC MOSFETs are widely employed in power converters due to their superior efficiency and reliability at high temperatures. For this reason, it is crucial to implement accurate thermal models capable of indirectly estimating the junction temperature and its fluctuations: both are caused by power losses in the device. In this framework, the evaluation of switching losses remains the most challenging task. To enable real-time monitoring of the junction temperature, this work presents the development of a virtual sensor specifically designed for SiC MOSFETs. The sensor relies on a num-analytical model (NAM), which employs only datasheet parameters and leverages electrical quantities—namely, bus voltage and current—available from sensors integrated into power converter systems. The proposed NAM is implemented in MATLAB using an iterative algorithm that accounts for the main physical phenomena involved in switching transitions. The computed energy losses are then used to thermally model the SiC MOSFETs within the PLECS environment, where a digital twin of an all-SiC board is created. Finally, the accuracy of the model is validated by comparing simulation results with experimental efficiency data obtained from a real half-bridge converter, with explicit consideration of measurement uncertainty. Full article
Show Figures

Figure 1

28 pages, 31523 KiB  
Article
Partially Segmented Permanent-Magnet Losses in Interior Permanent-Magnet Motors
by Jeremiah Vannest and Julia Zhang
Energies 2025, 18(11), 2879; https://doi.org/10.3390/en18112879 - 30 May 2025
Viewed by 331
Abstract
Permanent-magnet losses in interior permanent-magnet (IPM) motors can result in high magnet temperatures and potential demagnetization. This study investigates using partially segmented magnets as an alternative to traditional segmented magnets to reduce these losses. Partial segmentation involves cutting slots into the magnet to [...] Read more.
Permanent-magnet losses in interior permanent-magnet (IPM) motors can result in high magnet temperatures and potential demagnetization. This study investigates using partially segmented magnets as an alternative to traditional segmented magnets to reduce these losses. Partial segmentation involves cutting slots into the magnet to redirect the eddy current path and reduce losses. The research explores analytical and finite element modeling of eddy current losses in partially segmented magnets in IPM machines. Various configurations and orientations of partial segmentation were examined to assess their impact on eddy current losses. Axial slots for the partially segmented magnets were found to be the most effective slotting direction for the baseline IPM motor’s aspect ratio. This study also explores several methods for measuring permanent-magnet loss in IPM machines. A locked rotor test fixture was designed to measure losses induced by switching harmonics. AC loss measurements for the test fixture were conducted to compare magnets with and without partial segmentation. The results showed a significant reduction in permanent-magnet loss for the partially segmented magnets, particularly at higher currents and across all the tested switching frequencies and phase angles. Additionally, the transient temperature of the partially segmented magnets was found to be 12 °C lower than without partial segmentation after a 30 min test. Full article
Show Figures

Figure 1

28 pages, 925 KiB  
Article
Increasing the Voltage—Sequencing Decarbonisation with Green Power and Efficiency
by Stefan M. Buettner, Josefine Döpp, Liane Strauch, Marina Gilles, Werner König and Anna-Lena Klingler
Energies 2025, 18(11), 2752; https://doi.org/10.3390/en18112752 - 26 May 2025
Viewed by 531
Abstract
The industrial sector’s increasing electricity demand (direct and indirect), driven by the electrification of processes and the production of green hydrogen, poses significant challenges for achieving decarbonisation goals. While switching to renewable electricity and offsetting emissions appears straightforward, the gap between current generation [...] Read more.
The industrial sector’s increasing electricity demand (direct and indirect), driven by the electrification of processes and the production of green hydrogen, poses significant challenges for achieving decarbonisation goals. While switching to renewable electricity and offsetting emissions appears straightforward, the gap between current generation capacities and projected demand remains substantial. This article analyses survey data from the Energy Efficiency Index of German Industry (EEI), revealing that manufacturing companies aim to reduce 22.1% of their 2019 emissions by 2025 and 27.3% by 2030, primarily through on-site measures. However, given the slow pace of renewable capacity expansion and the increasing electrification across sectors, it becomes evident that the envisaged green electricity share of 80% by 2030 will require far more capacity than currently planned. To address this challenge, the article introduces a decarbonisability factor to better assess on-site versus off-site measures, highlighting the need for a strategic sequencing of efficiency and renewable generation. To support decision-makers, the article calls for improved data collection and periodic reassessment to account for changing geopolitical and economic conditions. Full article
(This article belongs to the Special Issue Advances in Low Carbon Technologies and Transition Ⅱ)
Show Figures

Graphical abstract

23 pages, 2098 KiB  
Article
Innovative Control Techniques for Enhancing Signal Quality in Power Applications: Mitigating Electromagnetic Interference
by N. Manoj Kumar, Yousef Farhaoui, R. Vimala, M. Anandan, M. Aiswarya and A. Radhika
Algorithms 2025, 18(5), 288; https://doi.org/10.3390/a18050288 - 18 May 2025
Viewed by 361
Abstract
Electromagnetic interference (EMI) remains a difficult task in the design and operation of contemporary power electronic systems, especially in those applications where signal quality has a direct impact on the overall performance and efficiency. Conventional control schemes that have evolved to counteract the [...] Read more.
Electromagnetic interference (EMI) remains a difficult task in the design and operation of contemporary power electronic systems, especially in those applications where signal quality has a direct impact on the overall performance and efficiency. Conventional control schemes that have evolved to counteract the effects of EMI generally tend to have greater design complexity, greater error rates, poor control accuracy, and large amounts of harmonic distortion. In order to overcome these constraints, this paper introduces an intelligent and advanced control approach founded on the signal randomization principle. The suggested approach controls the switching activity of a DC–DC converter by dynamically tuned parameters like duty cycle, switching frequency, and signal modulation. A boost interleaved topology is utilized to maximize the current distribution and minimize ripple, and an innovative space vector-dithered sigma delta modulation (SV-DiSDM) scheme is proposed for cancelling harmonics via a digitalized control action. The used modulation scheme can effectively distribute the harmonic energy across a larger range of frequencies to largely eliminate EMI and boost the stability of the system. High-performance analysis is conducted by employing significant measures like total harmonic distortion (THD), switching frequency deviation, switching loss, and distortion product. Verification against conventional control models confirms the increased efficiency, less EMI, and greater signal integrity of the proposed method, and hence, it can be a viable alternative for EMI-aware power electronics applications. Full article
(This article belongs to the Special Issue Emerging Trends in Distributed AI for Smart Environments)
Show Figures

Figure 1

27 pages, 31117 KiB  
Article
Digital Control Scheme for Class-D Power Amplifier Driving ICP Load Without Matching Network
by Fuchao Lu and Zhengquan Zhang
Energies 2025, 18(9), 2385; https://doi.org/10.3390/en18092385 - 7 May 2025
Viewed by 412
Abstract
Class-D power amplifiers driving variable loads, such as inductively coupled plasma (ICP), typically require an impedance matching network, which has a relatively slow matching speed, generally in the millisecond range. To address this issue, this paper proposes a solution that uses a fully [...] Read more.
Class-D power amplifiers driving variable loads, such as inductively coupled plasma (ICP), typically require an impedance matching network, which has a relatively slow matching speed, generally in the millisecond range. To address this issue, this paper proposes a solution that uses a fully digital control method for Class-D power amplifiers to directly drive ICP loads. This solution eliminates the need for an impedance matching network, reducing the overall output power regulation time to just tens of microseconds. Compared to traditional methods that use a VI probe to detect output power, the proposed method in this paper only requires measuring the resonant current in the loop to control the output power, thereby reducing costs and ensuring that the Class-D power amplifier achieves zero-voltage switching (ZVS) throughout the adjustment process. This paper provides a detailed introduction to the design method of the Class-D power amplifier and the overall digital control scheme and validates them via simulation and experimentation. The Class-D power amplifier prototype was designed using SiC MOSFETs, with a Xilinx ZYNQ-XC7Z100 FPGA as the control board. The output frequency varies around 4 MHz, successfully generating plasma. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

Back to TopTop