Discrete vs. Discretized Control in Voltage Source Inverters for UPS Systems
Abstract
1. Introduction
2. The Tested Inverter
3. The Discrete Model of the Single-Phase Inverter with the 3-Level Double-Edge PWM
4. The Simulation of the Inverter with the Pure Discrete One-Sample-Ahead Preview Controller—MISO Deadbeat
5. The Simulation of the Inverter with the Discretized Version of MISO Passivity-Based Control
6. The Discussion of the Simulation Results
7. The Test of the Experimental Models of Inverters with OSAP and PBC Controls
8. The Discussion of the Experimental Results
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VSI | Voltage Source Inverter |
THD | Total harmonic distortion |
MISO | Multi-Input Single-Output |
SISO | Single-Input Single-Output |
LO | Luenberger observer |
OSAP | One-Sample-Ahead Preview |
PBC | Passivity-Based Control |
RTI | Real-Time Interface |
Ts | Switching period |
fs | Switching frequency |
fm | Fundamental frequency (50 Hz) |
References
- Kawamura, A.; Chuarayapratip, R.; Haneyoshi, T. Deadbeat control of PWM inverter with modified pulse patterns for uninterruptible power supply. IEEE Trans. Ind. Electron. 1988, 35, 295–300. [Google Scholar] [CrossRef]
- Milbradt, D.M.C.; Hollweg, G.V.; da Silveira, P.E.W.B.; Gründling, H. A robust adaptive One Sample Ahead Preview controller for grid-injected currents of a grid-tied power converter with an LCL filter. Int. J. Electr. Power Energy Syst. 2022, 142, 108286. [Google Scholar] [CrossRef]
- Rech, C.; Grundling, H.A.; Pinheiro, J.R. Comparison of discrete control techniques for UPS applications. In Proceedings of the Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), Rome, Italy, 8–12 October 2000; Volume 4, pp. 2531–2537. [Google Scholar] [CrossRef]
- Luenberger, D.G. Observing the state of a linear system. IEEE Trans. Mil. Electron. 1964, 8, 74–80. [Google Scholar] [CrossRef]
- Luenberger, D.G. An introduction to observers. IEEE Trans. Autom. Control 1971, 16, 596–602. [Google Scholar] [CrossRef]
- Rymarski, Z.; Bernacki, K. Different Features of Control Systems for Single-Phase Voltage Source Inverters. Energies 2020, 13, 4100. [Google Scholar] [CrossRef]
- IEC 62040-3:2021; Uninterruptible Power Systems (UPS)—Part 3: Method of Specifying the Performance and Test Requirements. IEC: Geneva, Switzerland, 2021.
- Rymarski, Z. The Influence of Switching Frequency on Control in Voltage Source Inverters. Energies 2024, 17, 4508. [Google Scholar] [CrossRef]
- IEEE 519-2022; IEEE Standard for Harmonic Control in Electric Power Systems. IEEE: Piscataway, NJ, USA, 2022.
- Dahono, P.A.; Purwadi, A.; Qamaruzzaman. An LC filter design method for single-phase PWM inverters. In Proceedings of the International Conference on Power Electronics and Drive System, Singapore, 21–24 February 1995; Volume 2, pp. 571–576. [Google Scholar]
- Rymarski, Z. The discrete model of the power stage of the voltage source inverter for UPS. Int. J. Electron. 2011, 98, 1291–1304. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Hong, H. Output LC filter design of voltage source inverter considering the performance of controller. In Proceedings of the PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409), Perth, WA, Australia, 4–7 December 2000; Volume 3, pp. 1659–1664. [Google Scholar]
- Micrometals Alloy Powder Core Catalogue. 2021. Available online: https://micrometals.com/design-and-applications/literature/ (accessed on 10 June 2024).
- Bernacki, K.; Rymarski, Z.; Dyga, Ł. Selecting the coil core powder material for the output filter of a voltage source inverter. Electron. Lett. 2017, 53, 1068–1069. [Google Scholar] [CrossRef]
- Rymarski, Z.; Bernacki, K.; Dyga, Ł. Measuring the power conversion losses in voltage source inverters. AEU-Int. J. Electron. Communications 2020, 124, 153359. [Google Scholar] [CrossRef]
- Rymarski, Z. Single-Phase and Three-Phase Voltage Source Inverters Used in UPS Systems; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2010; ISBN 978-83-7335-642-9. [Google Scholar]
- Kim, H.; Sul, S.K. Analysis on output LC filters for PWM inverters. In Proceedings of the 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009; pp. 384–389. [Google Scholar] [CrossRef]
- Aman, Y.A.; Datta, A. An Effective Filter Design for Single-Phase Inverters. In Proceedings of the 2023 IEEE Guwahati Subsection Conference (GCON), Guwahati, India, 23–25 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Treimanis, A.; Apse-Ansītis, P. Optimized Design of Single Phase Inverter Output LC-filter. In Proceedings of the 2019 IEEE 7th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Liepaja, Latvia, 15–16 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Khoshkbar-Sadigh, A.; Dargahi, V.; Lakhera, K.; Corzine, K. Analytical Design of LC Filter Inductance for Two-Level Inverters Based on Maximum Ripple Current. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 1621–1626. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Abrishamifar, A.; Farzi, M. A New Design Procedure for Output LC Filter of Single Phase Inverters. In Proceedings of the 3rd International Conference on Power Electronics and Intelligent Transportation System, Shenzhen, China, 13–14 November 2010; Volume 3, pp. 86–91. [Google Scholar]
- Van der Broeck, H.W.; Miller, M. Harmonics in DC to AC converters of single phase uninterruptible power supplies. In Proceedings of the 17th International Telecommunications Energy Conference 1995, INTELEC 95, The Hague, The Netherlands, 29 October–1 November 1995; pp. 653–658. [Google Scholar]
- Rymarski, Z. Measuring the real parameters of single-phase voltage source inverters for UPS systems. Int. J. Electron. 2017, 104, 1020–1033. [Google Scholar] [CrossRef]
- Rech, C.; Pinheiro, H.; Grundling, H.A.; Hey, H.L.; Pinheiro, J.R. Comparison Of Digital Control Techniques With Repetitive Integral Action for Low Cost PWM Inverters. IEEE Trans. Power Electron. 2003, 18, 401–410. [Google Scholar] [CrossRef]
- Serra, F.M.; De Angelo, C.H.; Forchetti, D.G. IDA-PBC control of a DC-AC converter for sinusoidal three-phase voltage generation. Int. J. Electron. 2017, 104, 93–110. [Google Scholar] [CrossRef]
- Ben-Brahim, L.; Yokoyama, T.; Kawamura, A. Digital control for UPS inverters. In Proceedings of the Fifth International Conference on Power Electronics and Drive Systems, PEDS 2003, Singapore, 17–20 November 2003; Volume 2, pp. 1252–1257. [Google Scholar]
- Deng, H.; Srinivasan, D.; Oruganti, R. Modeling and control of single-phase UPS inverters: A survey. In Proceedings of the International Conference on Power Electronics and Drives Systems, PEDS 2005, Kuala Lumpur, Malaysia, 28 November–1 December 2005; Volume 2, pp. 848–853. [Google Scholar]
- Borsalani, J.; Dastfan, A. Decoupled phase voltages control of three phase four-leg voltage source inverter via state feedback. In Proceedings of the 2012 2nd International eConference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 18–19 October 2012; pp. 71–76. [Google Scholar] [CrossRef]
- Moon, S.; Choe, J.M.; Lai, J.S. Design of a state-space controller employing a deadbeat state observer for ups inverters. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 24–26 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Y.; Luo, S.; Zhang, F. State-space model of an inverter-based micro-grid. In Proceedings of the 2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG), Yilan, Taiwan, 22–25 April 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Åström, K.J.; Wittenmark, B. Computer-Controlled Systems: Theory And Design, 3rd ed.; Dover Publications Inc.: Mineola, NY, USA, 2011; ISBN 9780486486130. [Google Scholar]
- Westphal, L.C. A special control law: Deadbeat control. In Handbook of Control Systems Engineering; The Springer International Series in Engineering and Computer Science; Springer: Boston, MA, USA, 2001; Volume 635. [Google Scholar] [CrossRef]
- Rymarski, Z.; Bernacki, K. Different approaches to modelling single-phase voltage source inverters for uninterruptible power supply systems. IET Power Electron. 2016, 9, 1513–1520. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, K.; Li, S.; Yang, Y. Fractional-order time delay compensation in deadbeat control for power converters. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Itoyama, M.; Natori, K.; Sato, Y. Fast and Stable Current Control Using Deadbeat PI Control with Smith Compensator. In Proceedings of the 2024 13th International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 9–13 November 2024; pp. 1089–1094. [Google Scholar] [CrossRef]
- Li, C.; Shen, S.; Zhang, J.; Guan, M.; Lu, J. Deadbeat Control Based on New State-observer for PWM Rectifier. In Proceedings of the 2006 Chinese Control Conference, Harbin, China, 7–11 August 2006; pp. 1991–1995. [Google Scholar] [CrossRef]
- Zhang, B.; Zuo, Y.; Quan, L.; Zhu, X. Deadbeat Active Disturbance Rejection Controller for the Current Control of Electric Drives in the Presence of Two-step Delay. In Proceedings of the 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 27–29 May 2022; pp. 1924–1928. [Google Scholar] [CrossRef]
- Davis, J.H. Luenberger Observers. In Foundations of Deterministic and Stochastic Control; Systems & Control: Foundations & Applications; Birkhäuser: Boston, MA, USA, 2002; pp. 245–254. [Google Scholar] [CrossRef]
- Saoudi, M.; Hani, B.; Aissa, C. Efficient Deadbeat Control of Single-Phase Inverter with Observer for High Performance Applications. Prz. Elektro Tech. 2023, 99, 237. [Google Scholar] [CrossRef]
- Fan, H.; Li, Z.; Rodriguez, J.; Wang, B. Model Free Predictive Current Control for Voltage Source Inverter using Luenberger Observer. In Proceedings of the 2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Wuhan, China, 16–19 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Heydaridoostabad, H.; Ghazi, R. A new approach to design an observer for load current of UPS based on Fourier series theory in model predictive control system. Int. J. Electr. Power Energy Syst. 2018, 104, 898–909. [Google Scholar] [CrossRef]
- Li, J.; Sun, Y.; Li, X.; Xie, S.; Lin, J.; Su, M. Observer-Based Adaptive Control for Single-Phase UPS Inverter Under Nonlinear Load. IEEE Trans. Transp. Electrif. 2022, 8, 2785–2796. [Google Scholar] [CrossRef]
- Montagner, V.F.; Carati, E.G.; Grundling, H.A. An adaptive linear quadratic regulator with repetitive controller applied to uninterruptible power supplies. In Proceedings of the Industry Applications Conference 2000, Rome, Italy, 8–12 October 2000; Volume 4, pp. 2231–2236. [Google Scholar]
- Xianghong, Z.; Jianguo, L.; Zhiyong, Z.; Tianhong, M. The Passivity-based Control with Luenberger State Observer of Three-phase Grid Connected Converter. In Proceedings of the 2024 12th International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Jilin, China, 8–20 October 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Stoicuta, O. A New Gain Matrix of the Luenberger Observer for the Vector Control Systems with Induction Motors. In Proceedings of the 2021 International Conference on Electromechanical and Energy Systems (SIELMEN), Iasi, Romania, 6–8 October 2021; pp. 029–034. [Google Scholar] [CrossRef]
- Bakhti, I.; Chaouch, S.; Makouf, A.; Douadi, T. Robust sensorless sliding mode control with Luenberger observer design applied to permanent magnet synchronous motor. In Proceedings of the 2016 5th International Conference on Systems and Control (ICSC), Marrakesh, Morocco, 25–27 May 2016; pp. 204–210. [Google Scholar] [CrossRef]
- Komurcugil, H. Improved passivity-based control method and its robustness analysis for single-phase uninterruptible power supply inverters. IET Power Electron. 2015, 8, 1558–1570. [Google Scholar] [CrossRef]
- Ortega, R.; Perez, J.A.L.; Nicklasson, P.J.; Sira-Ramirez, H. Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications (Communications and Control Engineering); Springer: London, UK, 1998. [Google Scholar]
- Wang, Z.; Goldsmith, P. Modified energy-balancing-based control for the tracking problem. IET Control Theory Appl. 2008, 2, 310–312. [Google Scholar] [CrossRef]
- Ortega, R.; Garcia-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. Eur. J. Control 2004, 5, 432–450. [Google Scholar] [CrossRef]
- Ortega, R.; Garcia-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: Towards a Constructive Procedure—Part I. In Proceedings of the 43rd IEEE Conference on Decision and Control, Nassau, Bahamas, 14–17 December 2004; pp. 3412–3417. [Google Scholar] [CrossRef]
- Ortega, R.; Espinosa-Perez, G. Passivity-based control with simultaneous energy-shaping and damping injection: The induction motor case study. IFAC Proc. 2005, 38, 477–482. [Google Scholar] [CrossRef]
- Khefifi, N.; Houari, A.; Ait-Ahmed, M.; Machmoum, M.; Ghanes, M. Robust IDA-PBC based Load Voltage Controller for Power Quality Enhancement of Standalone Microgrids. In Proceedings of the IEEE IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 249–254. [Google Scholar] [CrossRef]
- Rymarski, Z.; Bernacki, K. Technical Limits of Passivity-Based Control Gains for a Single-Phase Voltage Source Inverter. Energies 2021, 14, 4560. [Google Scholar] [CrossRef]
- Rymarski, Z. Improving Low-Frequency Digital Control in the Voltage Source Inverter for the UPS System. Electronics 2024, 13, 1469. [Google Scholar] [CrossRef]
Controller Type | THD [%] d = 0 | THD [%] d = Ts | THD [%] d = 2Ts | THD [%] d = 3Ts | THD [%] d = 4Ts | THD [%] d = 5Ts | THD [%] d = 6Ts | THD [%] d = 7Ts |
---|---|---|---|---|---|---|---|---|
MISO-OSAP (M = 0.2) | 0.2656 | Osc. | Osc. | Osc. | Osc. | Osc. | Osc. | Osc. |
MISO-OSAP (M= 0.7) | 0.5782 | Osc. | Osc. | Osc. | Osc. | Osc. | Osc. | Osc. |
MISO-OSAP-LO (M = 0.7, l1 = 0.25, l2 = 0.01, l3 = 1) | 0.2415 | 0.3478 | 0.4712 | 0.5723 | 1.056 | 0.8301 | 6.85 | Osc. |
MISO-OSAP-LO (M = 0.7, l1 = 0.15, l2 = 0.01, l3 = 1) | 0.3764 | 0.4192 | 0.6352 | 1.102 | 1.006 | 1.207 | 1.440 | 1.830 |
MISO-PBC (M = 0.7, Kv = 0.3, Ri = 20) | 0.1773 | 0.201 | 0.276 | 0.3445 | 7.827 | Osc. | Osc. | Osc. |
MISO-PBC (M = 0.7, Kv = 0.2, Ri = 10) | 0.2124 | 0.315 | 0.439 | 0.5905 | 0.7362 | 0.9022 | 1.292 | Osc. |
Controller Type | Parameters of Controller | THD [%] |
---|---|---|
No feedback loop | - | 7.9% |
MISO-OSAP-LO | M = 0.8, lvOUT = 0.1, liLF = 0.01, liOUT = 1 | 2.2% |
MISO-PBC | M = 0.8, Kv = 1, Ri = 30 | 0.87% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rymarski, Z.; Oliwa, W.; Wieczorek, G. Discrete vs. Discretized Control in Voltage Source Inverters for UPS Systems. Energies 2025, 18, 3336. https://doi.org/10.3390/en18133336
Rymarski Z, Oliwa W, Wieczorek G. Discrete vs. Discretized Control in Voltage Source Inverters for UPS Systems. Energies. 2025; 18(13):3336. https://doi.org/10.3390/en18133336
Chicago/Turabian StyleRymarski, Zbigniew, Wojciech Oliwa, and Grzegorz Wieczorek. 2025. "Discrete vs. Discretized Control in Voltage Source Inverters for UPS Systems" Energies 18, no. 13: 3336. https://doi.org/10.3390/en18133336
APA StyleRymarski, Z., Oliwa, W., & Wieczorek, G. (2025). Discrete vs. Discretized Control in Voltage Source Inverters for UPS Systems. Energies, 18(13), 3336. https://doi.org/10.3390/en18133336