Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = switched capacitor calibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4548 KB  
Article
A Small Linear Accelerator for Charged Microparticles
by Marcel Bauer, Yanwei Li, Ralf Srama, Florian Behrens, Anna Mocker, Felix Schäfer, Jonas Simolka and Heiko Strack
Appl. Sci. 2025, 15(21), 11709; https://doi.org/10.3390/app152111709 - 2 Nov 2025
Viewed by 285
Abstract
Researching cosmic dust requires terrestrial facilities for accelerating analogues of different sizes and masses. To address the area of very lightweight particles, electrostatic accelerators like Van de Graaf accelerators or Linear Accelerators (LINACs) have proven adequate. This article describes the components, dimensions, working [...] Read more.
Researching cosmic dust requires terrestrial facilities for accelerating analogues of different sizes and masses. To address the area of very lightweight particles, electrostatic accelerators like Van de Graaf accelerators or Linear Accelerators (LINACs) have proven adequate. This article describes the components, dimensions, working principle and attributes of a variable frequency switched 6-stage LINAC of 120 kilovolts (kV) potential based at the Institute of Space Systems, University of Stuttgart. It utilizes negative voltages, no storage capacitors, isometric drift tubes, one semiconductor-based high-voltage switch per stage and there is no voltage drop during acceleration. The particle rate can reach up to 33 particles per second. By setting a target speed window, it autonomously chooses the right number of acceleration stages to meet that requirement, if possible. Micron-sized iron particles were accelerated successfully, achieving speed increase rates of up to three times the pre-LINAC speed and a total speed of up to 1300 m per second (m/s). This platform provides a new tool for dust sensor calibration, impact physics and material surface processing due to its ability to bring particles of different charge-to-mass ratios to a defined target speed. Full article
Show Figures

Figure 1

17 pages, 3812 KB  
Article
Research on Non-Contact Low-Voltage Transmission Line Voltage Measurement Method Based on Switched Capacitor Calibration
by Yuanhang Yang, Qiaowei Yang, Hengchu Shi, Hao You, Chengen Jiang, Xiao Hu, Yinyin Li and Wenbin Zhang
Electronics 2025, 14(18), 3603; https://doi.org/10.3390/electronics14183603 - 10 Sep 2025
Viewed by 469
Abstract
Capacitive-coupling non-contact voltage sensors face a key challenge: their probe-conductor coupling capacitance varies, making it hard to accurately determine the division ratio. This capacitance is influenced by factors like the conductor’s insulation material, radius, and relative position. To address this challenge, this paper [...] Read more.
Capacitive-coupling non-contact voltage sensors face a key challenge: their probe-conductor coupling capacitance varies, making it hard to accurately determine the division ratio. This capacitance is influenced by factors like the conductor’s insulation material, radius, and relative position. To address this challenge, this paper proposes a sensor gain self-calibration method based on switching capacitors. This method obtains multiple sets of real-time measurement outputs by connecting and switching different standard capacitors in parallel with the sensor’s structural capacitance, and then simultaneously solves for the coupling capacitance and the voltage under test, thereby achieving on-site autonomous calibration of the sensor gain. To effectively suppress interference from stray electric fields in the surrounding space, a shielded coaxial probe structure and corresponding back-end processing circuitry were designed, significantly enhancing the system’s anti-interference capability. Finally, an experimental platform incorporating insulated conductors of various diameters was built to validate the method’s effectiveness. Within the 100–300 V power-frequency range, the reconstructed voltage amplitude shows a maximum relative error of 1.06% and a maximum phase error of 0.76°, and harmonics are measurable up to the 50th order. Under inter-phase electric field interference, the maximum relative error of the reconstructed voltage amplitude is 1.34%, demonstrating significant shielding effectiveness. For conductors with diameters ranging from 6 mm2 to 35 mm2, the measurement error is controlled within 1.57%. These results confirm the method’s strong environmental adaptability and broad applicability across different conductor diameters. Full article
Show Figures

Figure 1

17 pages, 68021 KB  
Article
A Low-Power Differential Temperature Sensor with Chopped Cascode Transistors and Switched-Capacitor Integration
by Junyi Yang, Thomas Gourousis, Mengting Yan, Ruyi Ding, Ankit Mittal, Milin Zhang, Francesco Restuccia, Aatmesh Shrivastava, Yunsi Fei and Marvin Onabajo
Electronics 2025, 14(12), 2381; https://doi.org/10.3390/electronics14122381 - 11 Jun 2025
Viewed by 1030
Abstract
Embedded differential temperature sensors can be utilized to monitor the power consumption of circuits, taking advantage of the inherent on-chip electrothermal coupling. Potential applications range from hardware security to linearity, gain/bandwidth calibration, defect-oriented testing, and compensation for circuit aging effects. This paper introduces [...] Read more.
Embedded differential temperature sensors can be utilized to monitor the power consumption of circuits, taking advantage of the inherent on-chip electrothermal coupling. Potential applications range from hardware security to linearity, gain/bandwidth calibration, defect-oriented testing, and compensation for circuit aging effects. This paper introduces the use of on-chip differential temperature sensors as part of a wireless Internet of Things system. A new low-power differential temperature sensor circuit with chopped cascode transistors and switched-capacitor integration is described. This design approach leverages chopper stabilization in combination with a switched-capacitor integrator that acts as a low-pass filter such that the circuit provides offset and low-frequency noise mitigation. Simulation results of the proposed differential temperature sensor in a 65 nm complementary metal-oxide-semiconductor (CMOS) process show a sensitivity of 33.18V/°C within a linear range of ±36.5m°C and an integrated output noise of 0.862mVrms (from 1 to 441.7 Hz) with an overall power consumption of 0.187mW. Considering a figure of merit that involves sensitivity, linear range, noise, and power, the new temperature sensor topology demonstrates a significant improvement compared to state-of-the-art differential temperature sensors for on-chip monitoring of power dissipation. Full article
(This article belongs to the Special Issue Advances in RF, Analog, and Mixed Signal Circuits)
Show Figures

Figure 1

14 pages, 10131 KB  
Article
A High ENOB 14-Bit ADC without Calibration
by Costas Laoudias, George Souliotis and Fotis Plessas
Electronics 2024, 13(3), 570; https://doi.org/10.3390/electronics13030570 - 31 Jan 2024
Cited by 1 | Viewed by 3726
Abstract
This paper presents an implementation of a 14-bit 2.5 MS/s differential Successive-Approximation-Register (SAR) analog-to-digital converter (ADC) to be used for sensing multiple analog input signals. A differential binary-weighted with split capacitance charge-redistribution capacitive digital-to-analog converter (CDAC) utilizing the conventional switching technique is designed, [...] Read more.
This paper presents an implementation of a 14-bit 2.5 MS/s differential Successive-Approximation-Register (SAR) analog-to-digital converter (ADC) to be used for sensing multiple analog input signals. A differential binary-weighted with split capacitance charge-redistribution capacitive digital-to-analog converter (CDAC) utilizing the conventional switching technique is designed, without using any calibration mechanism for fast power-on operation. The CDAC capacitor unit has been optimized for improved linearity without calibration technique. The SAR ADC has a differential input range 3.6 Vpp, with a SNDR of 80.45 dB, ENOB of 13.07, SFDR of 87.16 dB and dissipates an average power of 0.8 mW, while operating at 2.5 V/1 V for analog/digital power supply. The INL and DNL is +0.22/−0.34 LSB and +0.42/−0.3 LSB, respectively. A prototype ADC has been fabricated in a conventional CMOS 65 nm technology process. Full article
(This article belongs to the Special Issue Mixed Signal Integrated Circuit Design)
Show Figures

Figure 1

12 pages, 6474 KB  
Article
A Self-Calibration of Capacitor Mismatch Error for Pipeline ADCs
by Dong-Hwan Seo, Sunghoon Cho, Jung-Gyun Kim and Byung-Geun Lee
Appl. Sci. 2023, 13(22), 12322; https://doi.org/10.3390/app132212322 - 14 Nov 2023
Viewed by 1993
Abstract
This study proposes self-calibration of capacitor mismatch errors for high-resolution pipeline analog-to-digital converters (ADCs). The proposed calibration circuit recursively amplifies the capacitor mismatch error by re-utilizing a multiplying digital-to-analog converter in a pipeline stage without increasing the circuit complexity, and the amplified error [...] Read more.
This study proposes self-calibration of capacitor mismatch errors for high-resolution pipeline analog-to-digital converters (ADCs). The proposed calibration circuit recursively amplifies the capacitor mismatch error by re-utilizing a multiplying digital-to-analog converter in a pipeline stage without increasing the circuit complexity, and the amplified error voltage is converted into digital code by utilizing the remaining pipeline stages. Error correction is performed by subtracting the digital code from the ADC output during normal operation. A prototype of a 12-bit pipeline ADC is fabricated in a 0.18 µm standard CMOS process. The ADC comprises eight 1.5-bit stages, followed by a 4-bit flash ADC as the final stage; the capacitor mismatch errors in the first two pipeline stages are corrected by utilizing the proposed self-calibration technique. Although the calibration method is employed in a 1.5-bit stage architecture, which uses a gain-of-two switched-capacitor amplifier, it is applicable to different bit-per-stage architectures. The ADC linearity significantly improves after calibration, and this is verified through simulations and measurements. Full article
(This article belongs to the Special Issue Advanced Circuits and Systems for Emerging Applications)
Show Figures

Figure 1

13 pages, 3832 KB  
Article
A 52-to-57 GHz CMOS Phase-Tunable Quadrature VCO Based on a Body Bias Control Technique
by Seongmin Lee, Yongho Lee and Hyunchol Shin
Electronics 2023, 12(12), 2679; https://doi.org/10.3390/electronics12122679 - 15 Jun 2023
Cited by 1 | Viewed by 2534
Abstract
This paper presents a 52-to-57 GHz CMOS quadrature voltage-controlled oscillator (QVCO) with a novel I/Q phase tuning technique based on a body bias control method. The QVCO employs an in-phase injection-coupling (IPIC) network comprising four diode-connected FETs for the quadrature phase generation. The [...] Read more.
This paper presents a 52-to-57 GHz CMOS quadrature voltage-controlled oscillator (QVCO) with a novel I/Q phase tuning technique based on a body bias control method. The QVCO employs an in-phase injection-coupling (IPIC) network comprising four diode-connected FETs for the quadrature phase generation. The I/Q phase error is calibrated by controlling the body bias voltage offset of the QVCO’s four core FETs. This technique effectively covers a wide range of I/Q phase error between −13.4° and +10.7°. It also minimally induces the unwanted variations in the phase noise, current dissipation, and oscillation frequency, which were found to be only 0.4 dB, 0.07%, and 36 MHz, respectively. After the IPIC-QVCO, a phase-tunable two-stage LO buffer employing a 3-bit switched-capacitor bank was added for additional phase tuning, leading to the extension of the phase tuning range up to −22.7–+20.0°. The proposed QVCO is implemented in a 40 nm RF CMOS process. The measured results show that the QVCO covers a frequency band from 52.4 to 57.6 GHz while consuming 26.2 mW. The phase noise and the figure-of-merit of the QVCO are −91.8 dBc/Hz at 1 MHz offset and −172.4 dBc/Hz, respectively. We also realized a fully integrated 55 GHz quadrature RF transmitter employing the phase-tunable QVCO and LO generator. The effectiveness of the proposed phase-tunable LO generator was confirmed by verifying the image rejection ratio (IRR) calibration at the RF output. Full article
(This article belongs to the Special Issue Recent Advances in RF and Millimeter-Wave Design Techniques)
Show Figures

Figure 1

15 pages, 6373 KB  
Article
One-Dimensional Maximum Power Point Tracking Design of Switched-Capacitor Charge Pumps for Thermoelectric Energy Harvesting
by Koichi Nono and Toru Tanzawa
Electronics 2023, 12(5), 1203; https://doi.org/10.3390/electronics12051203 - 2 Mar 2023
Cited by 4 | Viewed by 1933
Abstract
This paper proposes a one-dimensional (1D) maximum power point tracking (MPPT) design which only requires measurement of one parameter (the input voltage of a switched-capacitor charge pump) for calibrating a power converter including the charge pump and thermoelectric generator. The frequency of the [...] Read more.
This paper proposes a one-dimensional (1D) maximum power point tracking (MPPT) design which only requires measurement of one parameter (the input voltage of a switched-capacitor charge pump) for calibrating a power converter including the charge pump and thermoelectric generator. The frequency of the clock to drive the charge pump is designed to minimize the circuit area of the entire charge pump circuit for generating a target output current at a specific output voltage. The ratio of the capacitance value of each boosting capacitor (C) to the size of the switching MOSFET can be determined to maximize the transferring current at the same time. When a thermoelectric generator (TEG) is given, its output impedance is determined. Its open-circuit voltage varies with the temperature difference between two plates of the TEG. MPPT maximizes the output power of the charge pump even when the temperature difference varies. It was indicated that the number of stages of charge pump (N) needs to increase when the temperature difference lowers, whereas C needs to decrease inversely proportional to N, meaning that the C–N product should be kept unchanged for MPPT. Demonstration of the circuit design was conducted in 65 nm CMOS, and the measured results validated the concept of the 1D MPPT. Full article
(This article belongs to the Special Issue Energy Harvesting and Energy Storage Systems, Volume II)
Show Figures

Figure 1

18 pages, 5945 KB  
Article
Laboratory Radiometric Calibration Technique of an Imaging System with Pixel-Level Adaptive Gain
by Ze Li, Jun Wei, Xiaoxian Huang and Feifei Xu
Sensors 2023, 23(4), 2083; https://doi.org/10.3390/s23042083 - 13 Feb 2023
Viewed by 2824
Abstract
In a routine optical remote sensor, there is a contradiction between the two requirements of high radiation sensitivity and high dynamic range. Such a problem can be solved by adopting pixel-level adaptive-gain technology, which is carried out by integrating multilevel integrating capacitors into [...] Read more.
In a routine optical remote sensor, there is a contradiction between the two requirements of high radiation sensitivity and high dynamic range. Such a problem can be solved by adopting pixel-level adaptive-gain technology, which is carried out by integrating multilevel integrating capacitors into photodetector pixels and multiple nondestructive read-outs of the target charge with a single exposure. There are four gains for any one pixel: high gain (HG), medium gain (MG), low gain (LG), and ultralow gain (ULG). This study analyzes the requirements for laboratory radiometric calibration, and we designed a laboratory calibration scheme for the distinctive imaging method of pixel-level adaptive gain. We obtained calibration coefficients for general application using one gain output, and the switching points of dynamic range and the proportional conversion relationship between adjacent gains as the adaptive-gain output. With these results, on-orbit quantification applications of spectrometers adopting pixel-level automatic gain adaptation technology are guaranteed. Full article
Show Figures

Figure 1

13 pages, 3826 KB  
Article
Ultra-Fast Polarity Switching, Non-Radioactive Drift Tube for the Miniaturization of Drift-Time Ion Mobility Spectrometer
by Lingfeng Li, Hao Gu, Yanzhen Lv, Yunjing Zhang, Xingli He and Peng Li
Sensors 2022, 22(13), 4866; https://doi.org/10.3390/s22134866 - 27 Jun 2022
Cited by 13 | Viewed by 2970
Abstract
Drift-time ion mobility spectrometer (DT-IMS) is a promising technology for gas detection and analysis in the form of miniaturized instrument. Analytes may exist in the form of positively or negatively charged ions according to their chemical composition and ionization condition, and therefore require [...] Read more.
Drift-time ion mobility spectrometer (DT-IMS) is a promising technology for gas detection and analysis in the form of miniaturized instrument. Analytes may exist in the form of positively or negatively charged ions according to their chemical composition and ionization condition, and therefore require both polarity of electric field for the detection. In this work the polarity switching of a drift-time ion mobility spectrometer based on a direct current (DC) corona discharge ionization source was investigated, with novel solutions for both the control of ion shutter and the stabilization of aperture grid. The drift field is established by employing a switchable high voltage power supply and a serial of voltage regulator diode, with optocouplers to drive the ion shutter when the polarity is switched. The potential of aperture grid is stabilized during the polarity switching by the use of four diodes to avoid unnecessary charging cycle of the aperture grid capacitor. Based on the proposed techniques, the developed DT-IMS with 50 mm drift path is able to switch its polarity in 10 ms and acquire mobility spectrum after 10 ms of stabilization. Coupled with a thermal desorption sampler, limit of detection (LoD) of 0.1 ng was achieved for ketamine and TNT. Extra benefits include single calibration substance for both polarities and largely simplified pneumatic design, together with the reduction of second drift tube and its accessories. This work paved the way towards further miniaturization of DT-IMS without compromise of performance. Full article
(This article belongs to the Special Issue Sensors from Miniaturization of Analytical Instruments)
Show Figures

Figure 1

19 pages, 8200 KB  
Article
A 12-b Subranging SAR ADC Using Detect-and-Skip Switching and Mismatch Calibration for Biopotential Sensing Applications
by Cong Luong Nguyen, Huu Nhan Phan and Jong-Wook Lee
Sensors 2022, 22(9), 3600; https://doi.org/10.3390/s22093600 - 9 May 2022
Cited by 2 | Viewed by 4331
Abstract
This paper presents a 12-b successive approximation register (SAR) analog-to-digital converter (ADC) for biopotential sensing applications. To reduce the digital-to-analog converter (DAC) switching energy of the high-resolution ADC, we combine merged-capacitor-switching (MCS) and detect-and-skip (DAS) methods, successfully embedded in the subranging structure. The [...] Read more.
This paper presents a 12-b successive approximation register (SAR) analog-to-digital converter (ADC) for biopotential sensing applications. To reduce the digital-to-analog converter (DAC) switching energy of the high-resolution ADC, we combine merged-capacitor-switching (MCS) and detect-and-skip (DAS) methods, successfully embedded in the subranging structure. The proposed method saves 96.7% of switching energy compared to the conventional method. Without an extra burden on the realization of the calibration circuit, we achieve mismatch calibration by reusing the on-chip DAC. The mismatch data are processed in the digital domain to compensate for the nonlinearity caused by the DAC mismatch. The ADC is realized using a 0.18 μm CMOS process with a core area of 0.7 mm2. At the sampling rate fS = 9 kS/s, the ADC achieves a signal-to-noise ratio and distortion (SINAD) of 67.4 dB. The proposed calibration technique improves the spurious-free dynamic range (SFDR) by 7.2 dB, resulting in 73.5 dB. At an increased fS = 200 kS/s, the ADC achieves a SINAD of 65.9 dB and an SFDR of 68.8 dB with a figure-of-merit (FoM) of 13.2 fJ/conversion-step. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

9 pages, 2561 KB  
Article
A Flash Frequency Tuning Technique for SC-Based mm Wave VCOs
by Alessandro Parisi, Andrea Cavarra, Alessandro Finocchiaro, Giuseppe Papotto and Giuseppe Palmisano
Electronics 2022, 11(3), 433; https://doi.org/10.3390/electronics11030433 - 31 Jan 2022
Viewed by 2559
Abstract
This paper presents a flash frequency tuning technique for switched-capacitor-based, voltage-controlled oscillators operating at mm wave frequencies. The proposed strategy exploits a capacitor array and a small varactor for coarse and fine tuning, respectively, which are simultaneously operated thanks to a flash A/D-based [...] Read more.
This paper presents a flash frequency tuning technique for switched-capacitor-based, voltage-controlled oscillators operating at mm wave frequencies. The proposed strategy exploits a capacitor array and a small varactor for coarse and fine tuning, respectively, which are simultaneously operated thanks to a flash A/D-based control circuit. This avoids additional delay in the frequency calibration, thus enabling very fast-frequency locking operation. The VCO was fabricated in a 28 nm FD-SOI CMOS technology and provides an oscillation frequency around 39 GHz with an overall tuning range of 3.3 GHz. The circuit dissipates 8.4 mW from a power supply as low as 0.7 V, while occupying a silicon area of 210 µm × 150 µm. Full article
(This article belongs to the Special Issue Design of Mixed Analog/Digital Circuits)
Show Figures

Figure 1

10 pages, 1078 KB  
Article
A 28 nm CMOS 10 bit 100 MS/s Asynchronous SAR ADC with Low-Power Switching Procedure and Timing-Protection Scheme
by Fang Tang, Qiyun Ma, Zhou Shu, Yuanjin Zheng and Amine Bermak
Electronics 2021, 10(22), 2856; https://doi.org/10.3390/electronics10222856 - 19 Nov 2021
Cited by 4 | Viewed by 3762
Abstract
This paper presents a 10 bit 100 MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) without calibration for industrial control system (ICS) applications. Several techniques are adopted in the proposed switching procedure to achieve better linearity, power and area efficiency. A single-side-fixed [...] Read more.
This paper presents a 10 bit 100 MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) without calibration for industrial control system (ICS) applications. Several techniques are adopted in the proposed switching procedure to achieve better linearity, power and area efficiency. A single-side-fixed technique is utilized to reduce the number of capacitors; a parallel split capacitor array in combination with a partially thermometer coded technique can minimize the switching energy, improve speed, and decrease differential non-linearity (DNL). In addition, a compact timing-protection scheme is proposed to ensure the stability of the asynchronous SAR ADC. The proposed ADC is fabricated in a 28 nm CMOS process with an active area of 0.026 mm2. At 100 MS/s, the ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 51.54 dB and a spurious free dynamic range (SFDR) of 55.12 dB with the Nyquist input. The measured DNL and integral non-linearity (INL) without calibration are +0.37/−0.44 and +0.48/−0.63 LSB, respectively. The power consumption is 1.1 mW with a supply voltage of 0.9 V, leading to a figure of merit (FoM) of 35.6 fJ/conversion-step. Full article
(This article belongs to the Special Issue Advances on Analog-to-Digital and Digital-to-Analog Converters)
Show Figures

Figure 1

15 pages, 6455 KB  
Article
A 12-bit 40-MS/s SAR ADC with Calibration-Less Switched Capacitive Reference Driver
by Hyungyu Ju, Sewon Lee and Minjae Lee
Electronics 2020, 9(11), 1854; https://doi.org/10.3390/electronics9111854 - 5 Nov 2020
Cited by 4 | Viewed by 4824
Abstract
This paper presents a switched capacitive reference driver (SCRD) with a low-energy switching scheme. In order to reduce the performance degradation resulting from a signal-dependent voltage drop in a capacitive reference driver (CRD) without increasing the capacitance (CREF) of a CRD, [...] Read more.
This paper presents a switched capacitive reference driver (SCRD) with a low-energy switching scheme. In order to reduce the performance degradation resulting from a signal-dependent voltage drop in a capacitive reference driver (CRD) without increasing the capacitance (CREF) of a CRD, the proposed SCRD utilizes the CRD for LSB conversion cycles. In MSB conversion cycles, a supply voltage is used as a reference voltage to save on area and power consumption. As such, the proposed SCRD significantly relaxes the required CREF, and does not necessitate bit weight calibration or compensation requiring an auxiliary capacitor-based digital-to-analog converter (CDAC). To evaluate the proposed SCRD, a prototype 12-bit 40-MS/s SAR ADC is fabricated in a 65 nm CMOS process. With near Nyquist frequency, the measured spurious-free dynamic range (SFDR) of the SAR ADC with the SCRD is 80.6 dB, which is about a 16 dB improvement from the SFDR of a SAR ADC with a CRD only. Full article
(This article belongs to the Special Issue Advances on Analog-to-Digital and Digital-to-Analog Converters)
Show Figures

Figure 1

11 pages, 5270 KB  
Article
Low Power SAR ADC Design with Digital Background Calibration Algorithm
by Shouping Li, Jianjun Chen, Bin Liang and Yang Guo
Symmetry 2020, 12(11), 1757; https://doi.org/10.3390/sym12111757 - 23 Oct 2020
Cited by 3 | Viewed by 6031
Abstract
This paper proposed a digital background calibration algorithm with positive and negative symmetry error tolerance to remedy the capacitor mismatch for successive approximation register analog-to-digital converters (SAR ADCs). Compensate for the errors caused by capacitor mismatches and improve the ADC performance. Combination with [...] Read more.
This paper proposed a digital background calibration algorithm with positive and negative symmetry error tolerance to remedy the capacitor mismatch for successive approximation register analog-to-digital converters (SAR ADCs). Compensate for the errors caused by capacitor mismatches and improve the ADC performance. Combination with a tri-level switching scheme based on the common-mode voltage Vcm to achieve capacitor reduction and high switching energy efficiency. The proposed calibration algorithm significantly improves capacitor mismatch without resorting to extensive computation or dedicated circuits. The active area is 0.046 mm2 in 40 nm Complementary Metal-Oxide-Semiconductor (CMOS) technology. The post-simulation results show the effective number of bits (ENOB) improves from 8.23 bits to 11.36 bits, signal-to-noise-and distortion ratio (SNDR) improves from 51.33 dB to 70.15 dB, respectively, before and after calibration. This improves the spurious-free dynamic range (SFDR) by 24.13 dB, from 61.50 dB up to 85.63 dB. The whole ADC’s power consumption is only 0.3564 mW at sampling rate fs =2 MS/s and Nyquist input frequency, with a figure-of-merit (FOM) 67.8 fJ/conv.-step. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 1773 KB  
Article
A Low-Power Column-Parallel Gain-Adaptive Single-Slope ADC for CMOS Image Sensors
by Jingwei Wei, Xuan Li, Lei Sun and Dongmei Li
Electronics 2020, 9(5), 757; https://doi.org/10.3390/electronics9050757 - 4 May 2020
Cited by 16 | Viewed by 9403
Abstract
A low-power column-parallel gain-adaptive single-slope analog-to-digital converter (ADC) for CMOS image sensors is proposed. The gain-adaptive function is realized with the proposed switched-capacitor based gain control structure in which only minor changes from the traditional single-slope ADC are required. A switched-capacitor controlled dynamic [...] Read more.
A low-power column-parallel gain-adaptive single-slope analog-to-digital converter (ADC) for CMOS image sensors is proposed. The gain-adaptive function is realized with the proposed switched-capacitor based gain control structure in which only minor changes from the traditional single-slope ADC are required. A switched-capacitor controlled dynamic bias comparator and a flip-reduced up/down double-data-rate (DDR) counter are proposed to reduce the power consumption of the column circuits. A 12-bit current steering digital-to-analog converter (DAC) with a two-dimensional gradient error tolerant switching scheme is adopted in the ramp generator to improve the linearity of the ADC. The proposed techniques were experimentally verified in a prototype chip fabricated in the TSMC 180 nm CMOS process. A single-column ADC consumes a total power of 63.2 μ W and occupies an area of 4.48 μ m × 310 μ m. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) of the ADC are −0.43/+0.46 least significant bit (LSB) and −0.84/+1.95 LSB. A 13-bit linear output is acquired in nonlinearity within 0.08% of the full scale after calibration. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

Back to TopTop