Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = sweet potato vine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4913 KiB  
Article
Sweet Potato Yield Prediction Using Machine Learning Based on Multispectral Images Acquired from a Small Unmanned Aerial Vehicle
by Kriti Singh, Yanbo Huang, Wyatt Young, Lorin Harvey, Mark Hall, Xin Zhang, Edgar Lobaton, Johnie Jenkins and Mark Shankle
Agriculture 2025, 15(4), 420; https://doi.org/10.3390/agriculture15040420 - 17 Feb 2025
Cited by 1 | Viewed by 1068
Abstract
Accurate prediction of sweet potato yield is crucial for effective crop management. This study investigates the use of vegetation indices (VIs) extracted from multispectral images acquired by a small unmanned aerial vehicle (UAV) throughout the growing season, along with in situ-measured plant physiological [...] Read more.
Accurate prediction of sweet potato yield is crucial for effective crop management. This study investigates the use of vegetation indices (VIs) extracted from multispectral images acquired by a small unmanned aerial vehicle (UAV) throughout the growing season, along with in situ-measured plant physiological parameters, to predict sweet potato yield. The data acquisition process through UAV field imaging is discussed in detail along with the extraction process for the multispectral bands that we use as features. The experiment is designed with a combination of different nitrogen application rates and cover crop treatments. The dependence of VIs and crop physiological parameters, such as leaf chlorophyll content, plant biomass, vine length, and leaf nitrogen content, on yield is evaluated through feature selection methods and model performance. Classical machine learning (ML) approaches and tree-based algorithms, like XGBoost and Random Forest, are implemented. Additionally, a soft-voting ML model ensemble approach is employed to improve performance of yield prediction. Individual models are trained and tested for different cover crop and nitrogen treatments to capture the relationships between the treatments and the target yield variable. The performance of the ML algorithms is evaluated using various popular model performance metrics like R2, RMSE, and MAE. Through modelling the data for cover crops and nitrogen treatment rates using individual models, the relationships and effects of different treatments on yield are explored. Important VIs useful for the study are identified through feature selection and model performance evaluation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

13 pages, 1802 KiB  
Article
Reduction of Potassium Supply Alters the Production and Quality Traits of Ipomoea batatas cv. BAU Sweetpotato-5 Tubers
by Shaila Sharmin, Md. Nazmul Hasan Arfin, Abu Musa Md Main Uddin Tareque, Abdullah Al Kafi, Md. Shohidullah Miah, Md. Zakir Hossen, Md. Abdus Shabur Talukder and Arif Hasan Khan Robin
Stresses 2024, 4(4), 883-895; https://doi.org/10.3390/stresses4040059 - 11 Dec 2024
Cited by 1 | Viewed by 1486
Abstract
In Bangladesh, sweetpotato is the fourth most important source of carbohydrates behind rice, wheat, and potatoes. Potassium is vital for sweetpotato growth, boosting tuber size, sweetness, disease resistance, and yield quality, with deficiencies leading to poor tuber formation and increased stress susceptibility. The [...] Read more.
In Bangladesh, sweetpotato is the fourth most important source of carbohydrates behind rice, wheat, and potatoes. Potassium is vital for sweetpotato growth, boosting tuber size, sweetness, disease resistance, and yield quality, with deficiencies leading to poor tuber formation and increased stress susceptibility. The present study evaluated the effect of varying dosages of potassium fertilizer (Muriate of Potash, MoP) on the growth, yield, and biochemical qualities of sweetpotato. As a genetic material, BAU sweetpotato-5 was chosen as it is recognized for its high yield, short duration, and nutritional advantages. There were three treatments—full dosage of MoP (321.6 kg ha−1, T0), half dosage of MoP (160.8 kg ha−1, T1) and no MoP (T2). Four replications of a randomized complete block design (RCBD) were used in the experiment. According to analysis of variance, the morphological and biochemical parameters, such as the fresh weight plant−1, number of tuber plant−1, chlorophyll content, total phenolic content, vitamin C, carotenoid, anthocyanin, Zn, and Fe content varied significantly among treatments. The application of the full recommended dosage of MoP resulted in the highest values for several traits, including the fresh weight plant−1, number of tuber plant−1, chlorophyll content, carotenoid, anthocyanin, and Fe content. Conversely, total phenolic content and vitamin C were highest without MoP application. Principal component analysis (PCA) differentiated treatment T0 from T1 and T2 due to higher positive coefficients of the number of leaves at 115 days after transplantation, vine length at 115 days after transplantation, number of branches, stem diameter, fresh weight plant−1, tuber length, tuber diameter, tuber weight, number of tuber plant−1, SPAD, carotenoid, anthocyanin, Fe, and negative coefficients of total phenolic content, vitamin C, and Zn. The findings suggest that potassium is integral to maximizing both yield and key nutritional components in sweetpotato cultivation. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

15 pages, 1421 KiB  
Article
The Effect of Nitrogen and Potassium Interaction on the Leaf Physiological Characteristics, Yield, and Quality of Sweet Potato
by Xing Shu, Minghuan Jin, Siyu Wang, Ximing Xu, Lijuan Deng, Zhi Zhang, Xu Zhao, Jing Yu, Yueming Zhu, Guoquan Lu and Zunfu Lv
Agronomy 2024, 14(10), 2319; https://doi.org/10.3390/agronomy14102319 - 9 Oct 2024
Cited by 3 | Viewed by 1542
Abstract
This study selected two sweet potato varieties as research subjects and conducted a field experiment using a two-factor design with two potassium (K) levels (K0 and K1) and five nitrogen (N) levels (N0–N4). The physiological changes in sweet potato leaves under different N [...] Read more.
This study selected two sweet potato varieties as research subjects and conducted a field experiment using a two-factor design with two potassium (K) levels (K0 and K1) and five nitrogen (N) levels (N0–N4). The physiological changes in sweet potato leaves under different N and K treatments were measured, and nutrients such as the soluble sugar, protein, and starch content of sweet potato roots were analyzed. The results indicate that the activity of glutamine synthetase (GS) and the soluble protein content in sweet potato leaves increase first and then decrease with increasing N application, while K application can significantly increase the activity of GS and the soluble protein content. The N metabolic capacity of leaves is strongest when the fertilizer ratio is K1N2. The SPAD value of sweet potato leaves increases with increasing N application. The net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration first increase and then decrease with increasing N application. K fertilizer has a significant effect on these parameters. As the N application rate increases, the starch and protein content in the tubers increase, while the soluble sugar content decreases. However, the number of tubers per plant, fresh weight of the tubers, and dry weight of the tubers increase initially and then decrease, while the vine length continuously increases. The application of K fertilizer can significantly increase the number of tubers per plant and stem thickness of sweet potato. In conclusion, the appropriate N–K combined application can promote N metabolism, enhance the photosynthetic capacity of sweet potato, increase yield, and improve quality. Full article
(This article belongs to the Special Issue Advances in Soil Fertility, Plant Nutrition and Nutrient Management)
Show Figures

Figure 1

12 pages, 249 KiB  
Article
Assessment of the Nutrient Value and In Vitro Rumen Fermentation Characteristics of Garlic Peel, Sweet Potato Vine, and Cotton Straw
by Huiru Chen, Qianqian Sun, Changxin Tian, Xiangfang Tang, Ying Ren and Wenxun Chen
Fermentation 2024, 10(9), 464; https://doi.org/10.3390/fermentation10090464 - 7 Sep 2024
Cited by 3 | Viewed by 1858
Abstract
This experiment was conducted to determine the nutrient composition of three agricultural by-products, namely garlic peel, sweet potato vine, and cotton straw, calculate their relative feeding value, effective energy value, and other indexes, and comprehensively evaluate their nutrient value by combining with rumen [...] Read more.
This experiment was conducted to determine the nutrient composition of three agricultural by-products, namely garlic peel, sweet potato vine, and cotton straw, calculate their relative feeding value, effective energy value, and other indexes, and comprehensively evaluate their nutrient value by combining with rumen in vitro fermentation technology, with the aim of providing data references for the development and utilization of non-conventional feed resources for ruminants. The results showed that: 1) the dry matter (DM), ash, ether extract (EE), and crude protein (CP) contents of cotton straw were significantly higher than the other two feeds (p < 0.05), while the acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents of garlic peel were highly significantly higher than the others (p < 0.05); 2) the relative feed value (DMI, DDM, TDN, RFV, and RFQ) and effective energy value (GE, DE, ME, NEm, NEg, and NEL) indexes of cotton straw were significantly higher than garlic peel and sweet potato vine (p < 0.01); 3) after 48 h of in vitro fermentation, the dry matter degradation rate (IVDMD) of sweet potato vine was significantly higher than the other two feeds (p < 0.01), and the cumulative gas productions (mL) and estimated gas parameters (a, b, a + b, and c) of sweet potato vine were significantly (p < 0.01) higher than those of garlic peel and cotton straw; 4) the sweet potato vine had lower pH but higher NH3-N compared to garlic peel and cotton straw (p < 0.05). The sweet potato vine had higher propionate, iso-butyrate, butyrate, iso-valerate, and total VFA than the other two roughages, which also had the lowest acetate-to-propionate ratio. Garlic peel produced the lowest acetate, while it produced the highest valerate (p < 0.05). These findings demonstrate that all three by-products have high potential as livestock feed based on their nutritive value parameters. Comparatively, sweet potato vines exhibit higher feeding value due to their relatively moderate NDF content and superior rumen fermentation performance. Full article
(This article belongs to the Special Issue In Vitro Fermentation, 3rd Edition)
15 pages, 2111 KiB  
Article
Effects of Mars Global Simulant (MGS-1) on Growth and Physiology of Sweet Potato: A Space Model Plant
by Karthik Chinnannan, Prapooja Somagattu, Hyndavi Yammanuru, Padma Nimmakayala, Manohar Chakrabarti and Umesh K. Reddy
Plants 2024, 13(1), 55; https://doi.org/10.3390/plants13010055 - 23 Dec 2023
Cited by 5 | Viewed by 5800
Abstract
Growing food autonomously on Mars is challenging due to the Martian soil’s low nutrient content and high salinity. Understanding how plants adapt and evaluating their nutritional attributes are pivotal for sustained Mars missions. This research delves into the regeneration, stress tolerance, and dietary [...] Read more.
Growing food autonomously on Mars is challenging due to the Martian soil’s low nutrient content and high salinity. Understanding how plants adapt and evaluating their nutritional attributes are pivotal for sustained Mars missions. This research delves into the regeneration, stress tolerance, and dietary metrics of sweet potato (Ipomoea batatas) across different Mars Global Simulant (MGS-1) concentrations (0, 25, 50, and 75%). In our greenhouse experiment, 75% MGS-1 concentration significantly inhibited sweet potato growth, storage root biomass, and chlorophyll content. This concentration also elevated the plant tissues’ H2O2, proline, and ascorbic acid levels. Higher MGS-1 exposures (50 and 75%) notably boosted the vital amino acids and sugar groups in the plant’s storage roots. However, increased MGS-1 concentrations notably diminished the total C:N ratio and elemental composition in both the vines and storage roots. In summary, sweet potato exhibited optimal growth, antioxidant properties, yield, and nutrient profiles at 25% MGS-1 exposure as compared to higher concentrations. This study underscores the need for future interventions, like nutrient enhancements and controlled metal accessibility, to render sweet potato a suitable plant for space-based studies. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 2663 KiB  
Article
Composition and Bioactivity of Chlorogenic Acids in Vegetable and Conventional Sweet Potato Vine Tips
by Fantong Meng, Wantong Du, Yaxing Zhu, Ximeng Du, Chengchuang Song, Xi Chen, Xingtang Fang, Qinghe Cao, Daifu Ma, Yanhong Wang and Chunlei Zhang
Foods 2023, 12(21), 3910; https://doi.org/10.3390/foods12213910 - 25 Oct 2023
Cited by 2 | Viewed by 1929
Abstract
Sweet potato vine tips are abundant in chlorogenic acid (CGA). In this study, CGA was extracted from vegetable and conventional sweet potato vine tips using ethanol, followed by subsequent purification of the extract through a series of sequential steps. Over 4 g of [...] Read more.
Sweet potato vine tips are abundant in chlorogenic acid (CGA). In this study, CGA was extracted from vegetable and conventional sweet potato vine tips using ethanol, followed by subsequent purification of the extract through a series of sequential steps. Over 4 g of the purified product was obtained from 100 g of sweet potato vine tip powder, producing more than 85% of purified CGA. The LC-MS analysis of all samples indicated that 4-CQA was the predominant isomer in both sweet potato cultivars. Significant variations of p-coumaroyl quinic acids, feruloyl quinic acids, dicaffeoyl quinic acids, and tricaffeoyl quinic acid were identified, whereas the mono-caffeoyl quinic acids did not vary when the two sweet potato varieties were compared. Compared to conventional sweet potatoes, vegetable sweet potatoes exhibit a high negative correlation between 4-CQA and 5-pCoQA, while showing a high positive correlation between 3,5-CQA and 3-pCoQA. A series of principal component analyses (PCA) using CGA isomers enables a clear differentiation between vine tips derived from vegetable and conventional sweet potatoes. The model of linear discriminant analysis, based on the characteristic CGA, achieved a 100% accuracy rate in distinguishing between vegetable and conventional sweet potatoes. The high purity of sweet potato CGA (SCGA) exhibited potent anti-breast cancer activity. The results demonstrated that SCGA significantly suppressed the clonogenicity of MB231 and MCF7 cells, and impeded the migratory, invasive, and lung metastatic potential of MB231 cells. Full article
Show Figures

Figure 1

20 pages, 1868 KiB  
Article
More Interventions, Low Adoption: To What Extent Are the Existing Seed Sources to Blame? The Case of Orange Fleshed Sweet Potato in Central and Northern Malawi
by Chrispin Sunganani Kaphaika, Samson Pilanazo Katengeza, Innocent Pangapanga-Phiri and Madalitso Happy Chambukira
Sustainability 2023, 15(19), 14390; https://doi.org/10.3390/su151914390 - 29 Sep 2023
Cited by 4 | Viewed by 3010
Abstract
Vitamin A dense Orange fleshed sweet potato (OFSP) has the potential to build resilient livelihoods against Vitamin A Deficiency (VAD), food insecurity, and climate change. However, the adoption of OFSP among smallholder farmers in Malawi remains low. Although many scholars across the globe [...] Read more.
Vitamin A dense Orange fleshed sweet potato (OFSP) has the potential to build resilient livelihoods against Vitamin A Deficiency (VAD), food insecurity, and climate change. However, the adoption of OFSP among smallholder farmers in Malawi remains low. Although many scholars across the globe have reviewed the seed systems of OFSP, no empirical study, in Malawi or elsewhere, has modelled how the use of the various sources of vines affect farmers’ seed security and eventual decisions to adopt biofortified OFSP varieties. The study employed a mixed methods approach and used a Triple Hurdle model to analyze the effect of the existing sources of vines on the adoption of OFSP among 721 randomly sampled households in central and northern Malawi. The study also developed a seed security experience score (SSES) in order to assess the capacity of the existing sources of vines to ensure farmers’ seed security. By defining adoption as a three-stage process, and by shifting the seed systems focus to capacity of the existing sources of vines, the study departs from the conventional approaches that most scholars have used to model adoption of OFSP. The study found that the existing sources of vines influenced all the three stages of adoption. The SSES results indicated that the capacity of the existing sources subjected the majority of the farmers to a highly seed insecurity status. Interventions therefore must be designed to address the seed security challenges associated with the existing sources in order to enhance the capacity of the sources for widespread and sustained adoption of OFSP. Full article
Show Figures

Figure 1

13 pages, 2554 KiB  
Article
Response of Crop Performance and Yield of Spring Sweet Potato (Ipomoea batatas [L.] Lam) as Affected by Mechanized Transplanting Properties
by Hui Li, Baoqing Wang, Song Shi, Jilei Zhou, Yupeng Shi, Xuechuan Liu, Hu Liu and Tengfei He
Agronomy 2023, 13(6), 1611; https://doi.org/10.3390/agronomy13061611 - 15 Jun 2023
Cited by 6 | Viewed by 3800
Abstract
The sweet potato transplanters of diverse transplanting configurations have been shown to produce various planting properties in relation to different raised bed cropping systems, thus affecting crop growth and yield in sweet potato cultivation. In Shandong Province, a field experiment assessed the effects [...] Read more.
The sweet potato transplanters of diverse transplanting configurations have been shown to produce various planting properties in relation to different raised bed cropping systems, thus affecting crop growth and yield in sweet potato cultivation. In Shandong Province, a field experiment assessed the effects of three treatments (RB1, mulched raised beds with a finger-clip type transplanter; RB2, bare raised beds with a finger-clip type transplanter; and RB3, bare raised beds with a clamping-plate type transplanter) on soil temperature, plant growth, yield, and economic benefits. With the lowest coefficient variation of plant spacing and planting depth, the RB1 with the finger-clip type transplanter had 6.4% and 6.0% higher temperature at 5–10 cm soil layer by using the plastic-mulch for rapid early slips growth as compared with the RB2 and the RB3, respectively. Consequently, the leaf area index in the RB1 was increased by 5.6% and 6.4% as compared to the RB2 and the RB3, separately. This finally contributed to 57.5–70.8% greater fresh vines weight and 23.8–33.8% higher tubers yield in the RB1 compared with both the RB2 and the RB3 treatments, respectively. In general, in the mulched raised bed system of the Huang-Huai-Hai region of China, the finger-clip type transplanter could be a suitable option for the transplanting of sweet potato slips. In the bare raised bed system, meanwhile, the clamping-plate type transplanter has the potential to increase the production of sweet potatoes. Full article
(This article belongs to the Special Issue Cropping Systems and Agronomic Management Practices of Field Crops)
Show Figures

Figure 1

16 pages, 3900 KiB  
Article
Effects of Sewage Treatment Water Supply on Leaf Development and Yield of Tuberous Roots in Multilayered Sweet Potato Cultivation
by Takahiro Suzuki, Masaru Sakamoto, Hiroshi Kubo, Yui Miyabe and Daisuke Hiroshima
Horticulturae 2023, 9(3), 309; https://doi.org/10.3390/horticulturae9030309 - 24 Feb 2023
Viewed by 2697
Abstract
To develop a way to mass-produce sweet potatoes (Ipomoea batatas (L.) Lam.) as an energy crop to replace fossil fuels, the effects of using a sewage supply as a fertilizer and heat source were investigated. When 25 pots planted with sweet potato [...] Read more.
To develop a way to mass-produce sweet potatoes (Ipomoea batatas (L.) Lam.) as an energy crop to replace fossil fuels, the effects of using a sewage supply as a fertilizer and heat source were investigated. When 25 pots planted with sweet potato vine seedlings were arranged in three layers and cultivated for 160 days from June to November by supplying treated sewage to the root zone, the yield of tuberous roots reached 19.5 kg m−2 due to the massive growth of leaves. In addition, when sweet potato seedlings were replanted in December and treated sewage was supplied to maintain the irrigation water temperature above 15 °C even in winter, overwintering cultivation was successful and 8.4 kg m−2 of tuberous roots were harvested in July. As a result, the annual production rate for 12 months increased to 25.3 kg m−2, about 10 times the national average of 2.4 kg m−2 for open-field cultivation. The results far exceed previously reported maximum production of resource crops, such as sugarcane and eucalyptus, suggesting that the mass production of sweet potatoes by supplying treated sewage could provide an alternative to fossil fuels on a large scale. Full article
(This article belongs to the Special Issue Using Residual Materials as Fertilizers)
Show Figures

Figure 1

10 pages, 2695 KiB  
Communication
Sweet-Potato-Vine-Based High-Performance Porous Carbon for Methylene Blue Adsorption
by Wenlin Zhang, Yuhong Zhao, Qinhong Liao, Zhexin Li, Dengwei Jue and Jianmin Tang
Molecules 2023, 28(2), 819; https://doi.org/10.3390/molecules28020819 - 13 Jan 2023
Cited by 12 | Viewed by 2566
Abstract
In this study, sweet-potato-vine-based porous carbon (SPVPC) was prepared using zinc chloride as an activating and pore-forming agent. The optimised SPVPC exhibited abundant porous structures with a high specific surface area of 1397.8 m2 g−1. Moreover, SPVPC exhibited excellent adsorption [...] Read more.
In this study, sweet-potato-vine-based porous carbon (SPVPC) was prepared using zinc chloride as an activating and pore-forming agent. The optimised SPVPC exhibited abundant porous structures with a high specific surface area of 1397.8 m2 g−1. Moreover, SPVPC exhibited excellent adsorption characteristics for removing methylene blue (MB) from aqueous solutions. The maximum adsorption capacity for MB reached 653.6 mg g−1, and the reusability was satisfactory. The adsorption kinetics and isotherm were in good agreement with the pseudo-second-order kinetics and Langmuir models, respectively. The adsorption mechanism was summarised as the synergistic effects of the hierarchically porous structures in SPVPC and various interactions between SPVPC and MB. Considering its low cost and excellent adsorption performance, the prepared porous carbon is a promising adsorbent candidate for dye wastewater treatment. Full article
(This article belongs to the Special Issue Carbon-Based Materials for Sustainable Chemistry)
Show Figures

Figure 1

14 pages, 4861 KiB  
Article
Effects of Solar Radiation on Leaf Development and Yield of Tuberous Roots in Multilayered Sweet Potato Cultivation
by Takahiro Suzuki, Masaru Sakamoto, Hiroshi Kubo, Yui Miyabe and Daisuke Hiroshima
Plants 2023, 12(2), 287; https://doi.org/10.3390/plants12020287 - 7 Jan 2023
Cited by 3 | Viewed by 3402
Abstract
The purpose of this study was to develop a novel method to dramatically improve the production efficiency of sweet potatoes (Ipomoea batatas (L.) Lam.) by elucidating the effect of solar radiation stress on the growth of sweet potato in a multilayer cultivation [...] Read more.
The purpose of this study was to develop a novel method to dramatically improve the production efficiency of sweet potatoes (Ipomoea batatas (L.) Lam.) by elucidating the effect of solar radiation stress on the growth of sweet potato in a multilayer cultivation system. Twenty-five pots planted with sweet potato vine seedlings were arranged in three layers and cultivated for 160 days while supplying liquid fertilizer to the root zone. While solar radiation in the middle and lower layers decreased to 69% and 45% of that in the upper layer, respectively, the yield of tuberous roots was 0.89 kg/pot in the upper layer, 0.79 kg/pot in the middle layer, and 0.66 kg/pot in the lower layer. As a result, the productivity of tuberous roots reached 10.5 kg/m2, 4.4 times that of conventional farming. On the other hand, the amounts of leaves and stems increased in the lower layer than in the upper layer, and the biomass energy yield (photosynthetic efficiency) was 2.8% in the upper layer, 3.7% in the middle layer, and 5.1% in the lower layer. Leaves in the lower layer with less solar radiation had a lower polyphenol content and increased the amounts of low-brightness leaves. In contrast, the upper leaves were found to contain more polyphenols and have brighter, smaller leaves. These results suggest that the yield can be further increased by optimizing solar radiation stress by using the multilayer cultivation method. Full article
(This article belongs to the Special Issue Plant Protection Strategies against Abiotic and Biotic Stresses)
Show Figures

Figure 1

17 pages, 5564 KiB  
Article
Design and Experiment with a Double-Roller Sweet Potato Vine Harvester
by Guizhi Mu, Wanshuai Wang, Tingting Zhang, Lianglong Hu, Wenxiu Zheng and Wanzhi Zhang
Agriculture 2022, 12(10), 1559; https://doi.org/10.3390/agriculture12101559 - 27 Sep 2022
Cited by 7 | Viewed by 3412
Abstract
The yield of sweet potato vines is large, making it a good source of food. However, it is difficult to harvest sweet potato vines due to creeping and intertwining. Therefore, according to the domestic sweet potato planting model, this paper designed a double [...] Read more.
The yield of sweet potato vines is large, making it a good source of food. However, it is difficult to harvest sweet potato vines due to creeping and intertwining. Therefore, according to the domestic sweet potato planting model, this paper designed a double roll sweet potato vine harvester which can complete the operations of vine picking, vine killing, conveying and header harvesting at one time. The machine adopts the process of front roll vine picking, rear roll vine killing and rod bar lifting. The key components of the vine picking device, vine killing device and lifting device were designed and calculated. A numerical simulation test of the vine harvesting process was carried out by using the discrete element numerical simulation method. It was determined that the length of the vine picking rod from the outside to the inside is 175 mm, 150 mm and 105 mm, respectively, and the inclination angle of the end is 160°. There are six vine killing knives on each vine killing knife plate. The inclination of the lifting device is 50°and the conveying speed is 3 m/s. Using the box Behnken experimental design method, taking the vine picking roller speed, vine killing roller speed and ground clearance as the experimental factors, and taking the sweet potato vine harvest rate, stubble height and potato injury rate as the evaluation indexes, a quadratic regression orthogonal test was carried out, the effects of various factors on the evaluation indexes were analyzed, and the experimental factors were optimized and verified. The experimental results showed that the optimal parameter combination is as follows: the rotation speed of vine picking roller should be 716 r/min, the rotation speed of vine killing roller should be 1960 r/min and the ground clearance should be 16 mm. With these parameters, the harvest rate of sweet potato vines is 93.1%, the stubble height is 29.5 mm and the potato injury rate is 0.174%. As such, the harvester meets the requirements for the mechanized harvesting of sweet potato vines and is of great significance as a light and simplified product for the sweet potato industry. Full article
Show Figures

Figure 1

10 pages, 2568 KiB  
Article
Study on Comparisons of Bio-Hydrogen Yield Potential and Energy Conversion Efficiency between Stem and Leaf of Sweet Potato by Photo-Fermentation
by Haorui Zhang, Tingzhou Lei, Shijie Lu, Shengnan Zhu, Yameng Li, Quanguo Zhang and Zhiping Zhang
Fermentation 2022, 8(4), 165; https://doi.org/10.3390/fermentation8040165 - 5 Apr 2022
Cited by 10 | Viewed by 2862
Abstract
The source of raw materials for hydrogen production can be expanded by using vine waste as a substrate. Likewise, the effectiveness of vine waste can also be improved. However, plant parts such as stems and leaves often differ in physicochemical properties, which significantly [...] Read more.
The source of raw materials for hydrogen production can be expanded by using vine waste as a substrate. Likewise, the effectiveness of vine waste can also be improved. However, plant parts such as stems and leaves often differ in physicochemical properties, which significantly affects the effectiveness of biochemical transformation. In this research, sweet potato was used as substrate in photo-fermentative hydrogen production (PFHP) to evaluate differences in bio-hydrogen production yield potential and energy conversion efficiency for its stem and leaf. Physicochemical properties were determined using the following techniques: elementary analysis, SEM, and X-ray diffraction. The Gompertz model was adopted to analyze the kinetic parameters, and energy conversion efficiency was calculated. The results showed that stem samples with loose structures produced more hydrogen, with a total cellulose and hemicellulose content of 44.6%, but crystallinity was only 29.67%. Cumulative bio-hydrogen yield of stem was 66.03 mL/g TS, which was 3.59 times higher than that of leaf. An increase of 258.93% in energy conversion efficiency was obtained when stem was used for PFHP. In conclusion, stem samples were more suitable for PFHP than leaf samples. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

12 pages, 265 KiB  
Article
Feed Quality and Feeding Level Effects on Faecal Composition in East African Cattle Farming Systems
by Asep I. M. Ali, Shimels E. Wassie, Rainer Georg Joergensen, Daniel Korir, John P. Goopy, Klaus Butterbach-Bahl, Lutz Merbold, Uta Dickhoefer and Eva Schlecht
Animals 2021, 11(2), 564; https://doi.org/10.3390/ani11020564 - 22 Feb 2021
Cited by 11 | Viewed by 3506
Abstract
Effects of feeding levels below maintenance requirements of metabolizable energy (MER) and of feed supplementation on fecal nutrient and microbial C concentrations were evaluated. In experiment 1, Rhodes grass hay only was offered to Boran steers at 80%, 60%, and 40% of individual [...] Read more.
Effects of feeding levels below maintenance requirements of metabolizable energy (MER) and of feed supplementation on fecal nutrient and microbial C concentrations were evaluated. In experiment 1, Rhodes grass hay only was offered to Boran steers at 80%, 60%, and 40% of individual MER, while steers at 100% MER additionally received a concentrated mixture. This reduction in MER decreased N, increased fungal C but did not affect bacterial C concentrations in feces. In experiment 2, Holstein × Boran heifers were offered a poor-quality roughage diet without supplement, with sweet potato vine silage or with a urea-molasses block. These two supplements did not affect the fecal chemical composition or fungal C but increased bacterial C concentrations in feces. Across all data, the fungal C/bacterial C ratio was positively related to N and negatively to neutral detergent fiber concentrations in feces, indicating diet-induced shifts in the fecal microbial community. Full article
(This article belongs to the Section Cattle)
15 pages, 1433 KiB  
Article
Microbial Mechanistic Insights into the Role of Sweet Potato Vine on Improving Health in Chinese Meishan Gilt Model
by Shengyu Xu, Pan Zhang, Meng Cao, Yanpeng Dong, Jian Li, Yan Lin, Lianqiang Che, Zhengfeng Fang, Bin Feng, Yong Zhuo, Jianping Wang, Zhihua Ren and De Wu
Animals 2019, 9(9), 632; https://doi.org/10.3390/ani9090632 - 30 Aug 2019
Cited by 8 | Viewed by 3816
Abstract
This study explored the impact of fresh sweet potato vine on the growth as well as the metabolites and colon microbial composition in Chinese Meishan gilt. Twenty Meishan gilts (body weight 30 ± 0.18 kg, n = 10 per treatment) were randomly assigned [...] Read more.
This study explored the impact of fresh sweet potato vine on the growth as well as the metabolites and colon microbial composition in Chinese Meishan gilt. Twenty Meishan gilts (body weight 30 ± 0.18 kg, n = 10 per treatment) were randomly assigned to a control (CON) or sweet potato vine (SPV) supplementation diet treatment. Gilts were housed in individual stalls. In the SPV treatment, 2 kg fresh sweet potato vine was used instead of 0.18 kg basal diet which provided the same amount of digestive energy and crude protein with the exception of crude fiber (CON, 51.00 g/d vs. SPV, 73.94 g/d) in terms of dry matter intake. Gilts were slaughtered and samples were collected on day 19 after the third estrus cycle. The SPV treatment tended to increase slaughter weight of gilts (p = 0.07); it also increased (p < 0.05) gastrointestinal tract weight and intestinal muscle layer thickness. SPV treatment also decreased (p < 0.05) carcass yield and subcutaneous adipose tissue. The concentration of zonulin and endotoxin in plasma was decreased (p < 0.05) as the gilt consumed the SPV diet. Colonic fecal concentrations of endotoxin, lipocalin-2, and tumor necrosis factor-α (TNF-α) were decreased (p < 0.05), and interleukin-10 (IL-10) was increased (p < 0.05) in the SPV treatment. Butyric acid and acetate concentration in colonic content as well as acetate concentration in caecal content were increased (p < 0.05) in the SPV treatment. Furthermore, the expression of carnitine palmityl transferase (CPT-1) and peroxisome proliferator-activated receptor-α (PPAR-α) in gilt liver in SPV treatment was increased (p < 0.05) in comparison with CON treatment. Meanwhile, the composition of the colon microbes was also altered by SPV; representative changes included an increase in Lactobacillus, Bacteroides, Roseburia, and Lachnospira. These results indicate that gilt fed with sweet potato vine had decreased gut permeability, endotoxin and pro-inflammatory cytokines concentrations; colonic fecal microbiota was also changed, which may be further beneficial to the intestinal health of Chinese Meishan gilt. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

Back to TopTop