Assessment of the Nutrient Value and In Vitro Rumen Fermentation Characteristics of Garlic Peel, Sweet Potato Vine, and Cotton Straw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Chemical Composition Analysis
2.3. Relative Feeding Value and Effective Energy Analysis
- DMI (% BM) = 120/NDF
- DDM (% DM) = 88.9 − 0.779 × ADF
- TDN (% DM) = −1.291 × ADF + 101.35
- RFV = DMI × DDM/1.29
- RFQ = TDN × DMI/1.23
- DE (MJ/kg DM) = 0.04409 × TDN × 4.184
- ME (MJ/kg DM) = 0.82 × DE
- NEm (MJ/kg DM) = 1.37 × ME−0.138 × ME2 + 0.0105 × ME3 − 1.12
- NEg (MJ/kg DM) = 1.42 × ME−0.174 × ME2 + 0.0122 × ME3 − 1.65
- NEL (MJ/kg DM) = [1.044 − (0.0119 × ADF)] × 2.205
2.4. In Vitro Rumen Incubation and Gas Determination
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition of the Agricultural By-Products
3.2. Energy and Relative Feeding Value
3.3. Gas Production and Gas Parameters of Three By-Products
3.4. Rumen Fermentation Products of The Three By-Products
4. Discussion
4.1. The Chemical Composition of the Three By-Products
4.2. Relative Feeding Value and Effective Energy Analysis
4.3. Ruminal DM Degradation and Gas Production Analysis
4.4. In Vitro Fermentation Fluid Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandström, V.; Chrysafi, A.; Lamminen, M.; Troell, M.; Jalava, M.; Piipponen, J.; Siebert, S.; van Hal, O.; Virkki, V.; Kummu, M. Food system by-products upcycled in livestock and aquaculture feeds can increase global food supply. Nat. Food 2022, 3, 729–740. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef]
- van Hal, O.; de Boer, I.J.M.; Muller, A.; de Vries, S.; Erb, K.H.; Schader, C.; Gerrits, W.J.J.; van Zanten, H.H.E. Upcycling food leftovers and grass resources through livestock: Impact of livestock system and productivity. J. Clean. Prod. 2019, 219, 485–496. [Google Scholar] [CrossRef]
- Wang, L.; Setoguchi, A.; Oishi, K.; Sonoda, Y.; Kumagai, H.; Irbis, C.; Inamura, T.; Hirooka, H. Life cycle assessment of 36 dairy farms with by-product feeding in Southwestern China. Sci. Total Environ. 2019, 696, 133985. [Google Scholar] [CrossRef]
- Pinotti, L.; Luciano, A.; Ottoboni, M.; Manoni, M.; Ferrari, L.; Marchis, D.; Tretola, M. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 2021, 294, 126290. [Google Scholar] [CrossRef]
- Shi, W.; Fang, Y.R.; Chang, Y.; Xie, G.H. Toward sustainable utilization of crop straw: Greenhouse gas emissions and their reduction potential from 1950 to 2021 in China. Resour. Conserv. Recy. 2023, 190, 106824. [Google Scholar] [CrossRef]
- Zhao, X.; Li, R.-C.; Liu, W.-X.; Liu, W.-S.; Xue, Y.-H.; Sun, R.-H.; Wei, Y.-X.; Chen, Z.; Lal, R.; Dang, Y.P.; et al. Estimation of crop residue production and its contribution to carbon neutrality in China. Resour. Conserv. Recy. 2024, 203, 107450. [Google Scholar] [CrossRef]
- Bradford, B.J.; Mullins, C.R. Invited review: Strategies for promoting productivity and health of dairy cattle by feeding nonforage fiber sources. J. Dairy Sci. 2012, 95, 4735–4746. [Google Scholar] [CrossRef]
- Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol. 2020, 104, 219–234. [Google Scholar] [CrossRef]
- Hou, J.; Liu, C. Research progress on deep processing and industrialization of garlic resources in China. Biot. Resour. 2020, 42, 36–42. [Google Scholar] [CrossRef]
- Chen, K.; Nakasone, Y.; Xie, K.; Sakao, K.; Hou, D.-X. Modulation of Allicin-Free Garlic on Gut Microbiome. Molecules 2020, 25, 682. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Huber, K.; Popp, M.; Bauer, P.; Buettner, A.; Sharapa, C.; Scheffler, L.; Loos, H.M. Quantification of Allyl Methyl Sulfide, Allyl Methyl Sulfoxide, and Allyl Methyl Sulfone in Human Milk and Urine After Ingestion of Cooked and Roasted Garlic. Front. Nutr. 2020, 7, 565496. [Google Scholar] [CrossRef]
- Savairam, V.D.; Patil, N.A.; Borate, S.R.; Ghaisas, M.M.; Shete, R.V. Allicin: A review of its important pharmacological activities. Pharmacol Res. 2023, 8, 100283. [Google Scholar] [CrossRef]
- Zhu, W.; Su, Z.; Xu, W.; Sun, H.X.; Gao, J.F.; Tu, D.F.; Ren, C.H.; Zhang, Z.J.; Cao, H.G. Garlic skin induces shifts in the rumen microbiome and metabolome of fattening lambs. Animal 2021, 15, 100216. [Google Scholar] [CrossRef] [PubMed]
- Krstin, S.; Sobeh, M.; Braun, M.S.; Wink, M. Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities. Molecules 2018, 23, 313. [Google Scholar] [CrossRef]
- Strickland, V.; Krebs, G.; Potts, W. Pumpkin kernel and garlic as alternative treatments for the control of Haemonchus contortus in sheep. Anim. Prod. Sci. 2009, 49, 139–144. [Google Scholar] [CrossRef]
- FAOSTAT. Statistics Division of Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data (accessed on 23 December 2023).
- Ji, H.; Zhao, H.; Zeng, Y.; Cheng, R.; Wang, S.; Wang, Y.; Zhao, H. Meta-analysis on the effect and influence factors of nitrogen application on tuber yield of sweet potato in China. J. Plant Nutr. Fertil. 2024, 10, 1–14. [Google Scholar] [CrossRef]
- Mu, T.-H.; Li, P.-G. Chapter 2—Sweet potato: Origin and production. In Sweet Potato; Mu, T.-H., Singh, J., Eds.; Academic Press: Beijing, China, 2019; pp. 5–25. [Google Scholar]
- Scott, G.J. A review of root, tuber and banana crops in developing countries: Past, present and future. Int. J. Food Sci. Technol. 2021, 56, 1093–1114. [Google Scholar] [CrossRef]
- Ffoulkes, D.; Deb Hovell, F.; Preston, T. Sweet potato forage as cattle feed: Voluntary intake and digestibility of mixtures of sweet potato forage and sugarcane. Trop. Anim. Prod. 1978, 3, 140–144. [Google Scholar]
- Zuo, X.; Bi, Y.; Wang, H.; Gao, C.; Wang, L.; Wang, Y. Multi-Suitability Comprehensive Evaluation of Crop Straw Resource Utilization in China. Res. Environ. Sci. 2015, 25, 159–166. [Google Scholar] [CrossRef]
- Aireti, M.; Junyu, Z. Research Progress on Feed Application of Cotton Straw in Ruminant Production. Chinese J. Anim. Nutr. 2024, 36, 2761–2772. [Google Scholar] [CrossRef]
- Ling, W.; Li, Y.; Sun, X.; Hou, Y. Exploration of cotton straw feeding in Xinjiang reclamation area. Anim. Breed. Feed 2021, 20, 58–60. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Rohweder, D.A.; Barnes, R.F.; Jorgensen, N. Proposed Hay Grading Standards Based on Laboratory Analyses for Evaluating Quality. J. Anim. Sci. 1978, 47, 747. [Google Scholar] [CrossRef]
- Lithourgidis, A.; Vasilakoglou, I.; Dhima, K.; Dordas, C.; Yiakoulaki, M.J.F.C.R. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Res. 2006, 99, 106–113. [Google Scholar] [CrossRef]
- Moore, J.E.; Undersander, D.J. Relative forage quality: An alternative to relative feed value and quality index. In Proceedings of the 13th annual Florida ruminant nutrition symposium, Gainesville, FL, USA, 1 January 2002; pp. 16–29. [Google Scholar]
- NRC. Nutrient requirements of dairy cattle. In Energy, 7th ed; National Academies Press: Washington, DC, USA, 2001; pp. 13–14. [Google Scholar]
- Menke, K.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Webster, J. Experimental Agriculture. In The Biochemistry of Silage; McDonald, P., Ed.; Chalcombe Publications: Marlow, Bucks, UK, 1981; p. 200. [Google Scholar]
- Ørskov, E.-R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Janssen, P.; Zhang, X.; Sun, X.; Pacheco, D.; Tan, Z.L. Sampling procedure for the measurement of dissolved hydrogen and volatile fatty acids in the rumen of dairy cows. J. Anim. Sci. 2016, 94, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Shahinian, A.H.; Reinhold, J.G. Application of the phenol—Hypochlorite reaction to measurement of ammonia concentrations in Kjeldahl digests of serum and various tissues. Clin. Chem. 1971, 17, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renew. Sust. Energy Rev. 2013, 27, 789–805. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Okoro, V.M.; Mbajiorgu, E.F.; Mbajiorgu, C.A. Beneficial Effects of Garlic in Livestock and Poultry Nutrition: A Review. Agric. Res. 2019, 8, 411–426. [Google Scholar] [CrossRef]
- Ishida, H.; Suzuno, H.; Sugiyama, N.; Innami, S.; Tadokoro, T.; Maekawa, A. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chem. 2000, 68, 359–367. [Google Scholar] [CrossRef]
- Ali, A.I.M.; Wassie, S.E.; Korir, D.; Merbold, L.; Goopy, J.P.; Butterbach-Bahl, K.; Dickhoefer, U.; Schlecht, E. Supplementing Tropical Cattle for Improved Nutrient Utilization and Reduced Enteric Methane Emissions. Animals 2019, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Baba, M.; Nasiru, A.; Kark, I.; Muh, I.; Rano, N. Nutritional Evaluation of Sweet Potato Vines from Twelve Cultivars as Feed for Ruminant Animals. Asian J. Anim. Vet. Adv. 2017, 13, 25–29. [Google Scholar] [CrossRef]
- Liu, G.; Qi, D.; Dong, X.; Liu, H.; Liu, S. Basic Knowledge of Sheepgrass (Leymus chinensis). In Sheepgrass (Leymus chinensis): An Environmentally Friendly Native Grass for Animals; Liu, G., Li, X., Zhang, Q., Eds.; Springer: Singapore, 2019; pp. 1–51. [Google Scholar]
- Lei, F.; Qing, J. Evaluation of feeding value of different parts of cotton straw. Contemp. Anim. Husb. 2009, 1, 25–27. (In Chinese) [Google Scholar]
- Zhang, J.; Sun, L. Analysis of cotton straw feeding mode and current situation in Xinjiang. Xinjiang Livest. Husb. 2019, 34, 38–40. (In Chinese) [Google Scholar] [CrossRef]
- Wan, W.F.; Li, Y.J.; Li, H.G. Yield and quality of alfalfa (Medicago sativa L.) in response to fertilizer application in China: A meta-analysis. Front. Plant Sci. 2022, 13, 1051725. [Google Scholar] [CrossRef]
- Jeranyama, P.; García, A. Understanding Relative Feed Value (RFV) and Relative Forage Quality (RFQ). In Proceedings of the Extension Extra, Brookings, SD, USA, 1 August 2004; p. 352. [Google Scholar]
- Lin, S.; Norberg, S.; Combs, D. Genomics of Forage Quality in Alfalfa. In The Alfalfa Genome; Yu, L.-X., Kole, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 129–143. [Google Scholar]
- Kobayashi, N.; Hou, F.; Tsunekawa, A.; Chen, X.; Yan, T.; Ichinohe, T. Appropriate level of alfalfa hay in diets for rearing Simmental crossbred calves in dryland China. Asian Austral J. Anim. 2018, 31, 1881–1889. [Google Scholar] [CrossRef]
- Abdelraheem, N.; Li, F.; Guo, P.; Sun, Y.; Liu, Y.; Cheng, Y.; Hou, F. Oat hay as winter feed improves digestibility, nitrogen balance and energy utilization of Tibetan sheep (Ovis aries) in the Qinghai Tibetan Plateau. Liv. Sci. 2019, 230, 103854. [Google Scholar] [CrossRef]
- Gutierrez, D.; Elias, A.; López, R.; Herrera, F.; Jordán, H.; García, L. Influence of a microbial additive on the voluntary intake of dry matter, neutral detergent fiber and indicators of the ruminal fermentation of goats fed Brachiaria brizantha hay. Cuban. J. Agric. Sci. 2012, 46, 211–216. [Google Scholar]
- Du, S.; Xu, M.; Yao, J. Relationship between fibre degradation kinetics and chemical composition of forages and by-products in ruminants. J. Appl. Anim. Res. 2016, 44, 189–193. [Google Scholar] [CrossRef]
- Dijkstra, J.; Kebreab, E.; Bannink, A.; France, J.; López, S. Application of the gas production technique to feed evaluation systems for ruminants. Anim. Feed Sci. Technol. 2005, 123, 561–578. [Google Scholar] [CrossRef]
- Lei, Y.; Li, X.Y.; Wang, Y.; Li, Z.; Chen, Y.; Yang, Y.X. Determination of ruminal dry matter and crude protein degradability and degradation kinetics of several concentrate feed ingredients in cashmere goat. J. Appl. Anim. Res. 2018, 46, 134–140. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.A. The influence of conservation methods on digestion and utilization of forages by ruminants. Proc. Nutr. Soc. 1976, 35, 201–211. [Google Scholar] [CrossRef]
- Gunun, P.; Wanapat, M.; Anantasook, N. Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Asian-Australas J. Anim. Sci. 2013, 26, 1689–1697. [Google Scholar] [CrossRef]
- Hoover, W.H.; Stokes, S.R. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci. 1991, 74, 3630–3644. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- France, J.; Dijkstra, J. Volatile fatty acid production. In Quantitative Aspects of Ruminant Digestion and Metabolism; Nolan, J., Dobos, R., Eds.; CABI Publishing: Wallingford, Oxfordshire, UK, 2005; pp. 157–175. [Google Scholar]
- Iwamoto, M.; Asanuma, N.; Hino, T.J.N.C.G. Effects of pH and Electron Donors on Nitrate and Nitrite Reduction in Ruminal Microbiota. Nihon Chikusan Gakkaiho. 2001, 72, 117–125. [Google Scholar] [CrossRef]
Ingredient Name | Production Place | Harvest Season | Harvest Manner |
---|---|---|---|
Garlic peel | Linyi, Shandong, China | May, 2023 | Mechanical |
Sweet potato vine | Lianyungang, Jiangsu, China | August, 2023 | Mechanical |
Cotton straw | Alaer, Xinjiang, China | September, 2023 | Manual |
Items | Garlic Peel | Sweet Potato Vine | Cotton Straw |
---|---|---|---|
DM | 90.63 | 90.68 | 95.71 |
Ash | 12.28 | 12.01 | 21.32 |
EE | 0.64 | 1.68 | 6.23 |
CP | 17.66 | 12.43 | 18.85 |
CF | 33.28 | 20.71 | 11.41 |
ADF | 42.87 | 39.46 | 26.59 |
NDF | 56.55 | 44.84 | 29.48 |
Items | Garlic Peel | Sweet Potato Vine | Cotton Straw | SEM | p Value |
---|---|---|---|---|---|
DMI(% BM) | 2.12 C | 2.68 B | 4.07 A | 0.36 | <0.001 |
DDM(% DM) | 48.97 C | 57.23 B | 66.92 A | 2.00 | <0.001 |
TDN(% DM) | 51.19 C | 55.15 B | 68.49 A | 3.32 | <0.001 |
RFV | 80.56 C | 118.72 B | 211.24 A | 22.91 | <0.001 |
RFQ | 88.31 C | 120 B | 226.69 A | 26.49 | <0.001 |
Items | Garlic Peel | Sweet Potato Vine | Cotton Straw | SEM | p Value |
---|---|---|---|---|---|
GE | 15.31 C | 15.59 B | 16.20 A | 0.17 | <0.001 |
DE | 9.44 C | 10.17 B | 12.63 A | 0.61 | <0.001 |
ME | 7.74 C | 8.34 B | 10.36 A | 0.50 | <0.001 |
NEm | 6.09 C | 6.8 B | 9.94 A | 0.62 | <0.001 |
NEg | 4.58 C | 5.17 B | 7.95 A | 0.63 | <0.001 |
NEL | 0.06 B | 0.06 B | 0.08 A | 0.04 | <0.001 |
Items | Garlic Peel | Sweet Potato Vine | Cotton Straw | SEM | p Value |
---|---|---|---|---|---|
Rumen degradation rate | |||||
IVDMD, % | 72.09 B | 78.74 A | 75.82 B | 1.41 | 0.026 |
IVNDFD, % | 58.28 B | 72.56 A | 59.07 B | 2.88 | 0.003 |
Gas production, mL/g | |||||
4 h | 4.83 ± 0.09 B | 10.55 ± 0.44 A | 2.48 ± 0.11 C | 1.03 | <0.001 |
8 h | 24.08 ± 2.06 B | 38.65 ± 1.76 A | 19.00 ± 2.38 B | 2.74 | <0.001 |
12 h | 51.45 ± 2.70 B | 72.00 ± 3.36 A | 38.55 ± 1.68 C | 4.38 | <0.001 |
24 h | 85.20 ± 2.41 B | 113.75 ± 4.21 A | 67.13 ± 1.78 C | 5.99 | <0.001 |
36 h | 102.28 ± 2.08 B | 136.08 ± 3.63 A | 81.90 ± 1.85 C | 6.87 | <0.001 |
48 h | 112.23 ± 2.21 B | 147.05 ± 3.05 A | 89.90 ± 2.14 C | 7.21 | <0.001 |
Gas parameters | |||||
a, mL | 41.83 ± 4.30 A | 44.64 ± 5.95 A | 13.68 ± 2.75 B | 4.83 | 0.002 |
b, mL | 95.08 ± 5.13 B | 127.90 ± 7.73 A | 100.17 ± 2.98 B | 5.25 | 0.005 |
a + b, mL | 136.91 ± 1.24 B | 172.54 ± 2.37 A | 113.85 ± 1.93 C | 7.35 | <0.001 |
c, %/h | 3.82 ± 0.18 AB | 4.39 ± 0.22 A | 3.60 ± 0.16 B | 0.01 | 0.041 |
Items | GarlicPeel | Sweet Potato Vine | Cotton Straw | SEM | p Vlue |
---|---|---|---|---|---|
pH48 | 6.60 A | 6.56 B | 6.67 A | 0.02 | < 0.001 |
NH3-N, mg/dL | 4.01 B | 4.57 A | 4.47 A | 0.10 | 0.031 |
MCP, mg/mL | 132.96 A | 120.05 B | 135.00 A | 2.68 | 0.044 |
VFA content | |||||
Acetate, mmol/L | 29.19 B | 33.18 A | 34.17 A | 0.72 | < 0.001 |
Propionate, mmol/L | 11.10 C | 13.14 A | 12.24 B | 0.30 | 0.001 |
Iso-butyrate, mmol/L | 0.18 B | 0.40 A | 0.19 B | 0.03 | < 0.001 |
Butyrate, mmol/L | 1.86 B | 2.24 A | 2.17 AB | 0.14 | 0.030 |
Iso-valerate, mmol/L | 0.23 B | 0.63 A | 0.23 B | 0.06 | < 0.001 |
Valerate, mmol/L | 0.49 A | 0.45 AB | 0.40 B | 0.02 | 0.023 |
Acetate to propionate ratio | 2.64 AB | 2.49 B | 2.73 A | 0.10 | 0.022 |
Total VFA, mmol/L | 43.09 B | 50.14 A | 48.52 A | 1.10 | < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Sun, Q.; Tian, C.; Tang, X.; Ren, Y.; Chen, W. Assessment of the Nutrient Value and In Vitro Rumen Fermentation Characteristics of Garlic Peel, Sweet Potato Vine, and Cotton Straw. Fermentation 2024, 10, 464. https://doi.org/10.3390/fermentation10090464
Chen H, Sun Q, Tian C, Tang X, Ren Y, Chen W. Assessment of the Nutrient Value and In Vitro Rumen Fermentation Characteristics of Garlic Peel, Sweet Potato Vine, and Cotton Straw. Fermentation. 2024; 10(9):464. https://doi.org/10.3390/fermentation10090464
Chicago/Turabian StyleChen, Huiru, Qianqian Sun, Changxin Tian, Xiangfang Tang, Ying Ren, and Wenxun Chen. 2024. "Assessment of the Nutrient Value and In Vitro Rumen Fermentation Characteristics of Garlic Peel, Sweet Potato Vine, and Cotton Straw" Fermentation 10, no. 9: 464. https://doi.org/10.3390/fermentation10090464
APA StyleChen, H., Sun, Q., Tian, C., Tang, X., Ren, Y., & Chen, W. (2024). Assessment of the Nutrient Value and In Vitro Rumen Fermentation Characteristics of Garlic Peel, Sweet Potato Vine, and Cotton Straw. Fermentation, 10(9), 464. https://doi.org/10.3390/fermentation10090464