Reduction of Potassium Supply Alters the Production and Quality Traits of Ipomoea batatas cv. BAU Sweetpotato-5 Tubers
Abstract
:1. Introduction
2. Results
2.1. Analysis of Variance
2.2. Trait Association
3. Discussion
4. Materials and Methods
4.1. Site and Soil Characteristics
4.2. Treatments
4.3. Planting of Vines
4.4. Data Collection
4.5. Determination of Chlorophyll Content
4.6. Determination of Total Phenolic and Vitamin C
4.7. Determination of β-Carotene
4.8. Estimation of Anthocyanin
4.9. Determination of Zn and Fe
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Z.H.; Zhang, A.J.; Wei, M.; Chen, X.G.; Liu, Z.H.; Li, H.M.; Ding, Y.F. Physiological response to potassium deficiency in three sweet potato (Ipomoea batatas [L.] Lam.) genotypes differing in potassium utilization efficiency. Acta Physiol. Plant. 2015, 37, 184. [Google Scholar] [CrossRef]
- Statista. Sweet Potato Production Worldwide from 2010 to 2022. 2024. Available online: https://www.statista.com/statistics/812343/global-sweet-potato-production (accessed on 5 October 2024).
- FAOSTAT Statistical Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020.
- Saha, H.R.; Lutfunnahar, M.; Sana, M.; Sana, S.; Haque, M.S.; Dey, B.R.; Sana, N.K. Nutritional value of sweet potato (Ipomoea batatas) cultivated in the northern part of Bangladesh. Int. J. Sci. Healthc. Res. 2022, 7, 258–272. [Google Scholar] [CrossRef]
- FAOSTAT (2024) Food and Agriculture Data; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 19 April 2024).
- Bovell-Benjamin, A.C. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 2007, 52, 1–59. [Google Scholar]
- Rumbao, R.G.O.; Cornago, D.F.; Geronimo, I.M. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chem. 2019, 113, 1133–1138. [Google Scholar] [CrossRef]
- BAU Swetpotato-5. A Leaflet Published by the Department of Genetics and Plant Breeding; Bangladesh Agricultural University: Mymensingh, Bangladesh, 2024. [Google Scholar]
- Mahmud, S. Fertilizer Import and Challenge for Food Security in Bangladesh. Daily Sun. Available online: https://www.daily-sun.com/post/643340 (accessed on 9 September 2022).
- Degras, L. Sweetpotato: The tropical Agriculturalist. Macmillan publishers Ltd. Lima, Peru. J. Pathol. Virol. 2003, 7, 16–19. [Google Scholar]
- Uwah, D.F.; Undie, U.L.; John, N.M.; Ukoha, G.O. Growth and yield response of improved sweet potato (Ipomoea batatas (L.) Lam) varieties to different rates of potassium fertilizer in Calabar. Nigeria. J. Agric. Sci. 2013, 5, 61. [Google Scholar] [CrossRef]
- Ahmad, Z.; Anjum, S.; Waraich, E.A.; Ayub, M.A.; Ahmad, T.; Tariq, R.M.S.; Iqbal, M.A. Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress—A review. J. Plant Nutr. 2018, 41, 1734–1743. [Google Scholar] [CrossRef]
- Amtmann, A.; Troufflard, S.; Armengaud, P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plant. 2008, 133, 682–691. [Google Scholar] [CrossRef]
- Bian, Q.q.; Wang, Y.n.; Chen, J.j.; Qiao, S.c.; Hu, L.l.; Yin, Y.m.; Yang, Y.f. Effects of potassium application on yield and potassium balance of sweet potato field in China: A meta-analysis. J. Plant Nutr. Fertil. 2022, 28, 1509–1519. [Google Scholar] [CrossRef]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- George, M.S.; Lu, G.; Zhou, W. Genotypic variation for potassium uptake and utilization efficiency in sweet potato (Ipomoea batatas L.). Field Crop. Res. 2002, 77, 7–15. [Google Scholar] [CrossRef]
- Darko, C.; Yeboah, S.; Amoah, A.; Opoku, A.; Berchie, J.N. Productivity of sweet potato (Ipomoea batatas (L) Lam) as influenced by fertilizer application in different agro-ecologies in Ghana. Sci. Afr. 2020, 10, e00560. [Google Scholar] [CrossRef]
- FAO Food and Agriculture Organization. Plant Nutrition for Food Security: A Guide for Integrated Nutrient Management; FAO: Rome, Italy, 2005. [Google Scholar]
- Zelelew, D.; Lal, S.; Kidane, T.; Ghebreslassie, B. Effect of Potassium Levels on Growth and Productivity of Potato Varieties. Am. J. Plant Sci. 2016, 7, 1629–1638. [Google Scholar] [CrossRef]
- Marschner, H. (Ed.) Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Lawlor, D.W.; Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; Springer: Berlin/Heidelberg, Germany, 2004; pp. 479–480. [Google Scholar]
- Hayati, M.; Kurniawan, T.; Muzaifa, M.; Ichsan, C.N.; Faudiah, N. The effects of dosages of potassium fertilizer on growth and harvest index of two types of sweet potato (Ipomoea batatas L.). In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Philadelphia, PA, USA, 2024; Volume 1297, p. 012037. [Google Scholar]
- Darwish, A.; Ahmed, S.; Aboel-Ainin, M. Nutritional properties and antioxidant activity of seven sweet potato cultivars and clones (Ipomoea batatas L.). Sci. J. Agric. Sci. 2020, 2, 123–136. [Google Scholar] [CrossRef]
- Redovnikovic, I.R.; Bogovic, M.; Belko, D.; Delonga, K.; Fabek, S.; Novak, B.; Toth, N. Influence of potassium fertilisation on the levels of phenolic compounds in sweet potato (Ipomoea batatas L.) leaves. J. Hortic. Sci. Biotechnol. 2012, 87, 47–51. [Google Scholar] [CrossRef]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef] [PubMed]
- Darko, C.; Yeboah, S.; Amoah, A.; Opoku, A.; Baafi, E.; Berchie, J.N. Yield, biochemical properties and cooking quality traits of sweet potatoes (Ipomoea batatas) as affected by Nitrogen and Potassium Fertilizer rates. Ghana J. Agric. Sci. 2021, 56, 16–25. [Google Scholar] [CrossRef]
- Ooi, S.F.; Sukri, S.A.M.; Zakaria, N.N.A.; Harith, Z.T. Carotenoids, phenolics and antioxidant properties of different sweet potatoes (Ipomoea batatas) varieties. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Philadelphia, PA, USA, 2021; Volume 756, p. 012077. [Google Scholar]
- Oosterhuis, D.M.; Loka, D.A.; Kawakami, E.M.; Pettigrew, W.T. The physiology of potassium in crop production. Adv. Agron. 2014, 126, 203–233. [Google Scholar] [CrossRef]
- Brown, C.R. Antioxidants in potato. Am. J. Potato Res. 2005, 82, 163–172. [Google Scholar] [CrossRef]
- Rosero, A.; Sierra, C.; Pastrana, I.; Granda, L.; Perez, J.L.; Martinez, R.; De Paula, C. Genotypic and environmental factors influence the proximate composition and quality attributes of sweetpotato (Ipomoea batatas L.). Agric. Food Secur. 2020, 9, 1–17. [Google Scholar] [CrossRef]
- Singh, P.; Aravindakshan, K.; Maurya, I.B.; Singh, J.; Singh, B.; Sharma, M.K. Effect of potassium and zinc on growth, yield and economics of sweet potato (Ipomoea batatas L.) cv. CO-34. J. Appl. Nat. Sci. 2017, 9, 291–297. [Google Scholar] [CrossRef]
- Sadasivam, S.; Manickam, A. Biochemical Methods; New Age International Publishers: New Delhi, India, 1996. [Google Scholar]
- Nagata, M.; Yamashita, T. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J. Japan Soc. Food Sci. Tech. 1992, 39, 925–928. [Google Scholar] [CrossRef]
- Chu, H.; Jeong, J.C.; Kim, W.J.; Chung, D.M.; Jeon, H.K.; Ahn, Y.O.; Kim, S.H.; Lee, H.S.; Kwak, S.S.; Kim, Y. Expression of the sweet potato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis. Physiol. Plant. 2013, 148, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Chhonkar, P.K.; Pandey, R.N. Soil Plant Water Analysis: A Methods Manual; IARI: New Delhi, India, 1999; pp. 80–82. [Google Scholar]
Characters | df | Mean Squares | p Value | |||
---|---|---|---|---|---|---|
Treatment | Error | Treatment | Error | |||
Number of leaves | 30 DAP | 2 | 9 | 9.04 | 2.85 | 0.090 |
60 DAP | 109.7 | 325.3 | 0.722 | |||
90 DAP | 6.14 | 1467.38 | 0.996 | |||
115 DAP | 112.3 | 1613.7 | 0.933 | |||
Vine length | 30 DAP | 3.02 | 14.03 | 0.811 | ||
60 DAP | 315.0 | 307.9 | 0.398 | |||
90 DAP | 496.8 | 532.9 | 0.429 | |||
115 DAP | 215.2 | 930.3 | 0.798 | |||
Number of branches | 0.64 | 0.52 | 0.335 | |||
Stem diameter | 0.02 | 0.005 | 0.062 | |||
Fresh weight plant−1 | 71534* | 15312 | 0.041 | |||
Tuber length | 13.28 | 7.06 | 0.207 | |||
Tuber diameter | 2.048 | 1.44 | 0.290 | |||
Tuber weight | 14316 | 8865 | 0.252 | |||
Number of tuber plant−1 | 4.08 * | 0.94 | 0.048 | |||
SPAD | 85.23 * | 14.43 | 0.023 | |||
Total phenolic content | 36.334 * | 6.56 | 0.027 | |||
Vitamin C | 36.557 ** | 2.21 | 0.001 | |||
Carotenoid | 0.0066 ** | 0.00078 | 0.009 | |||
Anthocyanin | 2.121 ** | 0.1535 | 0.002 | |||
Glucose | 0.63 | 2.04 | 0.741 | |||
Fructose | 2.23 | 1.30 | 0.233 | |||
Sucrose | 3.003 | 2.104 | 0.290 | |||
Zn | 9.99 *** | 0.135 | <0.001 | |||
Fe | 3819.53 *** | 1.37 | <0.001 |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
NL 115 DAP | 0.189 | −0.421 | 0.154 |
VL 115 DAP | 0.238 | −0.282 | 0.243 |
NB | 0.234 | −0.161 | 0.421 |
SD | 0.259 | 0.217 | −0.017 |
FWP | 0.355 | −0.055 | 0.032 |
TL | 0.239 | −0.244 | −0.250 |
TD | 0.305 | −0.228 | 0.104 |
TW | 0.306 | −0.212 | −0.019 |
NTP | 0.223 | 0.228 | −0.286 |
SPAD | 0.259 | −0.019 | −0.270 |
TPC | −0.193 | 0.058 | 0.246 |
Vit-C | −0.250 | −0.191 | 0.255 |
Carotenoid | 0.196 | 0.369 | 0.054 |
Anthocyanin | 0.308 | 0.221 | −0.166 |
Zn | −0.231 | −0.347 | −0.298 |
Fe | 0.113 | 0.336 | 0.515 |
% variation explained | 45.4 | 19.9 | 12.2 |
p value | 0.007 | 0.093 | 0.001 |
Parameters | Values |
---|---|
pH | 6.5 |
Organic matter | 1.1% |
N | 0.064% |
K | 0.13 meq 100 g−1 |
P | 13.4 μg g−1 |
S | 13.3 μg g−1 |
Zn | 0.73 μg g−1 |
B | 0.17 μg g−1 |
Treatment | MoP Dosages | |
---|---|---|
kg ha−1 | g plot−1 | |
T0 | 321.6 | 20 |
T1 | 160.8 | 10 |
T2 | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharmin, S.; Arfin, M.N.H.; Tareque, A.M.M.M.U.; Kafi, A.A.; Miah, M.S.; Hossen, M.Z.; Talukder, M.A.S.; Robin, A.H.K. Reduction of Potassium Supply Alters the Production and Quality Traits of Ipomoea batatas cv. BAU Sweetpotato-5 Tubers. Stresses 2024, 4, 883-895. https://doi.org/10.3390/stresses4040059
Sharmin S, Arfin MNH, Tareque AMMMU, Kafi AA, Miah MS, Hossen MZ, Talukder MAS, Robin AHK. Reduction of Potassium Supply Alters the Production and Quality Traits of Ipomoea batatas cv. BAU Sweetpotato-5 Tubers. Stresses. 2024; 4(4):883-895. https://doi.org/10.3390/stresses4040059
Chicago/Turabian StyleSharmin, Shaila, Md. Nazmul Hasan Arfin, Abu Musa Md Main Uddin Tareque, Abdullah Al Kafi, Md. Shohidullah Miah, Md. Zakir Hossen, Md. Abdus Shabur Talukder, and Arif Hasan Khan Robin. 2024. "Reduction of Potassium Supply Alters the Production and Quality Traits of Ipomoea batatas cv. BAU Sweetpotato-5 Tubers" Stresses 4, no. 4: 883-895. https://doi.org/10.3390/stresses4040059
APA StyleSharmin, S., Arfin, M. N. H., Tareque, A. M. M. M. U., Kafi, A. A., Miah, M. S., Hossen, M. Z., Talukder, M. A. S., & Robin, A. H. K. (2024). Reduction of Potassium Supply Alters the Production and Quality Traits of Ipomoea batatas cv. BAU Sweetpotato-5 Tubers. Stresses, 4(4), 883-895. https://doi.org/10.3390/stresses4040059