Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,048)

Search Parameters:
Keywords = sustainable energy utilization efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 809 KB  
Review
Towards Sustainable Factories: A Systematic Review of Energy-Conscious Job-Shop Scheduling Models and Algorithms
by Motlokoa Makhoabenyane, Shunsheng Guo and Ely Leburu
Sustainability 2025, 17(24), 11330; https://doi.org/10.3390/su172411330 - 17 Dec 2025
Abstract
Job-shop scheduling plays a pivotal role in sustainable manufacturing because scheduling decisions strongly influence energy consumption, machine utilization, and environmental performance. Traditional job-shop scheduling research has mainly optimized makespan, throughput, and tardiness; however, growing sustainability pressures and Industry 4.0 technologies have shifted attention [...] Read more.
Job-shop scheduling plays a pivotal role in sustainable manufacturing because scheduling decisions strongly influence energy consumption, machine utilization, and environmental performance. Traditional job-shop scheduling research has mainly optimized makespan, throughput, and tardiness; however, growing sustainability pressures and Industry 4.0 technologies have shifted attention toward energy-conscious scheduling. This review systematically analyzes 2083 publications retrieved from SCOPUS, Web of Science, and IEEE Xplore to map the evolution of energy-efficient job-shop scheduling (EEJSS) models, methods, and industrial applications. Compared with prior surveys, this work contributes a sector-specific analysis, an updated classification of energy-aware models, and the first structured mapping of EEJSS research to sustainability and Industry 4.0 capabilities. Further, challenges such as computational complexity, absence of standardized energy benchmarks, limited industrial deployment, and narrow sustainability metrics are addressed. Overall, this review consolidates the state of EEJSS and positions energy-aware scheduling as a foundational enabler of low-carbon, resilient, and intelligent manufacturing systems. Full article
25 pages, 2439 KB  
Article
The Third Skin: A Biomimetic Hydronic Conditioning System, a New Direction in Ecologically Sustainable Design
by Mark B. Luther, Richard Hyde, Arosha Gamage and Hung Q. Do
Biomimetics 2025, 10(12), 843; https://doi.org/10.3390/biomimetics10120843 - 16 Dec 2025
Abstract
The increasing demand for sustainable climate control has spurred research into our hydronic conditioning system with a patented radiant ceiling panel (AU 2024227462) inspired by biomimetic methodologies. This study develops a framework that utilizes natural systems for heating and cooling, enhancing system performance [...] Read more.
The increasing demand for sustainable climate control has spurred research into our hydronic conditioning system with a patented radiant ceiling panel (AU 2024227462) inspired by biomimetic methodologies. This study develops a framework that utilizes natural systems for heating and cooling, enhancing system performance and environmental sustainability. Biometric analysis was the primary method for testing these systems, focusing on heat transfer mechanisms modeled after human biology. Findings indicate that the proposed hydronic system excels in cooling mode, achieving an average capacity of 95 W/m2 while maintaining thermal comfort levels (PMV) with solar heat gains under 1.5 kW in an 18 m2 space. However, in heating mode, the system shows a capacity of 85 W/m2 but struggles with vertical air-temperature stratification, especially in the radiant ceiling component. This highlights the potential of biomimetic designs to enhance energy efficiency and comfort in sustainable development. The hydronic panel system parallels the human body in energy transfer; both can emit 75–90 W/m2 through radiation. Convection over the panel can increase energy transfer by 50–80%, akin to the human body’s heat loss through convection. Notably, natural perspiration facilitates latent energy transfer of 20–25%. When the conditioned panel operates below the dew point, it generates water vapor, boosting cooling capacity by 5–15% and enhancing latent energy transfer. Overall, the heat transfer processes of the hydronic panel mimic certain aspects of human physiology, distinguishing it from conventional HVAC systems. Full article
(This article belongs to the Section Bioinspired Architecture and Climatisation)
Show Figures

Graphical abstract

29 pages, 6854 KB  
Article
Spatiotemporal Evolution and Driving Mechanisms of Water–Energy–Food Synergistic Efficiency: A Case Study of Irrigation Districts in the Lower Yellow River
by Yuchen Zheng, Chang Liu, Lingqi Li, Enhui Jiang, Genxiang Feng, Bo Qu, Lingang Hao, Jiaqi Li and Jiahe Li
Sustainability 2025, 17(24), 11265; https://doi.org/10.3390/su172411265 - 16 Dec 2025
Abstract
As an integrated framework linking resource use and environmental sustainability, the WEF (Water–Energy–Food) system plays a vital role in achieving sustainable agricultural development. Focusing on the irrigation districts in the lower reaches of the Yellow River, this study constructed and applied a Super-Undesirable-SBM [...] Read more.
As an integrated framework linking resource use and environmental sustainability, the WEF (Water–Energy–Food) system plays a vital role in achieving sustainable agricultural development. Focusing on the irrigation districts in the lower reaches of the Yellow River, this study constructed and applied a Super-Undesirable-SBM (super-efficiency undesirable slacks-based measure) model and a GTWR (geographically and temporally weighted regression) model from a WEF perspective to systematically analyze the spatiotemporal evolution and driving mechanisms of WEFSE (Water–Energy–Food Synergistic Efficiency) from 2000 to 2020. The overall WEFSE exhibited a continuous upward trend, with the spatial pattern gradually shifting from the southwest to the northeast and regional disparities becoming more pronounced. The efficiency demonstrated a significant positive spatial autocorrelation, indicating a stable clustering pattern of “high–high” and “low–low” efficiency areas. In terms of driving mechanisms, WEFSE evolved from being dominated by socio-economic drivers to a composite system jointly influenced by ecological and structural factors. Among these, PD (population density) and WP (proportion of water area) had increasingly positive effects, whereas PRE (precipitation) and NDVI (normalized difference vegetation index) imposed notable constraints. Meanwhile, PCL (proportion of cultivated land), GP (proportion of grassland), and AT (average temperature) exhibited significant spatial differentiation. This study highlights that the assessment of WEFSE and identification of its driving mechanisms using the Super-Undesirable-SBM and GTWR models can help to uncover the spatiotemporal dynamics of agricultural resource utilization, providing methodological support and decision-making insights for optimizing resource allocation and promoting sustainable development in the Yellow River irrigation districts and other complex agricultural systems. Full article
Show Figures

Figure 1

31 pages, 543 KB  
Review
Canola Meal: A Sustainable Protein Source for Poultry Diets
by Thi Hiep Dao and Amy F. Moss
Animals 2025, 15(24), 3609; https://doi.org/10.3390/ani15243609 - 15 Dec 2025
Abstract
Soybean meal has traditionally dominated poultry diets as the protein source. However, its widespread use raises concerns regarding economic costs, environmental impact and social sustainability. As a result, there is growing interest in alternative protein sources, such as canola meal, which may reduce [...] Read more.
Soybean meal has traditionally dominated poultry diets as the protein source. However, its widespread use raises concerns regarding economic costs, environmental impact and social sustainability. As a result, there is growing interest in alternative protein sources, such as canola meal, which may reduce feed costs while sustaining productivity. This review evaluates the potential of canola meal as a sustainable protein source in modern poultry production systems, focusing on nutritional, economic and environmental advantages, as well as the potential implications of canola meal inclusion in reduced-protein diets. Evidence from scientific studies indicates that canola meal’s nutritional profile supports bird growth and production, although higher fiber content and anti-nutritional compounds reduce metabolizable energy, making it more suitable for laying hens than broiler chickens. Processing techniques, enzyme supplementation, fermentation, and modern cultivars have improved both nutritional value and practical utility of canola meal. Performance outcomes differ by species. Broilers exhibit variable growth at high inclusion levels, whereas laying hens are estimated to tolerate up to 20% without affecting laying performance or egg quality; however, data is severely lacking, particularly under the context of modern reduced-protein diets. Economically, canola meal is cost-competitive with soybean meal. From an environmental perspective, substituting imported soybean meal with local canola reduces greenhouse gas emissions, enhances resource efficiency, and supports pollinators. Nevertheless, trade-offs exist, including increased land use, variable digestibility, and potential eutrophication. Incorporating canola meal into reduced-protein diets offers both economic and ecological benefits, though effectiveness depends on the extent of protein reduction and the precision of amino acid formulation. Overall, canola meal offers a sustainable, economically viable, and environmentally responsible protein source for modern poultry production, provided that inclusion levels are adjusted to species-specific requirements and regional conditions. Full article
(This article belongs to the Special Issue Optimizing Alternative Protein Sources for Sustainable Poultry Diet)
Show Figures

Figure 1

32 pages, 1415 KB  
Review
Challenges in Operating a Microbial Electrolysis Cell (MEC): Translating Biofilm Activity to Electron Flow and Hydrogen
by Naufila Mohamed Ashiq, Alreem Ali Juma Al Rahma Aldarmaki, Mariam Salem Saif Alketbi, Haya Aadel Abdullah Alshehhi, Alreem Salem Obaid Alkaabi, Noura Suhail Mubarak Saeed Alshamsi and Ashraf Aly Hassan
Sustainability 2025, 17(24), 11216; https://doi.org/10.3390/su172411216 - 15 Dec 2025
Viewed by 24
Abstract
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected [...] Read more.
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected current densities by the flow of electrons to produce hydrogen. This review examines the multiple causes that lead to the disconnect between robust biofilm development, electron transfer, and hydrogen production. Factors affecting biofilm generation (formation, substrate selection, thickness, conductivity, and heterogeneity) are discussed. Moreover, factors affecting electron transfer (electrode configuration, mass transfer constraints, key electroactive species, and metabolic pathways) are discussed. Also, substrate diffusion limitations, proton accumulation causing inhibitory pH gradients in stratified biofilms, elevated internal resistance, electron diversion to competing processes like hydrogenotrophic methanogenesis consuming H2, and detrimental biofilm aging, impacting hydrogen production, are studied. The critical roles of electrode materials, reactor configuration, and biofilm electroactivity are analyzed, emphasizing advanced electrochemical (CV, EIS, LSV), imaging (CLSM, SEM, AFM), and omics (metagenomics, transcriptomics, proteomics) techniques essential for diagnosing bottlenecks. Strategies to enhance extracellular electron transfer (EET) (advanced nanomaterials, redox mediators, conductive polymers, bioaugmentation, and pulsed electrical operation) are evaluated for bridging this performance gap and improving energy recovery. The review presents an integrated framework connecting biofilm electroactivity, EET kinetics, and hydrogen evolution efficiency. It highlights that conventional biofilm metrics may not reflect actual electron flow. Combining electrochemical, microelectrode, and omics insights allows precise evaluation of EET efficiency and supports sustainable MEC optimization for enhanced hydrogen generation. Full article
Show Figures

Figure 1

26 pages, 565 KB  
Article
Synergistic Effects of Carbon Reduction in Urban Energy Consumption and Pollution Mitigation: A Case Study of Chengdu, China
by Qiaochu Li and Peng Zhang
Sustainability 2025, 17(24), 11191; https://doi.org/10.3390/su172411191 - 14 Dec 2025
Viewed by 171
Abstract
Air pollutants and greenhouse gases share common sources, primarily originating from human activities such as energy utilization, thus presenting significant potential for synergistic control. Isolated consideration of solutions for either pollution mitigation or carbon reduction increases the unit cost of environmental governance and [...] Read more.
Air pollutants and greenhouse gases share common sources, primarily originating from human activities such as energy utilization, thus presenting significant potential for synergistic control. Isolated consideration of solutions for either pollution mitigation or carbon reduction increases the unit cost of environmental governance and leads to inconsistencies and overlapping effects in policy measures. This study takes Chengdu, a low-carbon pilot city in China, as a case study. Based on clarifying the characteristics of regional air pollutant emissions and carbon emissions from energy consumption, it empirically investigates the synergistic variation in carbon emissions from diverse socioeconomic industries and multiple air pollutant emissions. The empirical results reveal the following: (1) during the research period, Chengdu’s air quality excellence rate demonstrated continuous improvement. Meanwhile, the carbon emissions from energy consumption exhibited a three-phase developmental pattern. The driving forces of growth had shifted from traditional high-energy-consuming industries to advanced manufacturing, urban basic energy demands, and energy extraction industries serving national strategies. (2) The synergistic reduction in carbon emissions with PM10 and PM2.5 reached relatively high levels from 2016 to 2019, followed by fluctuations due to the impact of the COVID-19 pandemic. The synergistic reduction between carbon emissions and SO2 exhibited considerable volatility. The electrification trend in transportation significantly promoted the synergistic reduction in carbon emissions and NO2 emissions. Due to the fact that O3 is a secondary pollutant with complex sources, achieving synergistic governance with carbon emissions proved more challenging. As a result of technological limitations, the synergistic reduction in carbon emissions and CO gradually exhibited a trend of diminishing marginal effects. The synergistic reduction effects between industry-specific carbon emissions and overall air pollutant emissions can be divided into five categories: sustained high-efficiency, generally stable, fluctuating, sudden-decline, and persistently low. Full article
Show Figures

Figure 1

18 pages, 3347 KB  
Article
Hollow Conductive Polymer Nanospheres with Metal–Polyphenol Interfaces for Tunable Hydrogen Peroxide Activation and Energy Conversion
by Ruolan Du, Shuyan Liu and Yuanzhe Li
Polymers 2025, 17(24), 3305; https://doi.org/10.3390/polym17243305 - 13 Dec 2025
Viewed by 137
Abstract
Hydrogen peroxide (H2O2) is a key oxidant for green chemical processes, yet its catalytic utilization and activation efficiency remain limited by material instability and uncontrolled radical release. Here, we report a dual-functional, hollow conductive polymer nanostructure that enables selective [...] Read more.
Hydrogen peroxide (H2O2) is a key oxidant for green chemical processes, yet its catalytic utilization and activation efficiency remain limited by material instability and uncontrolled radical release. Here, we report a dual-functional, hollow conductive polymer nanostructure that enables selective modulation of H2O2 reactivity through interfacial physicochemical design. Hollow polypyrrole nanospheres functionalized with carboxyl groups (PPy@PyCOOH) were synthesized via a one-step Fe2+/H2O2 oxidative copolymerization route, in which H2O2 simultaneously served as oxidant, template, and reactant. The resulting structure exhibits enhanced hydrophilicity, rapid redox degradability (>80% optical loss in 60 min (82.5 ± 4.1%, 95% CI: 82.5 ± 10.2%), 10 mM H2O2, pH 6.5), and strong electronic coupling to reactive oxygen intermediates. Subsequent tannic acid–copper (TA–Cu) coordination produced a conformal metal–polyphenol network that introduces a controllable Fenton-like catalytic interface, achieving a 50% increase in ROS yield (1.52 ± 0.08-fold vs. control, 95% CI: 1.52 ± 0.20-fold) while maintaining stable photothermal conversion under repeated NIR cycles. Mechanistic analysis reveals that interfacial TA–Cu complexes regulate charge delocalization and proton–electron transfer at the polymer–solution boundary, balancing redox catalysis with energy dissipation. This work establishes a sustainable platform for H2O2-driven redox and photo-thermal coupling, integrating conductive polymer chemistry with eco-friendly catalytic pathways. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

40 pages, 4126 KB  
Article
Collaborative Operation of Rural Integrated Energy Systems and Agri-Product Supply Chains
by Shicheng Wang, Xiaoqing Yang and Shuang Bai
Energies 2025, 18(24), 6534; https://doi.org/10.3390/en18246534 - 13 Dec 2025
Viewed by 106
Abstract
The high energy consumption characteristics across all segments of the agricultural supply chain, coupled with rural areas’ excessive reliance on traditional power grids and fossil fuel-based energy supply models, not only result in persistently high energy utilization costs and low efficiency but also [...] Read more.
The high energy consumption characteristics across all segments of the agricultural supply chain, coupled with rural areas’ excessive reliance on traditional power grids and fossil fuel-based energy supply models, not only result in persistently high energy utilization costs and low efficiency but also inflict ongoing negative environmental impacts. This undermines sustainable development and the achievement of energy security. In response, this paper proposes a multi-timescale robust operation scheme for the coordinated operation of rural integrated energy systems and agricultural supply chains. Its core components are as follows: (1) Establish a collaborative operation framework integrating renewable energy-based rural integrated energy systems with agricultural supply chains; (2) Holistically consider energy consumption characteristics across supply chain segments, leveraging sensor-based environmental parameters for crop yield forecasting and hourly energy consumption assessment. This effectively addresses misalignments between crop growth and energy optimization scheduling, as well as inconsistent energy measurement scales across supply chain segments, thereby advancing agricultural sustainability; (3) Introducing a two-stage robust optimization model to quantify the impact of environmental uncertainty on the collaborative framework and integrated energy system, ensuring optimal operation of supply chain equipment under worst-case conditions; (4) Identifying critical energy consumption nodes in the supply chain through system performance analysis and revealing optimization potential in the collaborative mechanism, enabling flexible load shifting and cross-temporal energy allocation. Simulation results demonstrate that this coordinated operation scheme enables dynamic estimation and optimization of crop growth and energy consumption, reducing system operating costs while enhancing supply chain reliability and renewable energy integration capacity. The two-stage robust optimization mechanism effectively strengthens system robustness and adaptability, mitigates the impact of renewable energy output fluctuations, and achieves spatiotemporal optimization of energy allocation. Full article
Show Figures

Figure 1

22 pages, 12930 KB  
Article
Design of Modular Methanol Reformers Utilizing Industrial Waste Heat for Sustainable Hydrogen Production
by Yexin Chen, Yihan Jiang, Dian Xiong, Yangyang Ji, Jinru Luo and Xinyu Liu
Sustainability 2025, 17(24), 11180; https://doi.org/10.3390/su172411180 - 13 Dec 2025
Viewed by 164
Abstract
Renewable methanol is considered a promising carrier for sustainable hydrogen due to its convenience in storage and transportation. Methanol steam reforming (MSR) using exhaust heat from industrial boilers can further enhance energy efficiency. However, existing methanol reforming systems still face challenges in terms [...] Read more.
Renewable methanol is considered a promising carrier for sustainable hydrogen due to its convenience in storage and transportation. Methanol steam reforming (MSR) using exhaust heat from industrial boilers can further enhance energy efficiency. However, existing methanol reforming systems still face challenges in terms of matching with industrial boilers, heat exchanger compactness, and adaptability to fluctuations in exhaust gas conditions. To address these issues, this study proposes the design of a modular methanol reforming system driven by the exhaust heat of small industrial boilers and develops a three-dimensional multiphysics simulation model to investigate the heat transfer and reaction characteristics within the reactor. The results indicate that, within the ranges of exhaust heat temperature (220–270 °C), flow rate (0.4–1.2 g/s), and channel spacing (60–100 mm), increasing the exhaust heat temperature enhances the endothermic reforming process, while decreasing the channel spacing improves heat transfer and increases methanol conversion. The reactor with a 60 mm channel spacing achieves a conversion ratio of up to 95.3% at a flow rate of 0.4 g/s. Although the hydrogen yield increases with flow rate, the single-pass conversion ratio decreases due to shorter residence time and increased load per unit volume. Compared to traditional fixed-structure reactors, the proposed modular system allows flexible matching of scale and heat exchange capacity through adjustable channel configurations, enhancing adaptability to fluctuations in industrial exhaust temperature and load. This design improves the utilization efficiency of low-grade waste heat and offers a practical engineering solution for sustainable distributed hydrogen production. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

34 pages, 3058 KB  
Article
Evaluation of Technical Constraints Management in a Microgrid Based on Thermal Storage Applications by Modeling with OpenDSS
by Andrés Ondó Oná-Ayécaba, Manuel Alcázar-Ortega, Javier F. Urchueguia, Borja Badenes-Badenes, Efrén Guilló-Sansano and Álvaro Martínez-Ponce
Appl. Sci. 2025, 15(24), 13088; https://doi.org/10.3390/app152413088 - 12 Dec 2025
Viewed by 183
Abstract
Technical constraints to be faced in microgrids have become more frequent with high renewable integration. In this context, Thermal Energy Storage (TES) has emerged as a promising solution to enable consumers’ flexibility to contribute to the solution of such operational issues. This paper [...] Read more.
Technical constraints to be faced in microgrids have become more frequent with high renewable integration. In this context, Thermal Energy Storage (TES) has emerged as a promising solution to enable consumers’ flexibility to contribute to the solution of such operational issues. This paper examines the integration of the novel system ECHO-TES (a Thermal Energy Storage System developed within the European Project ECHO) in microgrids to address technical constraints, utilizing OpenDSS and Python simulations. Building on that, the Efficient Compact Modular Transaction Simulation System (ECHO-TSS) adds a layer of virtual automated transactions, coordinating multiple ECHO-TES assets to simulate not only energy flows and electricity consumption, but also the associated economic interactions. The study explores the critical role of TES in enhancing microgrid efficiency, flexibility, and sustainability, particularly when coupled with renewable energy sources. By analyzing diverse demand scenarios, the research aims to assess its impact on grid stability and management. The paper highlights the importance of advanced modeling tools like OpenDSS in simulating complex microgrid operations, including the dynamic behavior of TES systems. It also investigates demand-side management strategies and the potential of TES to mitigate challenges associated with renewable energy variability. The findings contribute to the development of robust, adaptive microgrid systems and support the global transition towards sustainable energy infrastructure. Full article
(This article belongs to the Special Issue Advanced Forecasting Techniques and Methods for Energy Systems)
Show Figures

Figure 1

14 pages, 3441 KB  
Article
Improved Biomethane Potential by Substrate Augmentation in Anaerobic Digestion and Biodigestate Utilization in Meeting Circular Bioeconomy
by Wame Bontsi, Nhlanhla Othusitse, Amare Gessesse and Lesedi Lebogang
Energies 2025, 18(24), 6505; https://doi.org/10.3390/en18246505 - 12 Dec 2025
Viewed by 163
Abstract
Waste generated from agricultural activities is anticipated to increase in the future, especially in less developed countries, and this could cause environmental health risks if these wastes are not well managed. The anaerobic digestion (AD) by co-digesting organic waste is a technology used [...] Read more.
Waste generated from agricultural activities is anticipated to increase in the future, especially in less developed countries, and this could cause environmental health risks if these wastes are not well managed. The anaerobic digestion (AD) by co-digesting organic waste is a technology used to produce biogas while utilizing biodigestate as a biofertilizer; however, AD requires a lot of water to be efficient, which could pose water challenges to arid areas. This study evaluated biogas production under semi-dry conditions by augmenting the process with a high-water content wild melon and determined the nutrient composition of the resultant biodigestate. Batch studies of AD were performed to evaluate methane potential of the different animal waste using an online and standardized Automatic Methane Potential Test System (AMPTS) II light for approximately 506 h (21 days) at 38 °C. The highest biomethane potential (BMP) determined for mono and co-substrate digestion was 29.5 NmL CH4/g VS (CD) and 63.3 NmL CH4/g VS (CMWM), respectively, which was calculated from AMPTS biomethane yield of 3166.2 NmL (CD) and 1480.6 NmL (CMWM). Water-displacement method was also used to compare biogas yield in wet and semi-dry AD. The results showed high biogas yield of 8480 mL for CM (mono-substrate) and 10,975 mL for CMCC in wet AD. Semi-dry AD was investigated by replacing water with a wild melon (WM), and the highest biogas production was 8000 mL from the CMCC combination augmented with WM. Generally, in wet AD, co-digestion was more effective in biogas production than mono-substrate AD. The biodigestate from different substrate combinations were also evaluated for nutrient composition using X-ray Fluorescence (XRF) analysis, and all the samples contained fair amount of essential nutrients such as calcium (Ca), phosphorus (P), potassium (K) and microelements such as chloride (Cl), magnesium (Mn), iron (Fe), zinc (Zn). This study successfully implemented semi-dry AD from co-digested animal wastes to produce biogas as an energy solution and biofertilizer for crop production, thereby creating a closed-loop system that supports a circular bioeconomy. In addition, the study confirmed that lowering the water content in the AD process is feasible without compromising substantial biogas production. This technology, when optimized and well implemented, could provide sustainable biogas production in areas with water scarcity, therefore making the biogas production process accessible to rural communities. Full article
Show Figures

Figure 1

37 pages, 3987 KB  
Review
Hydrogen Production from Marine Renewable Energy: A Review
by Min Ning, Yuanxin Yao, Yuechen Zhan, Feng Pan, Yongjie Fu, Daoyi Chen, Mucong Zi and Mengran Shi
Energies 2025, 18(24), 6490; https://doi.org/10.3390/en18246490 - 11 Dec 2025
Viewed by 313
Abstract
Hydrogen energy, with its high calorific value and zero carbon emissions, serves as a crucial solution for addressing global energy and environmental challenges while achieving carbon neutrality. The ocean offers abundant renewable energy resources including offshore wind, solar, and marine energy, along with [...] Read more.
Hydrogen energy, with its high calorific value and zero carbon emissions, serves as a crucial solution for addressing global energy and environmental challenges while achieving carbon neutrality. The ocean offers abundant renewable energy resources including offshore wind, solar, and marine energy, along with vast seawater reserves, making it an ideal platform for green hydrogen production. This review systematically examines recent research progress in several key marine hydrogen production approaches: seawater electrolysis through both desalination-coupled and direct methods, photocatalytic seawater splitting, biological hydrogen production via algae and bacteria, and hybrid renewable energy systems, each demonstrating varying levels of technological development and industrial readiness. Despite significant advancements, challenges remain, such as reduced electrolysis efficiency caused by seawater impurities, high costs of catalysts and corrosion-resistant materials, and the intermittent nature of renewable energy sources. Future improvements require innovations in catalyst design, membrane technology, and system integration to enhance efficiency, durability, and economic feasibility. The review concludes by outlining the technological development directions for marine hydrogen energy, highlighting how hydrogen production from marine renewable energy can facilitate a sustainable blue economy through large-scale renewable energy storage and utilization. Full article
Show Figures

Figure 1

29 pages, 9859 KB  
Article
Scenario-Based Spatial Assessment of Solar and Wind Energy Potential in Pakistan Using FUCOM–OWA Integration
by Muhammad Ateeq, Qinhuo Liu, Xiaozhou Xin, Tianci Li, Raza Ahmed, Zahid Ur Rahman and Muhammad Irfan
Energies 2025, 18(24), 6478; https://doi.org/10.3390/en18246478 - 10 Dec 2025
Viewed by 192
Abstract
With the growing demand for energy and the limitations of fossil fuel resources, the utilization of renewable energy sources has become a vital and sustainable solution. However, identifying optimal locations for the development of these resources remains a major challenge in energy planning. [...] Read more.
With the growing demand for energy and the limitations of fossil fuel resources, the utilization of renewable energy sources has become a vital and sustainable solution. However, identifying optimal locations for the development of these resources remains a major challenge in energy planning. Accurate spatial potential assessment can play a critical role in enhancing efficiency and reducing production costs. This study aims to present a scenario-based framework for assessing solar and wind energy potential in Pakistan. A total of 19 spatial criteria were used, categorized into evaluation and constraint factors. The full consistency method (FUCOM) was applied to weight the criteria, while the ordered weighted averaging (OWA) method was employed to model various potential scenarios. The results revealed that global horizontal irradiation (GHI) and proximity to transmission lines are the most significant factors for solar energy, whereas wind speed and wind power density are crucial for wind energy potential. Scenario analysis indicated that, under the AND scenario, the area with very high potential for solar and wind energy is 8005.72 km2 and 968.98 km2, respectively. These values increase to 63,607.52 km2 and 16,288.32 km2 under the OR scenario. The spatial agreement map for the simultaneous development of solar and wind energy showed an overlap of 461.42 km2 in the AND scenario and 11,836 km2 in the OR scenario. These findings highlight the importance of scenario-based decision-making approaches and accurate spatial evaluations in the development of multiple renewable energy plant sites under various investment and policy conditions. Moreover, the proposed framework can serve as a practical model for simulating and assessing renewable energy development potential in other regions of the world. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

20 pages, 1899 KB  
Article
Experimental Study on Alternating Vacuum–Electroosmosis Treatment for Dredged Sludges
by Jiangfeng Wang, Yifeng Wu, Chunxue Du, Yang Yang, Xinhua Dong, Shen Yang, Jifeng Wang and Pei Zhang
Water 2025, 17(24), 3499; https://doi.org/10.3390/w17243499 - 10 Dec 2025
Viewed by 255
Abstract
The utilization of treated dredged sludge as a partial replacement for natural sand and gravel in construction projects offers a promising approach to reducing the exploitation of natural resources. The conventional vacuum preloading (VP) method, while widely used for soft soil improvement, is [...] Read more.
The utilization of treated dredged sludge as a partial replacement for natural sand and gravel in construction projects offers a promising approach to reducing the exploitation of natural resources. The conventional vacuum preloading (VP) method, while widely used for soft soil improvement, is often associated with prolonged consolidation periods and high energy consumption in its later stages. Conversely, the electroosmosis (EO) technique is effective in enhancing drainage in low-permeability soft clays but is constrained by issues including anode corrosion, high operational costs, and uneven soil reinforcement. This study presents an experimental investigation into an alternating vacuum preloading and electroosmosis method for sludge treatment based on the underlying reinforcement theory. A series of laboratory model tests was conducted using a self-made vacuum–electroosmosis alternating test device. The reinforcement efficiency was assessed through the continuous monitoring of key performance indicators during the tests, including water discharge, surface settlement, electric current, electrode corrosion, and energy consumption. Post-test evaluations of the final soil shear strength and moisture content were also performed. The test results demonstrate that the alternating vacuum–electroosmosis yielded more significant improvement than their synchronous application. Specifically, the alternating vacuum–electroosmosis increased total water discharge by 46.1%, reduced final moisture content by 20.8%, and enhanced shear strength by 35.6% relative to the synchronous mode. Furthermore, an alternating VP-EO mode was found to be particularly advantageous during the electroosmosis phases, facilitating a more stable and sustained dewatering process. In contrast, the application of vacuum preloading alone resulted in inefficient performance during the later stages, coupled with relatively high energy consumption. Full article
(This article belongs to the Special Issue Risk Assessment and Mitigation for Water Conservancy Projects)
Show Figures

Figure 1

34 pages, 3381 KB  
Review
Electric Propulsion and Hybrid Energy Systems for Solar-Powered UAVs: Recent Advances and Challenges
by Norliza Ismail, Nadhiya Liyana Mohd Kamal, Nurhakimah Norhashim, Sabarina Abdul Hamid, Zulhilmy Sahwee and Shahrul Ahmad Shah
Drones 2025, 9(12), 846; https://doi.org/10.3390/drones9120846 - 10 Dec 2025
Viewed by 379
Abstract
Unmanned aerial vehicles (UAVs) are increasingly utilized across civilian and defense sectors due to their versatility, efficiency, and cost-effectiveness. However, their operational endurance remains constrained by limited onboard energy storage. Recent research has focused on electric propulsion systems integrated with hybrid energy sources, [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly utilized across civilian and defense sectors due to their versatility, efficiency, and cost-effectiveness. However, their operational endurance remains constrained by limited onboard energy storage. Recent research has focused on electric propulsion systems integrated with hybrid energy sources, particularly the combination of solar cells and advanced battery technologies to overcome this limitation. This review presents a comprehensive analysis of the latest advancements in electric propulsion architecture, solar-based power integration, and hybrid energy management strategies for UAVs. Key components, including motors, electronic speed controllers (ESCs), propellers, and energy storage systems, are examined alongside emerging technologies such as wireless charging and flexible photovoltaic (PV) materials. Power management techniques, including maximum power point tracking (MPPT) and intelligent energy control algorithms, are also discussed in the context of long-endurance missions. Challenges related to energy density, weight constraints, environmental adaptability, and component integration are highlighted, with insights into potential solutions and future directions. The findings of this review aim to guide the development of efficient, sustainable, and high-endurance UAV platforms leveraging electric-solar hybrid propulsion systems. Full article
Show Figures

Figure 1

Back to TopTop