Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (764)

Search Parameters:
Keywords = susceptibility biomarker

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
68 pages, 2838 KiB  
Review
Unravelling the Viral Hypothesis of Schizophrenia: A Comprehensive Review of Mechanisms and Evidence
by Mădălina Georgeta Sighencea and Simona Corina Trifu
Int. J. Mol. Sci. 2025, 26(15), 7429; https://doi.org/10.3390/ijms26157429 (registering DOI) - 1 Aug 2025
Viewed by 80
Abstract
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a [...] Read more.
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a wide array of neurotropic viruses, including influenza viruses, herpesviruses (HSV-1 and 2, CMV, VZV, EBV, HHV-6 and 8), hepatitis B and C viruses, HIV, HERVs, HTLV, Zika virus, BoDV, coronaviruses (including SARS-CoV-2), and others. These pathogens can contribute to schizophrenia through mechanisms such as direct microinvasion, persistent central nervous system infection, immune-mediated neuroinflammation, molecular mimicry, and the disturbance of the blood–brain barrier. Prenatal exposure to viral infections can trigger maternal immune activation, resulting in cytokine-mediated alterations in the neurological development of the foetus that persist into adulthood. Genetic studies highlight the role of immune-related loci, including major histocompatibility complex polymorphisms, in modulating susceptibility to infection and neurodevelopmental outcomes. Clinical data also support the “mild encephalitis” hypothesis, suggesting that a subset of schizophrenia cases involve low-grade chronic neuroinflammation. Although antipsychotics have some immunomodulatory effects, adjunctive anti-inflammatory therapies show promise, particularly in treatment-resistant cases. Despite compelling associations, pathogen-specific links remain inconsistent, emphasising the need for longitudinal studies and integrative approaches such as viromics to unravel causal relationships. This review supports a “multi-hit” model in which viral infections interfere with hereditary and immunological susceptibilities, enhancing schizophrenia risk. Elucidating these virus–immune–brain interactions may facilitate the discovery of biomarkers, targeted prevention, and novel therapeutic strategies for schizophrenia. Full article
(This article belongs to the Special Issue Schizophrenia: From Molecular Mechanism to Therapy)
Show Figures

Figure 1

16 pages, 1179 KiB  
Article
APOE Genotyping in Cognitive Disorders: Preliminary Observations from the Greek Population
by Athanasia Athanasaki, Ioanna Tsantzali, Christos Kroupis, Aikaterini Theodorou, Fotini Boufidou, Vasilios C. Constantinides, John S. Tzartos, Socrates J. Tzartos, Georgios Velonakis, Christina Zompola, Amalia Michalopoulou, Panagiotis G. Paraskevas, Anastasios Bonakis, Sotirios Giannopoulos, Paraskevi Moutsatsou, Georgios Tsivgoulis, Elisabeth Kapaki and George P. Paraskevas
Int. J. Mol. Sci. 2025, 26(15), 7410; https://doi.org/10.3390/ijms26157410 (registering DOI) - 1 Aug 2025
Viewed by 67
Abstract
Alzheimer’s disease (AD) is the most common cause of cognitive decline. Among the various susceptibility genes, the gene of apolipoprotein E (APOE) is probably the most important. It may be present in three allelic forms, termed ε2, ε3 and ε4, and [...] Read more.
Alzheimer’s disease (AD) is the most common cause of cognitive decline. Among the various susceptibility genes, the gene of apolipoprotein E (APOE) is probably the most important. It may be present in three allelic forms, termed ε2, ε3 and ε4, and the most common genotype is the ε3/ε3. Recently, it has been observed that subjects with the ε4/ε4 genotype may show near-full penetrance of AD biology (pathology and biomarkers), leading to the suggestion that ε4 homozygosity may represent a distinct genetic type of AD. The aim of the present study was to investigate the role of ε4 homozygosity or heterozygosity in the presence or absence of the AD biomarker profile in patients with cognitive disorders in the Greek population. A total of 274 patients were included in the study. They underwent APOE genotyping and cerebrospinal fluid (CSF) biomarker profiling. The presence of ε4 was associated with a lower age of symptom onset and decreased amyloid biomarkers (irrespective to AD or non-AD profiles), and predicted the presence of an AD profile by a positive predictive value approaching 100%. In conclusion, the ε4 allele has a significant effect on the risk and clinical parameters of cognitive impairment and AD in the Greek population, while the ε4/ε4 genotype may be highly indicative of the (co)existence of AD in cognitively impaired patients. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Alzheimer’s Disease)
Show Figures

Figure 1

19 pages, 633 KiB  
Review
Predictive Factors and Clinical Markers of Recurrent Wheezing and Asthma After RSV Infection
by Luca Buttarelli, Elisa Caselli, Sofia Gerevini, Pietro Leuratti, Antonella Gambadauro, Sara Manti and Susanna Esposito
Viruses 2025, 17(8), 1073; https://doi.org/10.3390/v17081073 - 31 Jul 2025
Viewed by 128
Abstract
Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory infections (ALRIs) in young children, especially bronchiolitis, with significant global health and economic impact. Increasing evidence links early-life RSV infection to long-term respiratory complications, notably recurrent wheezing and asthma. This narrative [...] Read more.
Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory infections (ALRIs) in young children, especially bronchiolitis, with significant global health and economic impact. Increasing evidence links early-life RSV infection to long-term respiratory complications, notably recurrent wheezing and asthma. This narrative review examines these associations, emphasizing predictive factors and emerging biomarkers for risk stratification. Early RSV infection can trigger persistent airway inflammation and immune dysregulation, increasing the likelihood of chronic respiratory outcomes. Risk factors include severity of the initial infection, age at exposure, genetic susceptibility, prematurity, air pollution, and tobacco smoke. Biomarkers such as cytokines and chemokines are showing promise in identifying children at higher risk, potentially guiding early interventions. RSV-related bronchiolitis may also induce airway remodeling and promote Th2/Th17-skewed immune responses, mechanisms closely linked to asthma development. Advances in molecular profiling are shedding light on these pathways, suggesting novel targets for early therapeutic strategies. Furthermore, passive immunization and maternal vaccination offer promising approaches to reducing both acute and long-term RSV-related morbidity. A deeper understanding of RSV’s prolonged impact is essential to develop targeted prevention, enhance risk prediction, and improve long-term respiratory health in children. Future studies should aim to validate biomarkers and refine immunoprophylactic strategies. Full article
(This article belongs to the Special Issue RSV Epidemiological Surveillance: 2nd Edition)
Show Figures

Figure 1

20 pages, 4050 KiB  
Article
LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone
by Kexin Liu, Can Ai, Dan Xu, Wen Hu, Guanghui Chen, Jinzhi Zhang, Ning Zhang, Dongfang Wu and Hui Wang
Toxics 2025, 13(8), 651; https://doi.org/10.3390/toxics13080651 (registering DOI) - 31 Jul 2025
Viewed by 131
Abstract
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats [...] Read more.
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats exposed to dexamethasone prenatally (PDE) were increased. Meanwhile, developmental tracking revealed a reduction in hepatic low-density lipoprotein receptor (LDLR) promoter H3K27 acetylation (H3K27ac) and corresponding transcriptional activity across gestational-to-postnatal stages. Mechanistic investigations established glucocorticoid receptor/histone deacetylase2 (GR/HDAC2) axis-mediated epigenetic programming of LDLR through H3K27ac modulation in PDE offspring, potentiating susceptibility to hypercholesterolemia. Additionally, in peripheral blood mononuclear cells (PBMC) of PDE male adult offspring, LDLR H3K27ac level and expression were also decreased and positively correlated with those in the liver. Clinical studies further substantiated that male newborns prenatally treated with dexamethasone exhibited increased serum cholesterol levels and consistent reductions in LDLR H3K27ac levels and corresponding transcriptional activity in PBMC. This study establishes a complete evidence chain linking PDE with epigenetic programming and cholesterol metabolic dysfunction, proposing PBMC epigenetic biomarkers as a novel non-invasive monitoring tool for assessing the developmental toxicity of chemical exposures during pregnancy. This has significant implications for improving environmental health risk assessment systems. Full article
(This article belongs to the Special Issue Reproductive and Developmental Toxicity of Environmental Factors)
Show Figures

Graphical abstract

23 pages, 1337 KiB  
Review
Balancing Innovation and Safety: Prediction, Prevention, and Management of Pneumonitis in Lung Cancer Patients Receiving Novel Anti-Cancer Agents
by Sarah Liu, Daniel Wang, Andrew Robinson, Mihaela Mates, Yuchen Li, Negar Chooback, Pierre-Olivier Gaudreau, Geneviève C. Digby, Andrea S. Fung and Sofia Genta
Cancers 2025, 17(15), 2522; https://doi.org/10.3390/cancers17152522 - 30 Jul 2025
Viewed by 257
Abstract
Pneumonitis is characterized as inflammation of the lung parenchyma, and a potential adverse effect of several anti-cancer therapies. Diagnosing pneumonitis can be particularly challenging in lung cancer patients due to inherent similarities in symptoms and radiological presentation associated with pneumonitis, as well as [...] Read more.
Pneumonitis is characterized as inflammation of the lung parenchyma, and a potential adverse effect of several anti-cancer therapies. Diagnosing pneumonitis can be particularly challenging in lung cancer patients due to inherent similarities in symptoms and radiological presentation associated with pneumonitis, as well as other common conditions such as infection or disease progression. Furthermore, many lung cancer patients have underlying pulmonary conditions that might render them more susceptible to severe or fatal outcomes from pneumonitis. Novel anti-cancer agents, such as antibody–drug conjugates (ADCs) and bispecific antibodies (BsAbs), are being incorporated into the treatment of lung cancer; therefore, understanding the risk and mechanisms underlying the potential development of pneumonitis with these new therapies is important to ensure continuous improvements in patient care. This narrative review provides an overview of the incidence of pneumonitis observed with novel anti-cancer agents, characterizes potential pathophysiological mechanisms underlying pneumonitis risk and emerging predictive biomarkers, highlights management strategies, and explores future directions for minimizing the risk of pneumonitis for lung cancer patients. Full article
(This article belongs to the Special Issue Cancer Immunotherapy in Clinical and Translational Research)
Show Figures

Figure 1

19 pages, 707 KiB  
Review
Salivary α-Amylase as a Metabolic Biomarker: Analytical Tools, Challenges, and Clinical Perspectives
by Gita Erta, Gita Gersone, Antra Jurka and Peteris Tretjakovs
Int. J. Mol. Sci. 2025, 26(15), 7365; https://doi.org/10.3390/ijms26157365 - 30 Jul 2025
Viewed by 257
Abstract
Salivary α-amylase, primarily encoded by the AMY1 gene, initiates the enzymatic digestion of dietary starch in the oral cavity and has recently emerged as a potential biomarker in metabolic research. Variability in salivary amylase activity (SAA), driven largely by copy number variation of [...] Read more.
Salivary α-amylase, primarily encoded by the AMY1 gene, initiates the enzymatic digestion of dietary starch in the oral cavity and has recently emerged as a potential biomarker in metabolic research. Variability in salivary amylase activity (SAA), driven largely by copy number variation of AMY1, has been associated with postprandial glycemic responses, insulin secretion dynamics, and susceptibility to obesity. This review critically examines current analytical approaches for quantifying SAA, including enzymatic assays, colorimetric techniques, immunoassays, and emerging biosensor technologies. The methodological limitations related to sample handling, intra-individual variability, assay standardization, and specificity are highlighted in the context of metabolic and clinical studies. Furthermore, the review explores the physiological relevance of SAA in energy homeostasis and its associations with visceral adiposity and insulin resistance. We discuss the potential integration of SAA measurements into obesity risk stratification and personalized dietary interventions, particularly in individuals with altered starch metabolism. Finally, the review identifies key research gaps and future directions necessary to validate SAA as a reliable metabolic biomarker in clinical practice. Understanding the diagnostic and prognostic value of salivary amylase may offer new insights into the prevention and management of obesity and related metabolic disorders. Full article
Show Figures

Figure 1

19 pages, 1021 KiB  
Article
Causal Inference Approaches Reveal Associations Between LDL Oxidation, NO Metabolism, Telomere Length and DNA Integrity Within the MARK-AGE Study
by Andrei Valeanu, Denisa Margina, María Moreno-Villanueva, María Blasco, Ewa Sikora, Grazyna Mosieniak, Miriam Capri, Nicolle Breusing, Jürgen Bernhardt, Christiane Schön, Olivier Toussaint, Florence Debacq-Chainiaux, Beatrix Grubeck-Loebenstein, Birgit Weinberger, Simone Fiegl, Efstathios S. Gonos, Antti Hervonen, Eline P. Slagboom, Anton de Craen, Martijn E. T. Dollé, Eugène H. J. M. Jansen, Eugenio Mocchegiani, Robertina Giacconi, Francesco Piacenza, Marco Malavolta, Daniela Weber, Wolfgang Stuetz, Tilman Grune, Claudio Franceschi, Alexander Bürkle and Daniela Gradinaruadd Show full author list remove Hide full author list
Antioxidants 2025, 14(8), 933; https://doi.org/10.3390/antiox14080933 - 30 Jul 2025
Viewed by 222
Abstract
Genomic instability markers are important hallmarks of aging, as previously evidenced within the European study of biomarkers of human aging, MARK-AGE; however, establishing the specific metabolic determinants of vascular aging is challenging. The objective of the present study was to evaluate the impact [...] Read more.
Genomic instability markers are important hallmarks of aging, as previously evidenced within the European study of biomarkers of human aging, MARK-AGE; however, establishing the specific metabolic determinants of vascular aging is challenging. The objective of the present study was to evaluate the impact of the susceptibility to oxidation of serum LDL particles (LDLox) and the plasma metabolization products of nitric oxide (NOx) on relevant genomic instability markers. The analysis was performed on a MARK-AGE cohort of 1326 subjects (635 men and 691 women, 35–75 years old) randomly recruited from the general population. The Inverse Probability of Treatment Weighting causal inference algorithm was implemented in order to assess the potential causal relationship between the LDLox and NOx octile-based thresholds and three genomic instability markers measured in mononuclear leukocytes: the percentage of telomeres shorter than 3 kb, the initial DNA integrity, and the DNA damage after irradiation with 3.8 Gy. The results showed statistically significant telomere shortening for LDLox, while NOx yielded a significant impact on DNA integrity. Overall, the effect on the genomic instability markers was higher than for the confirmed vascular aging determinants, such as low HDL cholesterol levels, indicating a meaningful impact even for small changes in LDLox and NOx values. Full article
(This article belongs to the Special Issue Exploring Biomarkers of Oxidative Stress in Health and Disease)
Show Figures

Figure 1

19 pages, 766 KiB  
Systematic Review
Molecular Mechanisms Underlying Inflammation in Early-Onset Neonatal Sepsis: A Systematic Review of Human Studies
by Anca Vulcănescu, Mirela-Anișoara Siminel, Anda-Lorena Dijmărescu, Maria-Magdalena Manolea, Sidonia-Maria Săndulescu, Virginia Maria Rădulescu, Valeriu Gheorman and Sorin-Nicolae Dinescu
J. Clin. Med. 2025, 14(15), 5315; https://doi.org/10.3390/jcm14155315 - 28 Jul 2025
Viewed by 283
Abstract
Background/Objective: Early-onset neonatal sepsis (EOS), defined as infection occurring within the first 72 h after birth, remains a major contributor to neonatal morbidity and mortality worldwide. Although advances in perinatal care have improved overall outcomes, the diagnosis of EOS continues to be [...] Read more.
Background/Objective: Early-onset neonatal sepsis (EOS), defined as infection occurring within the first 72 h after birth, remains a major contributor to neonatal morbidity and mortality worldwide. Although advances in perinatal care have improved overall outcomes, the diagnosis of EOS continues to be challenging. Clinical presentations are often nonspecific, laboratory confirmation is often delayed, and immune responses vary considerably among neonates. Expanding our understanding of the molecular mechanisms underlying EOS is essential in enhancing early detection, refining risk stratification, and guiding therapeutic strategies. This systematic review aims to synthesize the available information on the molecular pathways involved in EOS, focusing on pathogen-induced inflammation, systemic immune responses, sterile inflammatory processes, interactions between infectious and non-infectious pathways, as well as emerging molecular diagnostic approaches. Methods: A comprehensive review of original research articles and reviews published between January 2015 and January 2025 was conducted; studies were included based on their focus on human neonates and their analysis of molecular or immunological mechanisms relevant to EOS pathogenesis, immune dysregulation, or novel diagnostic strategies. Results: Pathogen-driven inflammation typically involves the activation of Toll-like receptors (TLRs), the recruitment of neutrophils, and the release of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α, particularly in response to vertical transmission of organisms like Escherichia coli and Streptococcus agalactiae. Systemic inflammatory responses are marked by cytokine dysregulation, contributing to multi-organ dysfunction. Sterile inflammation, often initiated by hypoxia–reperfusion injury or intrauterine stress, amplifies susceptibility to sepsis. Interactions between immune, metabolic, and endothelial pathways further exacerbate tissue injury. Recent advances, including transcriptomic profiling, microRNA-based biomarkers, and immune checkpoint studies, offer promising strategies for earlier diagnosis and individualized therapeutic options. Conclusions: EOS arises from a complex interplay of infectious and sterile inflammatory mechanisms. A deeper molecular understanding holds promise for advancing correct diagnostics and targeted therapies, aiming to improve neonatal outcomes. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

27 pages, 1010 KiB  
Review
The Multifaceted Role of IL-35 in Periodontal Disease and Beyond: From Genetic Polymorphisms to Biomarker Potential
by Zdravka Pashova-Tasseva, Antoaneta Mlachkova, Kamen Kotsilkov and Hristina Maynalovska
Genes 2025, 16(8), 891; https://doi.org/10.3390/genes16080891 - 28 Jul 2025
Viewed by 305
Abstract
Periodontitis is a prevalent chronic inflammatory disease with complex etiopathogenesis involving microbial dysbiosis, host immune response, environmental factors, and genetic susceptibility. Among the cytokines implicated in periodontal immunoregulation, interleukin-35 (IL-35) has emerged as a novel anti-inflammatory mediator with potential diagnostic and therapeutic relevance. [...] Read more.
Periodontitis is a prevalent chronic inflammatory disease with complex etiopathogenesis involving microbial dysbiosis, host immune response, environmental factors, and genetic susceptibility. Among the cytokines implicated in periodontal immunoregulation, interleukin-35 (IL-35) has emerged as a novel anti-inflammatory mediator with potential diagnostic and therapeutic relevance. This narrative review evaluates the role of IL-35 in periodontal disease by exploring its local and systemic expression, response to non-surgical periodontal therapy (NSPT), and association with clinical disease severity. Additionally, current evidence regarding IL-35 gene polymorphisms and their potential contribution to individual susceptibility and disease progression, as well as their relevance in related systemic conditions, is assessed. A comprehensive review and synthesis of recent clinical and experimental studies were conducted, focusing on IL-35 levels in saliva, serum, and gingival crevicular fluid (GCF) among patients with healthy periodontium, gingivitis, and various stages of periodontitis, both before and after NSPT. Emphasis was placed on longitudinal studies evaluating IL-35 dynamics in correlation with periodontal parameters, as well as genetic association studies investigating IL-12A and EBI3 gene polymorphisms. IL-35 levels were generally found to be higher in healthy individuals and reduced in periodontitis patients, indicating a possible protective role in maintaining periodontal homeostasis. Following NSPT, IL-35 levels significantly increased, corresponding with clinical improvement and reduced inflammatory burden. Genetic studies revealed variable associations between IL-35 polymorphisms and susceptibility to periodontitis and related systemic conditions, although further research is needed for validation. IL-35 appears to function as a modulator of immune resolution in periodontal disease, with potential utility as a non-invasive biomarker for disease activity and therapeutic response. Its upregulation during periodontal healing supports its role in promoting tissue stabilization. The integration of cytokine profiling and genetic screening may enhance personalized risk assessment and targeted interventions in periodontal care. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 1681 KiB  
Review
Molecular Insight into the Role of HLA Genotypes in Immunogenicity and Secondary Refractoriness to Anti-TNF Therapy in IBD Patients
by Mladen Maksic, Irfan Corovic, Tijana Maksic, Jelena Zivic, Milos Zivic, Natasa Zdravkovic, Aleksa Begovic, Marija Medovic, Djordje Kralj, Zeljko Todorovic, Milica Cekerevac, Rasa Medovic and Milos Nikolic
Int. J. Mol. Sci. 2025, 26(15), 7274; https://doi.org/10.3390/ijms26157274 - 28 Jul 2025
Viewed by 262
Abstract
The emergence of anti-TNF agents has revolutionized the management of inflammatory bowel disease, yet a significant proportion of patients experience primary non-response or secondary loss of response due to immunogenicity. As the field of precision medicine advances, genetic predictors such as human leukocyte [...] Read more.
The emergence of anti-TNF agents has revolutionized the management of inflammatory bowel disease, yet a significant proportion of patients experience primary non-response or secondary loss of response due to immunogenicity. As the field of precision medicine advances, genetic predictors such as human leukocyte antigen (HLA) variants are gaining increasing attention. This review provides a comprehensive synthesis of current evidence on the role of HLA genotypes in inflammatory bowel disease susceptibility and disease behavior, with a focus on their mechanistic and clinical relevance in anti-TNF therapy. Special emphasis is placed on HLA-DQA1*05, a validated predictor of anti-drug antibody formation and reduced therapeutic durability. We explore the immunological basis of HLA-mediated immunogenicity, summarize pharmacogenetic and biomarker findings, and discuss how HLA typing may be integrated into treatment algorithms to improve patient stratification and long-term outcomes. As immunogenetics continues to inform clinical decision-making, understanding the interplay between HLA polymorphisms and therapeutic response offers new opportunities for biomarker-guided, personalized care in inflammatory bowel disease. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

18 pages, 1330 KiB  
Review
Metallothionein and Other Factors Influencing Cadmium-Induced Kidney Dysfunction: Review and Commentary
by Gunnar F. Nordberg and Monica Nordberg
Biomolecules 2025, 15(8), 1083; https://doi.org/10.3390/biom15081083 - 26 Jul 2025
Viewed by 260
Abstract
Cadmium is widely recognized as an important environmental toxicant that may give rise to kidney dysfunction, bone disease, and cancer in humans and animals. Kidney dysfunction occurs at very low exposures and is often considered as the most sensitive or critical effect. Cadmium [...] Read more.
Cadmium is widely recognized as an important environmental toxicant that may give rise to kidney dysfunction, bone disease, and cancer in humans and animals. Kidney dysfunction occurs at very low exposures and is often considered as the most sensitive or critical effect. Cadmium exposures of concern occur in many countries. In low- and middle-income countries with small-scale mining, excessive exposure to cadmium and other metals occurs in occupational and environmental settings. This is of particular importance in view of the growing demand for metals in global climate change mitigation. Since the 1970s, the present authors have contributed evidence concerning the role of metallothionein and other factors in influencing the toxicokinetics and toxicity of cadmium, particularly as it relates to the development of adverse effects on kidneys in humans and animals. The findings gave a background to the development of biomarkers employed in epidemiological studies, demonstrating the important role of metallothionein in protection against cadmium-induced kidney dysfunction in humans. Studies in cadmium-exposed population groups demonstrated how biomarkers of kidney dysfunction changed during 8 years after drastic lowering of environmental cadmium exposure. Other epidemiological studies showed the impact of a good zinc status in lowering the prevalence of cadmium-related kidney dysfunction. Increased susceptibility to Cd-induced kidney dysfunction was shown in a population with high exposure to inorganic arsenic when compared with a group with low such exposure. Several national and international organizations have used part of the reviewed information, but the metallothionein-related biomarkers and the interaction effects have not been fully considered. We hope that these data sets will also be included and improve risk assessments and preventive measures. Full article
(This article belongs to the Special Issue Current Advances of Metal Complexes for Biomedical Applications)
Show Figures

Figure 1

16 pages, 697 KiB  
Article
Association Study of PDCD1 Gene Variants and Its Gene Expression with Cutaneous Melanoma in a Mexican Population
by Fernando Valdez-Salazar, Luis A. Jiménez-Del Rio, Elizabeth Guevara-Gutiérrez, Andrea Melissa Mendoza-Ochoa, María José Zorrilla-Marina, Diana Karla García-Nuño, Jorge R. Padilla-Gutiérrez, José F. Muñoz-Valle and Emmanuel Valdés-Alvarado
Genes 2025, 16(8), 866; https://doi.org/10.3390/genes16080866 - 24 Jul 2025
Viewed by 233
Abstract
Background/Objectives: Melanoma is an aggressive skin cancer influenced by genetic and immunological factors. The PDCD1 gene encodes PD-1, a receptor involved in immune evasion and therapeutic response. This study aimed to evaluate the association of PDCD1 variants (rs2227982, rs36084323, rs7421861) and its [...] Read more.
Background/Objectives: Melanoma is an aggressive skin cancer influenced by genetic and immunological factors. The PDCD1 gene encodes PD-1, a receptor involved in immune evasion and therapeutic response. This study aimed to evaluate the association of PDCD1 variants (rs2227982, rs36084323, rs7421861) and its relative gene expression with melanoma in a Mexican population. Methods: An analytical cross-sectional study was conducted with 262 samples: 131 from melanoma patients (newly diagnosed and treatment-naïve) and 131 from cancer-free controls. Genotyping was performed using real-time PCR. PDCD1 expression was assessed by qPCR, normalized with GAPDH, using the 2−ΔΔCt method and the Pfaffl model. Statistical comparisons included allele/genotype frequencies, expression levels, and clinicopathological associations. Results: No significant association was found between the studied PDCD1 variants and melanoma susceptibility. However, PDCD1 was significantly overexpressed in melanoma samples (2.42-fold increase; p < 0.01), consistent across both quantification methods. Significant associations were also observed between histopathological subtype and Breslow thickness, and between subtype and anatomical site (p < 0.01). Conclusions: Although PDCD1 variants showed no association with melanoma risk, the gene’s overexpression highlights its potential relevance in melanoma immunobiology. These findings contribute to the molecular characterization of melanoma in the Mexican population and support future research on PDCD1 as an immunological biomarker. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

25 pages, 1710 KiB  
Review
Genetic Landscape of Familial Melanoma
by Carmela Scarano, Iolanda Veneruso and Valeria D’Argenio
Genes 2025, 16(8), 857; https://doi.org/10.3390/genes16080857 - 23 Jul 2025
Viewed by 252
Abstract
About 10% of all forms of melanoma occur in a familial context and may be due to germline predisposing mutations transmitted as autosomal dominant traits within the affected families. CDKN2A is a highly penetrant gene associated to familial melanomas, being responsible of up [...] Read more.
About 10% of all forms of melanoma occur in a familial context and may be due to germline predisposing mutations transmitted as autosomal dominant traits within the affected families. CDKN2A is a highly penetrant gene associated to familial melanomas, being responsible of up to 40% of the cases. Other high, moderate, and low penetrance genes are being discovered, even if their own contribution to melanoma risk is still under debate. Indeed, next generation sequencing-based strategies enable large genomic regions to be analyzed, thus identifying novel candidate genes. These strategies, in diagnostic settings, may also improve the identification of the hereditary cases between all melanomas. The identification of the at-risk subjects gives an important opportunity for cancer surveillance in order to reduce the risk of onset and/or make early diagnosis. In addition, the identification of molecular biomarkers may drive the future development of specific targeted therapies, as already done for other inherited cancer syndromes. Here, we summarize the state of the art regarding the molecular basis of the hereditary susceptibility to develop melanoma. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2284 KiB  
Article
O2-Generated Electrical and Mechanical Properties of Polyphenol-Mediated Hydrogel Sensor
by Sunu Hangma Subba, A Hyeon Kim, Anneshwa Dey, Byung Chan Lee and Sung Young Park
Gels 2025, 11(8), 566; https://doi.org/10.3390/gels11080566 - 22 Jul 2025
Viewed by 196
Abstract
The tumor microenvironment contains distinctive biomarkers, including acidic pH, elevated levels of reactive oxygen species (ROS), and hypoxia, necessitating the development of efficient biosensors for simplified cancer detection. This study presents an O2-responsive hydrogel biosensor composed of [1,1′-biphenyl]-2,2′,4,4′,5,5′-hexaol (HDP) and polyvinyl [...] Read more.
The tumor microenvironment contains distinctive biomarkers, including acidic pH, elevated levels of reactive oxygen species (ROS), and hypoxia, necessitating the development of efficient biosensors for simplified cancer detection. This study presents an O2-responsive hydrogel biosensor composed of [1,1′-biphenyl]-2,2′,4,4′,5,5′-hexaol (HDP) and polyvinyl alcohol (PVA) that exploits polyphenol-mediated interactions under N2 and O2 microenvironments. The oxidative susceptibility of the polyphenolic HDP moiety influences its distinct mechanical, physical, and electrochemical properties, allowing the differentiation between cancerous and normal cells. The in vitro assessments with cancer cell lines (HeLa and B16F10) and normal cell lines (CHO-K1) enabled distinctive electrical and mechanophysical outputs, as evidenced by enhanced mechanical compressive modulus and high conductivity, regulated by normoxic cellular states. In addition, the inherent ROS-scavenging capability of the HDP–PVA hydrogel sensor supports its potential application in hypoxia-related diseases, including cancer. Full article
Show Figures

Figure 1

14 pages, 1340 KiB  
Article
Exploring the Prevalence of Antimicrobial Resistance in the Environment Through Bonelli’s Eagles (Aquila fasciata) as Sentinels
by Barbara Martin-Maldonado, Ana Marco-Fuertes, Laura Montoro-Dasi, Laura Lorenzo-Rebenaque, Jose Sansano-Maestre, Jaume Jordá, Daniel Martín Solance, Fernando Esperón and Clara Marin
Antibiotics 2025, 14(8), 734; https://doi.org/10.3390/antibiotics14080734 - 22 Jul 2025
Viewed by 357
Abstract
Background/Objectives: Increasing levels of antimicrobial resistance (AMR) have recently been observed at the human–domestic animal–wildlife interface. Wild birds have been identified as carriers of antimicrobial-resistant bacteria and serve as excellent biomarkers for epidemiological studies. This study assessed the current AMR presence in Eastern [...] Read more.
Background/Objectives: Increasing levels of antimicrobial resistance (AMR) have recently been observed at the human–domestic animal–wildlife interface. Wild birds have been identified as carriers of antimicrobial-resistant bacteria and serve as excellent biomarkers for epidemiological studies. This study assessed the current AMR presence in Eastern Spain’s commensal Escherichia coli isolated from free-ranging Bonelli’s eagles (Aquila fasciata). Methods: Nestlings and their nests were intensively sampled between 2022 and 2024 to determine their AMR profile and characterize E. coli. AMR testing was conducted using the broth microdilution method, following the European Committee on Antimicrobial Susceptibility Testing guidelines. Additionally, the presence of eaeA (intimin gene) and stx-1 and stx-2 (shiga toxins) was analyzed by real-time PCR to classify E. coli strains into enteropathogenic (EPEC) and Shiga-toxigenic (STEC) pathotypes. Results: Of all E. coli isolates, 41.7% were resistant to at least one antimicrobial, and 30% were multidrug-resistant. Only two strains were classified as EPEC and none as STEC. The highest resistance rates were observed for amoxicillin and tetracycline (19.6% each). Alarmingly, resistance to colistin and meropenem, last-resort antibiotics in human medicine, was also detected. Conclusions: Although the mechanisms of resistance acquisition remain unclear, transmission is likely to occur through the food chain, with synanthropic prey acting as intermediary vectors. These results highlight the role of Bonelli’s eagles as essential sentinels of environmental AMR dissemination, even in remote ecosystems. Strengthening One Health-based surveillance is necessary to address AMR’s ecological and public health risks in wildlife. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Infections in Animals)
Show Figures

Figure 1

Back to TopTop