LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone
Highlights
- PDE could induce hypercholesterolemia susceptibility in male adult offspring rats.
- PDE inhibited fetal liver LDLR through a dual pathway by activating GR.
- The main findings highlighted that LDLR H3K27ac in PBMC is a biomarker for fetal-originated hypercholesterolemia.
- The main finding proposed PBMC epigenetic biomarkers as a novel non-invasive monitoring tool for assessing the developmental toxicity of chemical exposures during pregnancy.
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animals and Treatment
2.3. L02 Cell Culture and Treatment
2.4. Co-Immunoprecipitation
2.5. Chromatin Immunoprecipitation (ChIP) and Re-ChIP Assay
2.6. Luciferase Activity Assay
2.7. Human Subjects, Blood Collection, Plasma, and PBMC Isolation
2.8. Statistical Analysis
3. Results
3.1. Intrauterine Origin and Toxic Target of Hypercholesterolemia in Male PDE Adult Offspring Rats
3.1.1. Lowered Cholesterol Levels During Intrauterine Period and Postnatal Hypercholesterolemia in Male PDE Offspring Rats
3.1.2. H3K27ac-LDLR Epigenetic and Transcriptional Regulation in PDE Male Offspring Rats
3.2. Developmental Epigenetic Programming of Hypercholesterolemia in Male PDE Offspring Rats
3.2.1. Hepatic GR/HDAC2 Signaling and LDLR Transcriptional Patterns in Male PDE Offspring Rats
3.2.2. GR Activation Drives Dexamethasone-Induced LDLR Suppression and Extracellular Cholesterol Accumulation via Dual Mechanisms
3.3. Animal and Human Studies Identified Peripheral Biomarkers Predicting Male Offspring Hypercholesterolemia Risk
3.3.1. PBMC-Liver Epigenetic Exhibited Conserved Correlation in Male Offspring
3.3.2. H3K27ac Level of LDLR in PBMC and Its Expression Negatively Related to the Blood Cholesterol Metabolic Phenotype in Male Newborns Received Antenatal Dexamethasone Treatment (ADT)
4. Discussion
4.1. PDE/ADT Can Induce Postnatal Hypercholesterolemia Susceptibility in Male Offspring
4.2. The Suppressive Regulation of H3K27ac Level/Expression in the Hepatic LDLR Mediates Hypercholesterolemia in PDE Male Offspring
4.3. Activated GR-Mediated the Suppressive Programming of Fetal Hepatocyte LDLR Expression Induced by Intrauterine Dexamethasone Exposure Through a Dual Pathway
4.4. PBMC H3K27ac-LDLR Co-Downregulation Could Be the Predictive Epigenetic Signature for Developmental Hypercholesterolemia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Crowther, C.A.; Harding, J.E. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for preventing neonatal respiratory disease. Cochrane Database Syst. Rev. 2003, 3, CD003935. [Google Scholar]
- Giaccone, V.; Macaluso, A.; Cammilleri, G.; Vella, A.; Ferrantelli, V. Corticosteroids in liver and urine in Sicilian cattle by a LC-MS/MS method. Food Addit. Contam. Part B Surveill. 2018, 11, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Musee, N.; Kebaabetswe, L.P.; Tichapondwa, S.; Tubatsi, G.; Mahaye, N.; Leareng, S.K.; Nomngongo, P.N. Occurrence, Fate, Effects, and Risks of Dexamethasone: Ecological Implications Post-COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 11291. [Google Scholar] [CrossRef]
- Dolar, D.; Vuković, A.; Asperger, D.; Kosutić, K. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. J. Environ. Sci. 2011, 23, 1299–1307. [Google Scholar] [CrossRef]
- Parker, C.R.; Atkinson, M.W.; Owen, J.; Andrews, W.W. Dynamics of the fetal adrenal, cholesterol, and apolipoprotein B responses to antenatal betamethasone therapy. Am. J. Obstet. Gynecol. 1996, 174, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, U.; Teupser, D.; Kuehnel, F.; Grohmann, J.; Schmieder, N.; Beindorff, N.; Schlumbohm, C.; Fuhrmann, H.; Einspanier, A. Prenatal stress programs lipid metabolism enhancing cardiovascular risk in the female F1, F2, and F3 generation in the primate model common marmoset (Callithrix jacchus). J. Med. Primatol. 2012, 41, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.R.; MacDonald, P.C.; Carr, B.R.; Morrison, J.C. The effects of dexamethasone and anencephaly on newborn serum levels of apolipoprotein A-1. J. Clin. Endocrinol. Metab. 1987, 65, 1098–1101. [Google Scholar] [CrossRef]
- Li, L.; Hu, W.; Liu, K.; Zhang, D.; Liu, M.; Li, X.; Wang, H. miR-148a/LDLR mediates hypercholesterolemia induced by prenatal dexamethasone exposure in male offspring rats. Toxicol. Appl. Pharmacol. 2020, 395, 114979. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Z.; Hu, W.; He, B.; Xu, D.; Guo, Y.; Wang, H. Intrauterine developmental origin, programming mechanism, and prevention strategy of fetal-originated hypercholesterolemia. Obes. Rev. 2024, 25, e13672. [Google Scholar] [CrossRef]
- Luo, M.; Yi, Y.; Huang, S.; Dai, S.; Xie, L.; Liu, K.; Zhang, S.; Jiang, T.; Wang, T.T.; Yao, B.Z.; et al. Gestational dexamethasone exposure impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects. Acta Pharm. Sin. B 2023, 13, 3708–3727. [Google Scholar] [CrossRef]
- Kundakovic, M.; Gudsnuk, K.; Herbstman, J.B.; Tang, D.; Perera, F.P.; Champagne, F.A. DNA methylation of BDNF as a biomarker of early-life adversity. Proc. Natl. Acad. Sci. USA 2015, 112, 6807–6813. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ai, C.; Duan, F.; Chen, Y.; Cao, J.; Zhang, J.; Ao, Y.; Wang, H. Low H3K27 acetylation of SF1 in PBMC: A biomarker for prenatal dexamethasone exposure-caused adrenal insufficiency of steroid synthesis in male offspring. Cell Biol. Toxicol. 2023, 39, 2051–2067. [Google Scholar] [CrossRef] [PubMed]
- Sohi, G.; Revesz, A.; Hardy, D. Permanent implications of intrauterine growth restriction on cholesterol homeostasis. Semin. Reprod. Med. 2011, 29, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Szostak-Wegierek, D.; Szamotulska, K. Fetal development and risk of cardiovascular diseases and diabetes type 2 in adult life. Med. Wieku Rozwoj. 2011, 15, 203–215. [Google Scholar] [PubMed]
- National Institutes of Health Consensus Development Panel. Antenatal corticosteroids revisited: Repeat courses—National Institutes of Health consensus development conference statement, August 17–18, 2000. Obstet. Gynecol. 2001, 98, 144–150. [Google Scholar]
- Haram, K.; Mortensen, J.H.; Magann, E.F.; Morrison, J.C. Antenatal corticosteroid treatment: Factors other than lung maturation. J. Matern. Fetal Neonatal Med. 2016, 30, 1437–1441. [Google Scholar] [CrossRef]
- Crane, J.; Armson, A.; Brunner, M.; De La Ronde, S.; Farine, D.; Keenan-Lindsay, L.; Leduc, L.; Schneider, C.; Van Aerde, J. Antenatal corticosteroid therapy for fetal maturation. J. Obstet. Gynaecol. Can. 2003, 25, 45–52. [Google Scholar]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef]
- Lv, F.; Wan, Y.; Chen, Y.; Pei, L.; Luo, D.; Fan, G.; Luo, M.C.; Xu, D.; Wang, H. Prenatal Dexamethasone Exposure Induced Ovarian Developmental Toxicity and Transgenerational Effect in Rat Offspring. Endocrinology 2018, 159, 1401–1415. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, Y.; Chen, Q.; Chen, H.; Ma, H.; Su, Z.; Du, M. Low serum adiponectin levels are associated with reduced insulin sensitivity and lipid disturbances in short children born small for gestational age. Clin. Endocrinol. 2015, 83, 78–84. [Google Scholar] [CrossRef]
- Liu, X.; Qi, Y.; Tian, B.; Chen, D.; Gao, H.; Xi, C.; Xing, Y.L.; Yuan, Z.W. Maternal protein restriction induces alterations in hepatic tumor necrosis factor-alpha/CYP7A1 signaling and disorders regulation of cholesterol metabolism in the adult rat offspring. J. Clin. Biochem. Nutr. 2014, 55, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Bruner-Tran, K.; Mokshagundam, S.; Barlow, A.; Ding, T.B.; Osteen, K.G. Paternal environmental toxicant exposure and risk of adverse pregnancy outcomes. Curr. Obstet. Gynecol. 2019, 8, 103–113. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, J.; Zhang, G.; Zhang, Y.; Wang, H. Decreased H3K9 acetylation level of LXRalpha mediated dexamethasone-induced placental cholesterol transport dysfunction. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 158524. [Google Scholar]
- Lejskova, M.; Alusik, S.; Valenta, Z.; Adamkova, S.; Pitha, J. Natural postmenopause is associated with an increase in combined cardiovascular risk factors. Physiol. Res. 2012, 61, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Huijgen, R.; Kindt, I.; Defesche, J.; Kastelein, J. Cardiovascular risk in relation to functionality of sequence variants in the gene coding for the low-density lipoprotein receptor: A study among 29,365 individuals tested for 64 specific low-density lipoprotein-receptor sequence variants. Eur. Heart J. 2012, 33, 2325–2330. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Kawashiri, M.A.; Nohara, A.; Inazu, A.; Mabuchi, H.; Yamagishi, M. Impact of clinical signs and genetic diagnosis of familial hypercholesterolaemia on the prevalence of coronary artery disease in patients with severe hypercholesterolaemia. Eur. Heart J. 2017, 38, 1573–1579. [Google Scholar] [CrossRef]
- Li, X.; Hu, W.; Li, L.; Chen, Z.; Jiang, T.; Zhang, D.; Liu, K.; Wang, H. MiR-133a-3p/Sirt1 epigenetic programming mediates hypercholesterolemia susceptibility in female offspring induced by prenatal dexamethasone exposure. Biochem. Pharmacol. 2022, 206, 115306. [Google Scholar] [CrossRef]
- Xiao, H.; Wen, Y.; Pan, Z.; Shangguan, Y.; Qin, J.; Tan, Y.; Jiang, H.; Li, B.; Chen, L.; Wang, H. Increased H3K27ac level of ACE mediates the intergenerational effect of low peak bone mass induced by prenatal dexamethasone exposure in male offspring rats. Cell Death Dis. 2018, 9, 638. [Google Scholar] [CrossRef]
- Martinez-Guzman, C.; Cortes-Reynosa, P.; Perez-Salazar, E.; Elizondo, G. Dexamethasone induces human glutathione S transferase alpha 1 (hGSTA1) expression through the activation of glucocorticoid receptor (hGR). Toxicology 2017, 385, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lombès, M.; Le Menuet, D. Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells. Mol. Brain 2017, 10, 12. [Google Scholar] [CrossRef]
- Vockley, C.M.; D’Ippolito, A.M.; McDowell, I.C.; Majoros, W.H.; Safi, A.; Song, L.; Crawford, G.; Crawford, G.; Reddy, T. Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome. Cell 2016, 166, 1269–1281.e19. [Google Scholar] [CrossRef] [PubMed]
- Moisiadis, V.G.; Matthews, S.G. Glucocorticoids and fetal programming part 1: Outcomes. Nat. Rev. Endocrinol. 2014, 10, 391–402. [Google Scholar] [CrossRef]
- de Guia, R.M.; Rose, A.J.; Sommerfeld, A.; Seibert, O.; Strzoda, D.; Zota, A.; Feuchter, Y.; Krones-Herzig, A.; Sijmonsma, T.; Kirilov, M.; et al. microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis. Embo J. 2015, 34, 344–360. [Google Scholar] [CrossRef]
- Lu, Z.; Guo, Y.; Xu, D.; Xiao, H.; Dai, Y.; Liu, K.; Chen, L.; Wang, H. Developmental toxicity and programming alterations of multiple organs in offspring induced by medication during pregnancy. Acta Pharm. Sin. B 2023, 13, 460–477. [Google Scholar] [CrossRef]
- Vatier, C.; Christin-Maitre, S. Epigenetic/circadian clocks and PCOS. Hum. Reprod. 2024, 39, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Di, C.; Chang, P.; Li, L.; Feng, Z.; Xiao, S.; Yan, X.; Xu, X.; Li, X.; Qi, R.; et al. Lactylated Histone H3K18 as a Potential Biomarker for the Diagnosis and Predicting the Severity of Septic Shock. Front. Immunol. 2021, 12, 786666. [Google Scholar] [CrossRef] [PubMed]
- O’Grada, C.M.; Morine, M.J.; Morris, C.; Ryan, M.; Dillon, E.T.; Walsh, M.; Gibney, E.R.; Brennan, L.; Gibney, M.J.; Roche, H.M. PBMCs reflect the immune component of the WAT transcriptome--implications as biomarkers of metabolic health in the postprandial state. Mol. Nutr. Food Res. 2014, 58, 808–820. [Google Scholar] [CrossRef]
- Caimari, A.; Crescenti, A.; Puiggros, F.; Boque, N.; Arola, L.; Del Bas, J.M. The intake of a high-fat diet and grape seed procyanidins induces gene expression changes in peripheral blood mononuclear cells of hamsters: Capturing alterations in lipid and cholesterol metabolisms. Genes Nutr. 2015, 10, 438. [Google Scholar] [CrossRef] [PubMed]
- Schiano, C.; Vietri, M.T.; Grimaldi, V.; Picascia, A.; De Pascale, M.R.; Napoli, C. Epigenetic-related therapeutic challenges in cardiovascular disease. Trends Pharmacol. Sci. 2015, 36, 226–235. [Google Scholar] [CrossRef]
- Rahmati-Ahmadabad, S.; Broom, D.R.; Ghanbari-Niaki, A.; Shirvani, H. Effects of exercise on reverse cholesterol transport: A systemized narrative review of animal studies. Life Sci. 2019, 224, 139–148. [Google Scholar] [CrossRef]
- Marks, L.M.; Jensen, T.; DeGrado, T.R. Noninvasive testing in the diagnosis of metabolic dysfunction-associated steatohepatitis. Metab. Target Organ Damage 2024, 4, 28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Ai, C.; Xu, D.; Hu, W.; Chen, G.; Zhang, J.; Zhang, N.; Wu, D.; Wang, H. LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone. Toxics 2025, 13, 651. https://doi.org/10.3390/toxics13080651
Liu K, Ai C, Xu D, Hu W, Chen G, Zhang J, Zhang N, Wu D, Wang H. LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone. Toxics. 2025; 13(8):651. https://doi.org/10.3390/toxics13080651
Chicago/Turabian StyleLiu, Kexin, Can Ai, Dan Xu, Wen Hu, Guanghui Chen, Jinzhi Zhang, Ning Zhang, Dongfang Wu, and Hui Wang. 2025. "LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone" Toxics 13, no. 8: 651. https://doi.org/10.3390/toxics13080651
APA StyleLiu, K., Ai, C., Xu, D., Hu, W., Chen, G., Zhang, J., Zhang, N., Wu, D., & Wang, H. (2025). LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone. Toxics, 13(8), 651. https://doi.org/10.3390/toxics13080651