Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,265)

Search Parameters:
Keywords = surface water change

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2219 KiB  
Article
Numerical Modeling of Expansive Soil Behavior Using an Effective Stress-Based Constitutive Relationship for Unsaturated Soils
by Sahand Seyfi, Ali Ghassemi and Rashid Bashir
Geotechnics 2025, 5(3), 53; https://doi.org/10.3390/geotechnics5030053 - 5 Aug 2025
Abstract
Previous studies have extensively applied the generalized consolidation theory, which incorporates a two-stress state variable framework, to predict the volumetric behavior of unsaturated expansive soils under varying mechanical stress and matric suction. A key requirement for this approach is a constitutive surface that [...] Read more.
Previous studies have extensively applied the generalized consolidation theory, which incorporates a two-stress state variable framework, to predict the volumetric behavior of unsaturated expansive soils under varying mechanical stress and matric suction. A key requirement for this approach is a constitutive surface that links the soil void ratio to both net stress and matric suction. A large number of fitting parameters are typically needed to accurately fit a two-variable void ratio surface equation to laboratory test data. In this study, a single-stress state variable framework was adopted to describe the void ratio as a function of effective stress for unsaturated soils. The proposed approach was applied to fit void ratio–effective stress constitutive curves to laboratory test data for two different expansive clays. Additionally, a finite element model coupling variably saturated flow and stress–strain analysis was developed to simulate the volume change behavior of expansive clay subjected to moisture fluctuations. The model utilizes suction stress to compute the effective stress field and incorporates the dependency of soil modulus on volumetric water content based on the proposed void ratio–effective stress relationship. The developed numerical model was validated against a benchmark problem in which a layer of Regina expansive clay was subjected to a constant infiltration rate. The results demonstrate the effectiveness of the proposed model in simulating expansive soil deformations under varying moisture conditions over time. Full article
Show Figures

Figure 1

23 pages, 3106 KiB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

17 pages, 5565 KiB  
Article
Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete
by Shunquan Zhang and Yifan Zhang
Materials 2025, 18(15), 3673; https://doi.org/10.3390/ma18153673 - 5 Aug 2025
Abstract
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on [...] Read more.
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on the resultant concrete properties require careful consideration. This investigation systematically evaluates the effects of varying concentrations of dilute acetic acid solutions, commonly used in RCA treatment protocols, through a multi-methodological approach that includes comprehensive physical characterization, stylus and 3D optical profilometry, scanning electron microscopy (SEM), and nanoindentation analysis. The results show that even dilute acid solutions have an upper concentration limit, as excessive acid concentration, specifically 0.4 M, induces significant textural dislocations on NCA surfaces, creating millimeter-scale erosion pits that increase aggregate water absorption by 18.5%. These morphological changes significantly impair concrete workability and reduce compressive strength performance. Furthermore, microstructural analysis reveals a 45.24% expansion in interfacial transition zone (ITZ) thickness, accompanied by notable reductions in elastic modulus and microhardness characteristics. In practical RCA treatment applications, for RCA containing limestone-based NCA, it is recommended to use acetic acid concentrations between 0.1 and 0.3 M to avoid substantial physical and microstructural degradation of aggregates and concrete. Full article
Show Figures

Graphical abstract

19 pages, 4452 KiB  
Article
Artificial Surface Water Construction Aggregated Water Loss Through Evaporation in the North China Plain
by Ziang Wang, Yan Zhou, Wenge Zhang, Shimin Tian, Yaoping Cui, Haifeng Tian, Xiaoyan Liu and Bing Han
Remote Sens. 2025, 17(15), 2698; https://doi.org/10.3390/rs17152698 - 4 Aug 2025
Abstract
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of [...] Read more.
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of regional water resources and assessing their current status. Therefore, a deep understanding of its changing patterns and driving forces is essential for achieving the sustainable management of water resources. In this study, we examined the interannual variability and trends of SWA in the NCP from 1990 to 2023 using annual 30 m water body maps generated from all available Landsat imagery, a robust water mapping algorithm, and the cloud computing platform Google Earth Engine (GEE). The results showed that the SWA in the NCP has significantly increased over the past three decades. The continuous emergence of artificial reservoirs and urban lakes, along with the booming aquaculture industry, are the main factors driving the growth of SWA. Consequently, the expansion of artificial water bodies resulted in a significant increase in water evaporation (0.16 km3/yr). Moreover, the proportion of water evaporation to regional evapotranspiration (ET) gradually increased (0–0.7%/yr), indicating that the contribution of water evaporation from artificial water bodies to ET is becoming increasingly prominent. Therefore, it can be concluded that the ever-expanding artificial water bodies have become a new hidden danger affecting the water security of the NCP through evaporative loss and deserve close attention. This study not only provides us with a new perspective for deeply understanding the current status of water resources security in the NCP but also provides a typical case with great reference value for the analysis of water resources changes in other similar regions. Full article
Show Figures

Figure 1

11 pages, 1539 KiB  
Article
Heat Exchange and Flow Resistance in a Heat Exchanger Based on a Minimal Surface of the Gyroid Type—Results of Experimental Studies
by Krzysztof Dutkowski, Marcin Kruzel and Marcin Walczak
Energies 2025, 18(15), 4134; https://doi.org/10.3390/en18154134 - 4 Aug 2025
Abstract
The gyroid minimal surface is one type of triply periodic minimal surface (TPMS). TPMS is a minimal surface replicated in the three main directions of the Cartesian coordinate system. The minimal surface is a surface stretched between two objects, known as the smallest [...] Read more.
The gyroid minimal surface is one type of triply periodic minimal surface (TPMS). TPMS is a minimal surface replicated in the three main directions of the Cartesian coordinate system. The minimal surface is a surface stretched between two objects, known as the smallest possible area (e.g., a soap bubble with a saddle shape stretched between two parallel circles). The complicated shape of the TPMS makes its production possible only by additive methods (3D printing). This article presents the results of experimental studies on heat transfer and flow resistance in a heat exchanger made of stainless steel. The heat exchange surface, a TPMS gyroid, separates two working media: hot and cold water. The water flow rate was varied in the range from 8 kg/h to 25 kg/h (Re = 246–1171). The water temperature at the inlet to the exchanger was maintained at a constant level of 8.8 ± 0.3 °C and 49.5 ± 0.5 °C for cold and hot water, respectively. The effect of water flow rate on the change in its temperature, the heat output of the exchanger, the average heat transfer coefficient, pressure drop, and overall resistance factor was presented. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

21 pages, 5750 KiB  
Article
Numerical Simulations of Coupled Vapor, Water, and Heat Flow in Unsaturated Deformable Soils During Freezing and Thawing
by Sara Soltanpour and Adolfo Foriero
Geotechnics 2025, 5(3), 51; https://doi.org/10.3390/geotechnics5030051 - 4 Aug 2025
Abstract
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and [...] Read more.
Freezing and thawing cycles significantly affect the mechanical and hydraulic behavior of soils, posing detrimental challenges for infrastructures in cold climates. This study develops and validates a coupled Thermal–Hydraulic–Mechanical (THM) model using COMSOL Multiphysics (Version 6.3) to demonstrate the complexities of vapor and water flux, heat transport, frost heave, and vertical stress build-up in unsaturated soils. The analysis focuses on fine sand, sandy clay, and silty clay by examining their varying susceptibilities to frost action. Silty clay generated the highest amount of frost heave and steepest vertical stress gradients due to its high-water retention and strong capillary forces. Fine sand, on the other hand, produced a minimal amount of frost heave and a polarized vertical stress distribution. The study also revealed that vapor flux is more noticeable in freezing fine sand, while silty clay produces the greatest water flux between the frozen and unfrozen zones. The study also assesses the impact of soil properties including the saturated hydraulic conductivity, the particle thermal conductivity, and particle heat capacity on the frost-induced phenomena. Findings show that reducing the saturated hydraulic conductivity has a greater impact on mitigating frost heave than other variations in thermal properties. Silty clay is most affected by these changes, particularly near the soil surface, while fine sand shows less noticeable responses. Full article
Show Figures

Figure 1

10 pages, 1004 KiB  
Article
Removal of Octinoxate, a UV-filter Compound, from Aquatic Environment Using Polydimethylsiloxane Sponge
by Péter Szabó, Zoltán Németh, Ruben Szabó, István Lázár, Zsolt Pirger and Attila Gáspár
Water 2025, 17(15), 2306; https://doi.org/10.3390/w17152306 - 3 Aug 2025
Viewed by 65
Abstract
This work demonstrates the potential of polydimethylsiloxane sponges for removing organic UV filter compounds such as octinoxate from aqueous solutions. The sponges were fabricated using simple templates made of hydrophilic fused or pressed particles (sugar or NaCl salt) with an approximate particle size [...] Read more.
This work demonstrates the potential of polydimethylsiloxane sponges for removing organic UV filter compounds such as octinoxate from aqueous solutions. The sponges were fabricated using simple templates made of hydrophilic fused or pressed particles (sugar or NaCl salt) with an approximate particle size of 0.4 mm. Among the prepared sponges, those templated with sugar cubes or coarse salt exhibited the highest adsorption capacity, effectively adsorbing up to 0.6% of their own mass in octinoxate. The PDMS sponges were fully regenerable, allowing for the complete removal of octinoxate without any detectable changes in their adsorption properties or dry weight. Due to their simple fabrication, ease of handling, ability to float, and reusability, PDMS sponges present an environmentally friendly and low-maintenance alternative to conventional filtration systems for the removal of octinoxate and potentially other UV filter compounds from environmental surface waters and recreational water bodies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 - 1 Aug 2025
Viewed by 141
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
21 pages, 1894 KiB  
Article
Utility of Infrared Thermography for Monitoring of Surface Temperature Changes During Horses’ Work on Water Treadmill with an Artificial River System
by Urszula Sikorska, Małgorzata Maśko, Barbara Rey and Małgorzata Domino
Animals 2025, 15(15), 2266; https://doi.org/10.3390/ani15152266 - 1 Aug 2025
Viewed by 102
Abstract
Water treadmill (WT) exercise is used for horses’ rehabilitation and training. Given that each training needs to be individualized for each horse, the goal is to assess whether infrared thermography (IRT) can serve as a non-invasive tool for daily monitoring of individual training [...] Read more.
Water treadmill (WT) exercise is used for horses’ rehabilitation and training. Given that each training needs to be individualized for each horse, the goal is to assess whether infrared thermography (IRT) can serve as a non-invasive tool for daily monitoring of individual training and rehabilitation progress in horses undergoing WT exercise. Fifteen Polish Warmblood school horses were subjected to five WT sessions: dry treadmill, fetlock-depth water, fetlock-depth water with artificial river (AR), carpal-depth water, and carpal-depth water with AR. IRT images, collected pre- and post-exercise, were analyzed for the mean temperature (Tmean) and maximal temperature (Tmax) across 14 regions of interest (ROIs) representing the body surface overlying specific superficial muscles. While on a dry treadmill, Tmean and Tmax increased post-exercise in all ROIs; wetting of the hair coat limited surface temperature analysis in ROIs annotated on limbs. Tmax over the m. brachiocephalicus, m. trapezius pars cervicalis, m. triceps brachii, and m. semitendinosus increased during walking in carpal-depth water, which therefore may be suggested as an indirect indicator of increased activity related to forelimb protraction and flexion–extension of the limb joints. Tmax over the m. latissimus dorsi and m. longissimus increased during carpal-depth WT exercise with active AR mode, which may be suggested as an indicator of increased workload including vertical displacement of the trunk. Full article
Show Figures

Figure 1

33 pages, 6351 KiB  
Review
Recent Development on the Synthesis Strategies and Mechanisms of Co3O4-Based Electrocatalysts for Oxygen Evolution Reaction: A Review
by Liangjuan Gao, Yifan Jia and Hongxing Jia
Molecules 2025, 30(15), 3238; https://doi.org/10.3390/molecules30153238 - 1 Aug 2025
Viewed by 88
Abstract
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. [...] Read more.
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. However, the oxygen evolution reaction (OER) remains a critical challenge due to its high overpotential and slow kinetics during water electrolysis for hydrogen production. Electrocatalysts play an important role in lowering the overpotential of OER and promoting the kinetics. Co3O4-based electrocatalysts have emerged as promising candidates for the oxygen evolution reaction (OER) due to their favorable catalytic activity and good compatibility compared with precious metal-based electrocatalysts. This review presents a summary of the recent developments in the synthesis strategies and mechanisms of Co3O4-based electrocatalysts for the OER. Various synthesis strategies have been explored to control the size, morphology, and composition of Co3O4 nanoparticles. These strategies enable the fabrication of well-defined nanostructures with enhanced catalytic performance. Additionally, the mechanisms of OER catalysis on Co3O4-based electrocatalysts have been elucidated. Coordinatively unsaturated sites, synergistic effects with other elements, surface restructuring, and pH dependency have been identified as crucial factors influencing the catalytic activity. The understanding of these mechanisms provides insights into the design and optimization of Co3O4-based electrocatalysts for efficient OER applications. The recent advancements discussed in this review offer valuable perspectives for researchers working on the development of electrocatalysts for the OER, with the goal of achieving sustainable and efficient energy conversion and storage systems. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

20 pages, 16348 KiB  
Article
The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques
by Pedro Vicente Vaca-Cárdenas, Eduardo Antonio Muñoz-Jácome, Maritza Lucia Vaca-Cárdenas, Diego Francisco Cushquicullma-Colcha and José Guerrero-Casado
Earth 2025, 6(3), 86; https://doi.org/10.3390/earth6030086 (registering DOI) - 1 Aug 2025
Viewed by 197
Abstract
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in [...] Read more.
Climate change has accelerated the retreat of Andean glaciers, with significant recent losses in the tropical Andes. This study evaluates the extinction of the Carihuairazo volcano glacier (Ecuador), quantifying its area from 1312.5 m2 in September 2023 to 101.2 m2 in January 2024, its thickness (from 2.5 m to 0.71 m), and its volume (from 2638.85 m3 to 457.18 m3), before its complete deglaciation in February 2024; this rapid melting and its small size classify it as a glacierette. Multivariate analyses (PCA and biclustering) were performed to correlate climatic variables (temperature, solar radiation, precipitation, relative humidity, vapor pressure, and wind) with glacier surface and thickness. The PCA explained 70.26% of the total variance, with Axis 1 (28.01%) associated with extreme thermal conditions (temperatures up to 8.18 °C and radiation up to 16.14 kJ m−2 day−1), which probably drove its disappearance. Likewise, Axis 2 (21.56%) was related to favorable hydric conditions (precipitation between 39 and 94 mm) during the initial phase of glacier monitoring. Biclustering identified three groups of variables: Group 1 (temperature, solar radiation, and vapor pressure) contributed most to deglaciation; Group 2 (precipitation, humidity) apparently benefited initial stability; and Group 3 (wind) played a secondary role. These results, validated through in situ measurements, provide scientific evidence of the disappearance of the Carihuairazo volcano glacier by February 2024. They also corroborate earlier projections that anticipated its extinction by the middle of this decade. The early disappearance of this glacier highlights the vulnerability of small tropical Andean glaciers and underscores the urgent need for water security strategies focused on management, adaptation, and resilience. Full article
Show Figures

Figure 1

25 pages, 659 KiB  
Systematic Review
Mechanical and Physical Properties of Durable Prosthetic Restorations Printed Using 3D Technology in Comparison with Hybrid Ceramics and Milled Restorations—A Systematic Review
by Bettanapalya. V. Swapna, B. Shivamurthy, Vinu Thomas George, Kavishma Sulaya and Vaishnavi M Nayak
Prosthesis 2025, 7(4), 90; https://doi.org/10.3390/prosthesis7040090 (registering DOI) - 1 Aug 2025
Viewed by 115
Abstract
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins [...] Read more.
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins in comparison to milled resins and hybrid ceramics for the fabrication of indirect dental restorations. Methods: Three electronic databases—Scopus, Web of Science, and PubMed—were searched for English-language articles. Two independent researchers conducted study selection, data extraction, quality assessment, and the evaluation of the certainty of evidence. In vitro studies assessing the mechanical and physical properties of the permanent resins were included in this review. Results: A total of 1779 articles were identified through electronic databases. Following full-text screening and eligibility assessment, 13 studies published between 2023 and 2024 were included in this qualitative review. The investigated outcomes included physical properties (surface roughness, color changes, water sorption/solubility) and mechanical properties (flexural strength, elastic modulus, microhardness). Conclusions: Three-dimensionally printed permanent resins show promising potential for fabricating indirect dental restorations. However, the current evidence regarding their mechanical and physical properties remain limited and inconsistent, mainly due to variability in study methodologies. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

25 pages, 894 KiB  
Article
Understanding Deep-Seated Paradigms of Unsustainability to Address Global Challenges: A Pathway to Transformative Education for Sustainability
by Desi Elvera Dewi, Joyo Winoto, Noer Azam Achsani and Suprehatin Suprehatin
World 2025, 6(3), 106; https://doi.org/10.3390/world6030106 - 1 Aug 2025
Viewed by 303
Abstract
This study investigates the foundational causes of unsustainability that obstruct efforts to address global challenges such as climate change, environmental degradation, water crises, and public health deterioration. Using qualitative research with in-depth expert interviews from education, environmental studies, and business, it finds that [...] Read more.
This study investigates the foundational causes of unsustainability that obstruct efforts to address global challenges such as climate change, environmental degradation, water crises, and public health deterioration. Using qualitative research with in-depth expert interviews from education, environmental studies, and business, it finds that these global challenges, while visible on the surface, are deeply rooted in worldviews that shape human behavior, societal structures, and policies. Building on this insight, the thematic analysis manifests three interrelated systemic paradigms as the fundamental drivers of unsustainability: a crisis of wholeness, reflected in fragmented identities and collective disorientation; a disconnection from nature, shaped by human-centered perspectives; and the influence of dominant political-economic systems which prioritize growth logics over ecological and social concerns. These paradigms underlie both structural and cognitive barriers to systemic transformation, which influence the design and implementation of education for sustainability. By clarifying a body of knowledge and systemic paradigms regarding unsustainability, this paper calls for transformative education that promotes a holistic, value-based approach, eco-empathy, and critical thinking, aiming to equip future generations with the tools to challenge and transform unsustainable systems. Full article
Show Figures

Figure 1

23 pages, 2122 KiB  
Article
Climate Change of Near-Surface Temperature in South Africa Based on Weather Station Data, ERA5 Reanalysis, and CMIP6 Models
by Ilya Serykh, Svetlana Krasheninnikova, Tatiana Gorbunova, Roman Gorbunov, Joseph Akpan, Oluyomi Ajayi, Maliga Reddy, Paul Musonge, Felix Mora-Camino and Oludolapo Akanni Olanrewaju
Climate 2025, 13(8), 161; https://doi.org/10.3390/cli13080161 - 1 Aug 2025
Viewed by 182
Abstract
This study investigates changes in Near-Surface Air Temperature (NSAT) over the South African region using weather station data, reanalysis products, and Coupled Model Intercomparison Project Phase 6 (CMIP6) model outputs. It is shown that, based on ERA5 reanalysis, the average NSAT increase in [...] Read more.
This study investigates changes in Near-Surface Air Temperature (NSAT) over the South African region using weather station data, reanalysis products, and Coupled Model Intercomparison Project Phase 6 (CMIP6) model outputs. It is shown that, based on ERA5 reanalysis, the average NSAT increase in the region (45–10° S, 0–50° E) for the period 1940–2023 was 0.11 ± 0.04 °C. Weak multi-decadal changes in NSAT were observed from 1940 to the mid-1970s, followed by a rapid warming trend starting in the mid-1970s. Weather station data generally confirm these results, although they exhibit considerable inter-station variability. An ensemble of 33 CMIP6 models also reproduces these multi-decadal NSAT change characteristics. Specifically, the average model-simulated NSAT values for the region increased by 0.63 ± 0.12 °C between the periods 1940–1969 and 1994–2023. Based on the results of the comparison between weather station observations, reanalysis, and models, we utilize projections of NSAT changes from the analyzed ensemble of 33 CMIP6 models until the end of the 21st century under various Shared Socioeconomic Pathway (SSP) scenarios. These projections indicate that the average NSAT of the South African region will increase between 1994–2023 and 2070–2099 by 0.92 ± 0.36 °C under the SSP1-2.6 scenario, by 1.73 ± 0.44 °C under SSP2-4.5, by 2.52 ± 0.50 °C under SSP3-7.0, and by 3.17 ± 0.68 °C under SSP5-8.5. Between 1994–2023 and 2025–2054, the increase in average NSAT for the studied region, considering inter-model spread, will be 0.49–1.15 °C, depending on the SSP scenario. Furthermore, climate warming in South Africa, both in the next 30 years and by the end of the 21st century, is projected to occur according to all 33 CMIP6 models under all considered SSP scenarios. The main spatial feature of this warming is a more significant increase in NSAT over the landmass of the studied region compared to its surrounding waters, due to the stabilizing role of the ocean. Full article
Show Figures

Figure 1

17 pages, 2292 KiB  
Article
Employing Cover Crops and No-Till in Southern Great Plains Cotton Production to Manage Runoff Water Quantity and Quality
by Jack L. Edwards, Kevin L. Wagner, Lucas F. Gregory, Scott H. Stoodley, Tyson E. Ochsner and Josephus F. Borsuah
Water 2025, 17(15), 2283; https://doi.org/10.3390/w17152283 - 31 Jul 2025
Viewed by 166
Abstract
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage [...] Read more.
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage have been suggested as an alternative. The proposed shift in management practices originates from the need to make agriculture resilient to extreme weather events including intense rainfall and drought. The objective of this study is to test the effects of these regenerative practices in an environment with limited rainfall. Runoff volume, nutrient and sediment concentrations and loadings, and surface soil moisture levels were compared on twelve half-acre (0.2 hectare) cotton plots that employed different cotton seeding rates and variable winter wheat cover crop presence. A winter cover implemented on plots with a high cotton seeding rate significantly reduced runoff when compared to other treatments (p = 0.032). Cover cropped treatments did not show significant effects on nutrient or sediment loadings, although slight reductions were observed in the concentrations and loadings of total Kjeldahl nitrogen, total phosphorus, total solids, and Escherichia coli. The limitations of this study included a short timeframe, mechanical failures, and drought. These factors potentially reduced the statistical differences in several findings. More efficient methods of crop production must continue to be developed for agriculture in the SGP to conserve soil and water resources, improve soil health and crop yields, and enhance resiliency to climate change. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

Back to TopTop