Climate Change of Near-Surface Temperature in South Africa Based on Weather Station Data, ERA5 Reanalysis, and CMIP6 Models
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Correlation and Trend Analysis
3.2. Changes at Weather Stations
3.3. Changes Based on ERA5 Reanalysis and CMIP6 Models
4. Discussion
4.1. Changes Based on Weather Station Data
Period, Years | Location | ΔTaev, °C | Data Type | Authors |
---|---|---|---|---|
1940–1989 | Along the coast of South Africa | Significant positive trend | Weather stations | [52] |
1991–2003/ 1960–1990/ 1960–2003 | Southern Africa | +0.09/+0.11/+0.13 | Weather stations | [21] |
1979–2010 | All Africa | Significant positive trend | MSU, RSS, UAH | [54] |
1960–2009 | Southern Africa | Significant positive trend | Weather stations | [55] |
1960–2010 | Southern Africa/Central South Africa | Maximum and minimum temperatures significantly increased/minimum temperatures decreased | Weather stations, models | [56] |
1960–2016 | Southern Africa | Annual trend of maximum temperature increase at a rate of 0.02 °C per year | Weather stations | [57] |
1950–1999 | Southern Africa | 0.02 °C per year 0.12 °C per decade 0.18 °C per decade in winter and 0.09 °C per decade in summer | 5 models of GCM CMIP6 | [10] |
4.2. Based on Reanalyzes
4.3. Changes Based on Models
4.4. Implications on Urban Governance and Nature Management Adaptations in South Africa
4.5. Bridging Science, Policy, and Governance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CMIP6 | Coupled Model Intercomparison Project phase 6 |
CPC | Climate Prediction Center |
ENSO | El Niño-Southern Oscillation |
ESM | Earth System Model |
ETE | Extreme Temperature Event |
GCMs | Global Climate Models |
NSAT | Near-Surface Air Temperature |
PDO | Pacific Decadal Oscillation |
SAWS | South African Weather Service |
SSP | Shared Socioeconomic Pathway |
TSS | Taylor Skill Score |
WMO | World Meteorological Organization |
References
- Mbokodo, I.; Bopape, M.-J.; Chikoore, H.; Engelbrecht, F.; Nethengwe, N. Heatwaves in the Future Warmer Climate of South Africa. Atmosphere 2020, 11, 712. [Google Scholar] [CrossRef]
- Trisos, C.H.; Adelekan, I.O.; Totin, E.; Ayanlade, A.; Efitre, J.; Gemeda, A.; Kalaba, K.; Lennard, C.; Masao, C.; Mgaya, Y.; et al. Africa. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Kapwata, T.; Gebreslasie, M.T.; Wright, C.Y. An analysis of past and future heatwaves based on a heat-associated mortality threshold: Towards a heat health warning system. Environ. Health 2022, 21, 112. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, J. Heat effects of ambient apparent temperature on all-cause mortality in Cape Town, Durban and Johannesburg, South Africa: 2006–2010. Sci. Total Environ. 2017, 587–588, 266–272. [Google Scholar] [CrossRef]
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Scovronick, N.; Sera, F.; Acquaotta, F.; Garzena, D.; Fratianni, S.; Wright, C.Y.; Gasparrini, A. The association between ambient temperature and mortality in South Africa: A time-series analysis. Environ. Res. 2018, 161, 229–235. [Google Scholar] [CrossRef]
- Chersich, M.F.; Wright, C.Y. Climate change adaptation in South Africa: A case study on the role of the health sector. Glob. Health 2019, 15, 22. [Google Scholar] [CrossRef]
- Van Der Walt, A.J.; Fitchett, J.M. Extreme temperature events (ETEs) in South Africa: A review. S. Afr. Geogr. J. 2021, 104, 70–88. [Google Scholar] [CrossRef]
- Almar, R.; Boucharel, J.; Graffin, M.; Abessolo, G.O.; Thoumyre, G.; Papa, F.; Ranasinghe, R.; Montano, J.; Bergsma, E.W.J.; Baba, M.W.; et al. Influence of El Niño on the variability of global shoreline position. Nat. Commun. 2023, 14, 3133. [Google Scholar] [CrossRef]
- Mengistu, A.G.; Woyessa, Y.E.; Tesfuhuney, W.A.; Steyn, A.S.; Lee, S.S. Assessing the impact of climate change on future extreme temperature events in major South African cities. Theor. Appl. Climatol. 2024, 155, 1807–1819. [Google Scholar] [CrossRef]
- Hughes, W.S.; Balling, R.C. Urban influences on South African temperature trends. Int. J. Climatol. 1996, 16, 935–940. [Google Scholar] [CrossRef]
- Plummer, N. Temperature variability and extremes over Australia. Part 1: Recent observed changes. Aust. Meteorol. Mag. 1996, 45, 233–250. [Google Scholar]
- Torok, S.J.; Nicholls, N. A historical annual dataset for Australia. Aust. Meteorol. Mag. 1996, 45, 251–260. [Google Scholar]
- Hoffmann, J.A.J.; Nuonoez, S.E.; Vargas, W.M. Temperature, humidity and precipitation variations in Argentina and the adjacent sub-Antarctic region during the present century. Meteorol. Z. 1997, 6, 3–11. [Google Scholar] [CrossRef]
- Rosenblüth, B.; Fuenzalida, H.A.; Aceituno, P. Recent temperature variations in southern South America. Int. J. Climatol. 1997, 17, 67–85. [Google Scholar] [CrossRef]
- Unganai, L.S. Surface temperature variation over Zimbabwe between 1897 and 1993. Theor. Appl. Climatol. 1997, 56, 89–101. [Google Scholar] [CrossRef]
- Zheng, X.; Basher, R.E.; Thompson, C.S. Trend detection in regional-mean temperature series: Maximum, minimum, mean, diurnal range, and SST. J. Climate 1997, 10, 317–326. [Google Scholar] [CrossRef]
- Salinger, M.J.; Mullan, A.B. New Zealand climate: Temperature and precipitation variations and their links with atmospheric circulation 1930–1994. Int. J. Climatol. 1999, 19, 1049–1071. [Google Scholar] [CrossRef]
- Collins, D.A.; Della-Marta, P.M.; Plummer, N.; Trewin, B.C. Trends in annual frequencies of extreme temperature events in Australia. Aust. Meteorol. Mag. 2000, 49, 277–292. [Google Scholar]
- King’uyu, S.M.; Ogallo, L.A.; Anyamba, E.K. Recent trends of minimum and maximum surface temperatures over Eastern Africa. J. Climate 2000, 13, 2876–2886. [Google Scholar] [CrossRef]
- Kruger, A.C.; Shongwe, S. Temperature trends in South Africa: 1960–2003. Int. J. Climatol. 2004, 24, 1929–1945. [Google Scholar] [CrossRef]
- Roffe, S.J.; van der Walt, A.J. Representation and evaluation of southern Africa’s seasonal mean and extreme temperatures in the ERA5-based reanalysis products. Atmos. Res. 2023, 284, 106591. [Google Scholar] [CrossRef]
- Hersi, N.A.M.; Mulungu, D.M.M.; Nobert, J. Prediction of future climate in semi-arid catchment under CMIP6 scenarios: A case study of Bahi (Manyoni) catchment in Internal Drainage basin (IDB), Tanzania. Phys. Chem. Earth 2023, 129, 103309. [Google Scholar] [CrossRef]
- Zareian, M.J.; Dehban, H.; Gohari, A. Changes in temperature and precipitation extremes over Western Asia: A regional ensemble from CMIP6. Atmos. Res. 2024, 311, 107707. [Google Scholar] [CrossRef]
- Adigun, P.; Ogunrinde, A.T.; Dairaku, K.; Adebiyi, A.A.; Xian, X. The future of photovoltaic energy potential in Africa under higher emission scenarios: Insights from CMIP6 multi-model ensemble analysis. Sol. Energy 2025, 285, 113078. [Google Scholar] [CrossRef]
- Weather and Climate. Air Temperature and Precipitation by Months and Years. Available online: http://www.pogodaiklimat.ru/history.php (accessed on 5 October 2024). In Russian.
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2495. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- NOAA Physical Sciences Laboratory. Climate Protection Web Portal: Maps [MM]. Available online: https://psl.noaa.gov/ipcc/ocn/ (accessed on 5 October 2024).
- NOAA Physical Sciences Laboratory. Climate Protection Web Portal: CMIP6 Maps [MM]. Available online: https://psl.noaa.gov/ipcc/cmip6/ (accessed on 5 October 2024).
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Efimov, V.V.; Volodin, E.M.; Anisimov, A.E.; Barabanov, V.S. Regional projections of climate change for the Black Sea—Caspian Sea area in the late XXI century. Phys. Oceanogr. 2015, 5, 49–66. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Reichler, T.; Kim, J. How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc. 2008, 89, 303–312. [Google Scholar] [CrossRef]
- Serykh, I.V.; Tolstikov, A.V. Climatic changes of air temperature in the western part of the Russian Arctic in 1940–2099 according to ERA5 data and CMIP6 models. Arkt. Ekol. I Ekon. [Arct. Ecol. Econ.] 2024, 14, 334–349. (In Russian) [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Lehner, F.; Deser, C.; Maher, N.; Marotzke, J.; Fischer, E.M.; Brunner, L.; Knutti, R.; Hawkins, E. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dynam. 2020, 11, 491–508. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Pean, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; p. 2391. [Google Scholar] [CrossRef]
- Müller, P.H.; Neuman, P.; Storm, R. Tafeln der Mathematischen Statistik; VEB Fachbuchverlag: Leipzig, Germany, 1973; p. 274. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Non-parametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Miller, A.J.; Cayan, D.R.; Barnett, T.P.; Graham, N.E.; Oberhuber, J.M. The 1976–77 climate shift of the Pacific Ocean. Oceanography 1994, 7, 21–26. [Google Scholar] [CrossRef]
- Gregory, J.M.; Andrews, T.; Good, P.; Mauritsen, T.; Forster, P.M. Small global-mean cooling due to volcanic radiative forcing. Clim. Dyn. 2016, 47, 3979–3991. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Fasullo, J.T.; Hu, A.; Trenberth, K.E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 2011, 1, 360–364. [Google Scholar] [CrossRef]
- Bond, N.A.; Overland, J.E.; Spillane, M.; Stabeno, P. Recent shifts in the state of the North Pacific. Geophys. Res. Lett. 2003, 30, 2183. [Google Scholar] [CrossRef]
- Philippon, N.; Rouault, M.; Richard, Y.; Favre, A. The influence of ENSO on winter rainfall in South Africa. Int. J. Climatol. 2012, 32, 2333–2347. [Google Scholar] [CrossRef]
- Gore, M.; Abiodun, B.J.; Kucharski, F. Understanding the influence of ENSO patterns on drought over southern Africa using SPEEDY. Clim. Dyn. 2020, 54, 307–327. [Google Scholar] [CrossRef]
- Tyrrell, N.L.; Dommenget, D.; Frauen, C.; Wales, S.; Rezny, M. The influence of global sea surface temperature variability on the large-scale land surface temperature. Clim. Dyn. 2015, 44, 2159–2176. [Google Scholar] [CrossRef]
- Serykh, I.V.; Sonechkin, D.M. Global El Niño–Southern Oscillation Teleconnections in CMIP6 Models. Atmosphere 2024, 15, 500. [Google Scholar] [CrossRef]
- Muhlenbruch-Tegen, A. Long-term surface temperature variations in South Africa. S. Afr. J. Sci. 1992, 88, 197–205. [Google Scholar]
- Easterling, D.R.; Karl, T.R.; Gallo, K.P.; Robinson, D.A.; Trenberth, K.E.; Dai, A. Observed climate variability and change of relevance to the biosphere. J. Geophys. Res. 2000, 105, 22833–22848. [Google Scholar] [CrossRef]
- Collins, J.M. Temperature Variability over Africa. J. Climate 2011, 24, 3649–3666. [Google Scholar] [CrossRef]
- Kruger, A.C.; Sekele, S.S. Trends in extreme temperature indices in South Africa: 1962–2009. Int. J. Climatol. 2013, 33, 661–676. [Google Scholar] [CrossRef]
- MacKellar, N.; New, M.; Jack, C. Observed and modelled trends in rainfall and temperature for South Africa: 1960–2010. S. Afr. J. Sci. 2014, 110, 13. [Google Scholar] [CrossRef]
- van der Walt, A.J.; Fitchett, J.M. Exploring extreme warm temperature trends in South Africa: 1960–2016. Theor. Appl. Climatol. 2021, 143, 1341–1360. [Google Scholar] [CrossRef]
- Kruger, A.C. The Influence of the Decadal-Scale Variability of Summer Rainfall on the Impact of El Niño and La Niña Events in South Africa. Int. J. Climatol. 1999, 19, 59–68. [Google Scholar] [CrossRef]
- Moalafhi, D.B.; Evans, J.P.; Sharma, A. Influence of reanalysis datasets on dynamically downscaling the recent past. Clim. Dyn. 2017, 49, 1239–1255. [Google Scholar] [CrossRef]
- Tshiala, M.F.; Olwoch, J.M.; Engelbrecht, F.A. Analysis of Temperature Trends over Limpopo Province, South Africa. J. Geogr. Geol. 2011, 3, 13–21. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Engelbrecht, F. Green Book—Detailed Projections of Future Climate Change over South Africa; Technical Report (CSIR/BE/SPS/ER/2019/0005/C); CSIR: Pretoria, South Africa, 2019; p. 49. [Google Scholar]
- Kruger, A.C.; Rautenbach, H.; Mbatha, S.; Ngwenya, S.; Makgoale, T.E. Historical and projected trends in near-surface temperature indices for 22 locations in South Africa. S. Afr. J. Sci. 2019, 115, 50–58. [Google Scholar] [CrossRef]
- Hardin, A.W.; Liu, Y.; Cao, G.; Vanos, J.K. Urban heat island intensity and spatial variability by synoptic weather type in the northeast U.S. Urb. Clim. 2018, 24, 747–762. [Google Scholar] [CrossRef]
- South Africa Government Gazette. Act No. 22 of 2024: Climate Change Act, 2024. Jul. 23, 2024. Cape Town. Available online: https://www.gov.za/sites/default/files/gcis_document/202407/50966climatechangeact222024.pdf (accessed on 19 February 2024).
- South Africa Government Gazette. The National Climate Change Response Implementation Framework. 29 October 2012. Available online: https://saaqis.environment.gov.za/Lekgotla%20Proceedings/2012/4.2-climate-change-response-implementation-framework.pdf (accessed on 5 October 2024).
- South Africa Government Gazette. National Environmental Management Act, 1998 Act No. 107. 27 November 1998. Cape Town. Available online: https://www.gov.za/sites/default/files/gcis_document/201409/a107-98.pdf (accessed on 5 October 2024).
- Department of Cooperative Governance & Traditional Affairs. South Africa’s National Urban Development Policy—The IUDF: An Overview. September 2020. Pretoria. Available online: https://iudf.co.za/wp-content/uploads/2020/09/IUDF-Brochure.pdf (accessed on 5 October 2024).
- Hulme, M. 1.5 °C and climate research after the Paris Agreement. Nature Clim. Change 2016, 6, 222–224. [Google Scholar] [CrossRef]
- Ziervogel, G.; Cowen, A.; Ziniades, J. Moving from Adaptive to Transformative Capacity: Building Foundations for Inclusive, Thriving, and Regenerative Urban Settlements. Sustainability 2016, 8, 955. [Google Scholar] [CrossRef]
- Herrfahrdt-Pähle, E.; Schlüter, M.; Olsson, P.; Folke, C.; Gelcich, S.; Pahl-Wostl, C. Sustainability transformations: Socio-political shocks as opportunities for governance transitions. Glob. Environ. Change 2020, 63, 102097. [Google Scholar] [CrossRef]
- Nalau, J.; Becken, S.; Schliephack, J.; Parsons, M.; Brown, C.; Mackey, B. The Role of Indigenous and Traditional Knowledge in Ecosystem-Based Adaptation: A Review of the Literature and Case Studies from the Pacific Islands. Wea. Climate Soc. 2018, 10, 851–865. [Google Scholar] [CrossRef]
- Lemos, M.C.; Morehouse, B.J. The co-production of science and policy in integrated climate assessments. Glob. Environ. Change 2005, 15, 57–68. [Google Scholar] [CrossRef]
- Wyborn, C.; Datta, A.; Montana, J.; Ryan, M.; Leith, P.; Chaffin, B.; Miller, C.; van Kerkhoff, L. Co-Producing Sustainability: Reordering the Governance of Science, Policy, and Practice. Annu. Rev. Environ. Resour. 2019, 44, 319–346. [Google Scholar] [CrossRef]
- Norström, A.V.; Cvitanovic, C.; Löf, M.F.; West, S.; Wyborn, C.; Balvanera, P.; Bednarek, A.T.; Bennett, E.M.; Biggs, R.; de Bremond, A.; et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 2020, 3, 182–190. [Google Scholar] [CrossRef]
- Meadowcroft, J. Climate change governance. In World Bank Policy Research Working Paper, 4941; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Hölscher, K.; Frantzeskaki, N.; Loorbach, D. Steering transformations under climate change: Capacities for transformative climate governance and the case of Rotterdam, the Netherlands. Reg. Environ. Change 2019, 19, 791–805. [Google Scholar] [CrossRef]
- Castán Broto, V. Urban Governance and the Politics of Climate Change. World Dev. 2017, 93, 1–15. [Google Scholar] [CrossRef]
- Pelling, M.; Leck, H.; Pasquini, L.; Ajibade, I.; Osuteye, E.; Parnell, S.; Lwasa, S.; Johnson, C.; Fraser, A.; Barcena, A.; et al. Africa’s urban adaptation transition under a 1.5° climate. Curr. Opin. Environ. Sustain. 2018, 31, 10–15. [Google Scholar] [CrossRef]
- Birkmann, J.; Liwenga, E.; Pandey, R.; Boyd, E.; Djalante, R.; Gemenne, F.; Leal Filho, W.; Pinho, P.F.; Stringer, L.; Wrathall, D. Poverty, Livelihoods and Sustainable Development. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 1171–1274. [Google Scholar] [CrossRef]
Weather Stations | S, ° | W, ° | H, m | Period |
---|---|---|---|---|
Vredendal | −31.66 | −18.50 | 23 | 1958–2023 |
Springbok | −29.66 | −17.90 | 1007 | 1940–2023 |
Slangkop | −34.15 | −18.32 | 8 | 1999–2023 |
Paarl | −33.72 | −18.97 | 109 | 1960–2023 |
Clanwilliam | −32.18 | −18.89 | 100 | 1982–2023 |
Malmesbury | −33.46 | −18.72 | 102 | 1998–2023 |
Langebaanweg | −32.96 | −18.17 | 32 | 1974–2023 |
Lambert’s Bay | −32.03 | −18.33 | 94 | 1999–2023 |
Cape Town | −33.96 | −18.60 | 42 | 1940–1976, 1978–1990, 1993–2023 |
Port of Cape Town | −33.90 | −18.43 | 0 | 1999–2023 |
Worcester | −33.61 | −19.47 | 270 | 1989–2022 |
Johannesburg | −26.15 | −28.23 | 1720 | 1941–2023 |
Cape Columbine | −32.83 | −17.85 | 67 | 1950–2023 |
De Aar | −30.65 | −24.00 | 1287 | 1940–2023 |
Aliwal North | −30.80 | −26.88 | 1351 | 1940–2021 |
Newcastle | −27.76 | −29.98 | 1238 | 1985–2017 |
Ladysmith | −33.00 | −21.28 | 538 | 1960–2023 |
St Lucia | −28.50 | −32.40 | 107 | 1960–2012 |
Cedara | −29.53 | −30.28 | 1071 | 1959–2023 |
Organization | Model Name | ΔTa Between 1994–2023 and 1940–1969, °C | ΔTa Between 2025–2054 and 1994–2023, °C | ΔTa Between 2070–2099 and 1994–2023, °C | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Historical и SSP2-4.5 | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
AS-RCEC | TaiESM1 | 0.55 | 1.14 | 1.14 | 1.14 | 1.40 | 1.77 | 2.54 | 3.19 | 4.02 |
AWI | AWI-CM-1-1-MR | 0.90 | 0.63 | 0.71 | 0.88 | 0.82 | 0.73 | 1.55 | 2.43 | 2.81 |
BCC | BCC-CSM2-MR | 0.65 | 0.53 | 0.73 | 0.78 | 0.81 | 0.71 | 1.45 | 2.37 | 2.68 |
CAMS | CAMS-CSM1-0 | 0.48 | 0.45 | 0.50 | 0.64 | 0.73 | 0.61 | 1.23 | 1.87 | 2.28 |
CAS | CAS-ESM2-0 | 0.53 | 0.83 | 0.86 | 0.78 | 1.09 | 1.35 | 2.23 | 2.83 | 3.70 |
CAS | FGOALS-f3-L | 0.77 | 0.67 | 0.74 | 0.85 | 1.00 | 0.76 | 1.56 | 2.37 | 2.96 |
CAS | FGOALS-g3 | 0.62 | 0.45 | 0.64 | 0.81 | 0.73 | 0.35 | 1.19 | 2.04 | 2.34 |
CCCma | CanESM5 | 0.86 | 0.85 | 0.96 | 1.13 | 1.17 | 1.07 | 1.99 | 3.36 | 4.08 |
CCCma | CanESM5-CanOE | 0.91 | 0.73 | 0.96 | 1.04 | 1.15 | 0.91 | 1.97 | 3.26 | 4.14 |
CMCC | CMCC-CM2-SR5 | 0.71 | 0.73 | 0.75 | 0.78 | 0.89 | 1.04 | 1.80 | 2.24 | 3.05 |
CMCC | CMCC-ESM2 | 0.72 | 0.62 | 0.70 | 0.63 | 0.90 | 1.12 | 1.83 | 2.23 | 3.16 |
CNRM-CERFACS | CNRM-CM6-1 | 0.60 | 0.82 | 0.92 | 0.88 | 1.07 | 1.19 | 2.15 | 2.91 | 3.94 |
CNRM-CERFACS | CNRM-CM6-1-HR | 0.54 | 0.89 | 0.90 | 0.96 | 1.14 | 1.40 | 2.30 | 3.04 | 3.86 |
CNRM-CERFACS | CNRM-ESM2-1 | 0.58 | 0.81 | 0.86 | 0.89 | 1.00 | 1.28 | 2.10 | 2.93 | 3.62 |
CSIRO-ARCCSS | ACCESS-CM2 | 0.65 | 0.90 | 1.00 | 1.08 | 1.09 | 1.38 | 2.23 | 3.10 | 3.83 |
CSIRO | ACCESS-ESM1-5 | 0.64 | 0.64 | 0.85 | 0.78 | 0.98 | 0.83 | 1.72 | 2.46 | 2.94 |
EC-Earth-Consortium | EC-Earth3 | 0.69 | 0.64 | 0.69 | 0.81 | 0.82 | 0.88 | 1.66 | 2.54 | 3.11 |
EC-Earth-Consortium | EC-Earth3-Veg | 0.66 | 0.64 | 0.63 | 0.79 | 0.83 | 0.80 | 1.60 | 2.51 | 3.02 |
INM | INM-CM4-8 | 0.58 | 0.44 | 0.54 | 0.68 | 0.79 | 0.37 | 1.11 | 1.85 | 2.31 |
INM | INM-CM5-0 | 0.47 | 0.42 | 0.57 | 0.71 | 0.67 | 0.45 | 1.01 | 1.73 | 2.02 |
IPSL | IPSL-CM6A-LR | 0.60 | 0.71 | 0.80 | 0.91 | 0.96 | 0.83 | 1.81 | 2.72 | 3.48 |
MIROC | MIROC-ES2L | 0.64 | 0.51 | 0.53 | 0.65 | 0.76 | 0.62 | 1.32 | 2.11 | 2.56 |
MIROC | MIROC6 | 0.51 | 0.53 | 0.56 | 0.61 | 0.75 | 0.68 | 1.31 | 1.93 | 2.41 |
MOHC | UKESM1-0-LL | 0.72 | 0.97 | 1.19 | 1.33 | 1.38 | 1.29 | 2.50 | 3.56 | 4.42 |
MPI-M | MPI-ESM1-2-LR | 0.63 | 0.42 | 0.67 | 0.67 | 0.65 | 0.41 | 1.21 | 2.08 | 2.35 |
MRI | MRI-ESM2-0 | 0.50 | 0.78 | 0.82 | 0.86 | 1.05 | 1.05 | 1.72 | 2.51 | 3.14 |
NASA-GISS | GISS-E2-1-G | 0.59 | 0.74 | 0.76 | 0.83 | 0.99 | 0.79 | 1.67 | 2.47 | 3.17 |
NCAR | CESM2 | 0.47 | 0.82 | 0.87 | 0.98 | 1.11 | 1.27 | 2.21 | 2.85 | 3.88 |
NCAR | CESM2-WACCM | 0.63 | 0.84 | 0.88 | 0.85 | 1.13 | 1.23 | 2.16 | 2.79 | 3.95 |
NCC | NorESM2-LM | 0.43 | 0,41 | 0.47 | 0.49 | 0.69 | 0.52 | 1.18 | 1.70 | 2.34 |
NCC | NorESM2-MM | 0.55 | 0.45 | 0.56 | 0.64 | 0.76 | 0.61 | 1.33 | 1.93 | 2.64 |
NIMS-KMA | KACE-1-0-G | 0.69 | 0.98 | 1.03 | 1.14 | 1.24 | 1.47 | 2.24 | 3.09 | 3.75 |
NOAA-GFDL | GFDL-ESM4 | 0.67 | 0.51 | 0.59 | 0.81 | 0.76 | 0.58 | 1.32 | 2.31 | 2.57 |
Minimum | 0.43 | 0.41 | 0.47 | 0.49 | 0.65 | 0.35 | 1.01 | 1.70 | 2.02 | |
Maximum | 0.91 | 1.14 | 1.19 | 1.33 | 1.40 | 1.77 | 2.54 | 3.56 | 4.42 | |
Standard Deviation | 0.12 | 0.19 | 0.18 | 0.18 | 0.20 | 0.36 | 0.44 | 0.50 | 0.68 | |
Average | 0.63 | 0.68 | 0.77 | 0.84 | 0.95 | 0.92 | 1.73 | 2.52 | 3.17 |
Variable | Observations | Obs. With Missing Data | Obs. Without Missing Data | Min. | Max. | Mean | Std. Deviation |
---|---|---|---|---|---|---|---|
CMIP6_Histoprical | 75 | 0 | 75 | −0.199 | 0.792 | 0.199 | 0.242 |
ERA5 | 75 | 0 | 75 | −0.423 | 0.733 | 0.211 | 0.275 |
Springbok | 75 | 0 | 75 | −1.771 | 1.029 | 0.000 | 0.498 |
De Aar | 75 | 0 | 75 | −1.419 | 1.481 | 0.000 | 0.642 |
Variables | CMIP6_Histoprical | ERA5 | Springbok | De Aar |
---|---|---|---|---|
CMIP6_Histoprical | 1 | 0.8 | 0.1 | 0.6 |
ERA5 | 0.8 | 1 | 0.2 | 0.8 |
Springbok | 0.1 | 0.2 | 1 | 0.4 |
De Aar | 0.6 | 0.8 | 0.4 | 1 |
Meteostations | Years | Tamin, °C | Tamax, °C | Taev ± σ, °C | ΔTa, °C |
---|---|---|---|---|---|
Vredendal | 1994–2023 | 17.4 | 19.1 | 18.39 ± 0.37 | 0.95 |
Springbok | 1940–1969 1994–2023 1940–2023 | 16.49 15.91 15.91 | 18.34 19.16 19.16 | 17.55 ± 0.30 17.83 ± 0.52 17.72 ± 0.42 | 0.05 0.42 0.15 |
Paarl | 1994–2023 | 17.9 | 19.7 | 18.62 ± 0.26 | –0.5 |
Clanwilliam | 1994–2023 | 18.9 | 20.8 | 19.66 ± 0.27 | –0.35 |
Langebaanweg | 1994–2023 | 16.4 | 17.8 | 17.05 ± 0.21 | –0.15 |
Johannesburg | 1940–1969 1994–2023 1941–2023 | 14.6 14.4 14.4 | 17 18 18 | 15.53 ± 0.39 16.26 ± 0.68 15.84 ± 0.62 | –1.1 2.1 1.3 |
Cape Town | 1940–1969 1994–2023 1940–2023 | 15.4 15.9 15.7 | 17.9 17.8 17.9 | 16.83 ± 0.54 17.11 ± 0.35 16.83 ± 0.51 | –1.5 1.1 0.4 |
De Aar | 1940–1969 1994–2023 1940–2023 | 15.3 16.1 15.3 | 17.0 18.9 18.9 | 16.32 ± 0.38 17.45 ± 0.46 16.81 ± 0.57 | 0.95 0.9 1.7 |
Aliwal North | 1940–1969 1994–2021 1940–2021 | 14.4 14.0 13.7 | 17.0 16.0 17.0 | 15.63 ± 0.39 14.99 ± 0.41 15.25 ± 0.54 | 0.1 0.4 0.95 |
Ladysmith | 1994–2023 | 15.7 | 19.7 | 17.68 ± 0.58 | 0.3 |
Cedara | 1994–2023 | 14.6 | 16.7 | 15.56 ± 0.42 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serykh, I.; Krasheninnikova, S.; Gorbunova, T.; Gorbunov, R.; Akpan, J.; Ajayi, O.; Reddy, M.; Musonge, P.; Mora-Camino, F.; Olanrewaju, O.A. Climate Change of Near-Surface Temperature in South Africa Based on Weather Station Data, ERA5 Reanalysis, and CMIP6 Models. Climate 2025, 13, 161. https://doi.org/10.3390/cli13080161
Serykh I, Krasheninnikova S, Gorbunova T, Gorbunov R, Akpan J, Ajayi O, Reddy M, Musonge P, Mora-Camino F, Olanrewaju OA. Climate Change of Near-Surface Temperature in South Africa Based on Weather Station Data, ERA5 Reanalysis, and CMIP6 Models. Climate. 2025; 13(8):161. https://doi.org/10.3390/cli13080161
Chicago/Turabian StyleSerykh, Ilya, Svetlana Krasheninnikova, Tatiana Gorbunova, Roman Gorbunov, Joseph Akpan, Oluyomi Ajayi, Maliga Reddy, Paul Musonge, Felix Mora-Camino, and Oludolapo Akanni Olanrewaju. 2025. "Climate Change of Near-Surface Temperature in South Africa Based on Weather Station Data, ERA5 Reanalysis, and CMIP6 Models" Climate 13, no. 8: 161. https://doi.org/10.3390/cli13080161
APA StyleSerykh, I., Krasheninnikova, S., Gorbunova, T., Gorbunov, R., Akpan, J., Ajayi, O., Reddy, M., Musonge, P., Mora-Camino, F., & Olanrewaju, O. A. (2025). Climate Change of Near-Surface Temperature in South Africa Based on Weather Station Data, ERA5 Reanalysis, and CMIP6 Models. Climate, 13(8), 161. https://doi.org/10.3390/cli13080161