The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Process
2.2.1. Georeferencing and Measurement
2.2.2. Climatic Data
2.2.3. Statistical Analysis
3. Results
3.1. Georeferencing and Measurement
3.2. Glacier Thickness Measurements
3.3. Glacier Modeling
3.4. Climate Data
3.5. Principal Component Analysis
3.6. Cluster Analysis
4. Discussion
4.1. Monitoring
4.2. Decrease in the Carihuairazo Glacier and Its Climatic Relationship
4.3. Climate Patterns, Glacial Retreat, and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quevedo-Tejada, D.; Landeros, E.; Olivares, D.; McPhee, J.; Caro, A.; Berroeta, C.; Fuentes, J. Dinámica de la contribución glaciar a la cuenca alta del río yeso durante el periodo de ablación 2017/2018. Aqua-LAC 2019, 11, 59–70. [Google Scholar] [CrossRef]
- Condom, T.; Suárez, W.; Cochachin Rapre, A.; Gómez, J. Variaciones Glaciares y Disponibilidad de Agua en la Cordillera Blanca del Perú Desde Hace 40 Años. Available online: https://hdl.handle.net/20.500.12542/2017 (accessed on 24 June 2025).
- Shen, Z.; Zhou, W.; Li, J.; Chan, J.C. A frequent ice-free Arctic is likely to occur before the mid-21st century. npj Clim. Atmos. Sci. 2023, 6, 103. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; He, X.; Li, Z.; Wang, P. Evaluation on glaciers ecological services value in the Tianshan Mountains, Northwest China. J. Geogr. Sci. 2019, 29, 101–114. [Google Scholar] [CrossRef]
- Fagre, D.B. Chapter 1 Introduction: Understanding the Importance of Alpine Treeline Ecotones in Mountain Ecosystems. In Developments in Earth Surface Processes; Horáček, I., Ford, D.C., Bosák, P., Glazek, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–9. [Google Scholar] [CrossRef]
- Clapperton, C.M. Glacial and volcanic geomorphology of the Chimborazo-Carihuairazo Massif, Ecuadorian Andes. Earth Environ. Sci. Trans. R. Soc. Edinb. 1990, 81, 91–116. [Google Scholar] [CrossRef]
- Dussaillant, I.; Berthier, E.; Brun, F.; Masiokas, M.; Hugonnet, R.; Favier, V.; Rabatel, A.; Pitte, P.; Ruiz, L. Two decades of glacier mass loss along the Andes. Nat. Geosci. 2019, 12, 802–808. [Google Scholar] [CrossRef]
- Vuille, M.; Carey, M.; Huggel, C.; Buytaert, W.; Rabatel, A.; Jacobsen, D.; Soruco, A.; Villacis, M.; Yarleque, C.; Timm, O.E.; et al. Rapid decline of snow and ice in the tropical Andes—Impacts, uncertainties and challenges ahead. Earth-Sci. Rev. 2018, 176, 195–213. [Google Scholar] [CrossRef]
- Hidalgo, D.; Domínguez, C.; Villacís, M.; Ruíz, J.C.; Maisincho, L.; Cáceres, B.; Crespo-Pérez, V.; Condom, T.; Piedra, D. Retroceso del glaciar del Carihuairazo y sus implicaciones en la comunidad de Cunucyacu. Granja Rev. Cienc. Vida 2024, 39, 92–115. [Google Scholar] [CrossRef]
- La Frenierre, J.; Mark, B.G. Detecting Patterns of Climate Change at Volcán Chimborazo, Ecuador, by Integrating Instrumental Data, Public Observations, and Glacier Change Analysis. Ann. Am. Assoc. Geogr. 2017, 107, 979–997. [Google Scholar] [CrossRef]
- Escobar, M.; Lima, N.; Purkey, D.; Yates, D.; Forni, L. Modelación hidrológica y escenarios de cambio climático en cuencas de suministro de agua de las ciudades la paz y el alto, Bolivia. Aqua-LAC 2013, 5, 23–34. [Google Scholar] [CrossRef]
- Cáceres, B.; Francou, B.; Favier, V.; Bontron, G.; Tachker, P.; Bucher, R.; Taupin, J.D.; Vuille, M.; Maisincho, L.; Delachaux, F.; et al. El glaciar 15 del Antisana investigaciones glaciológicas y su relación con el recurso hídrico. In Climate Variability and Change-Hydrological Impacts, Proceedings of the Fifth FRIEND World Conference, Havana, Cuba, 27 November–1 December 2006; IAHS Publ.: Oxfordshire, UK, 2006; Volume 308, pp. 479–482. Available online: https://iahs.info/uploads/dms/13707.87-479-482-29-308-BOLIVAR-CACERES.pdf (accessed on 20 June 2025).
- Jordan, E.; Ungerechts, L.; Cáceres, B.; Francou, B.; Peñafiel, A.; Francou, B. Estimation by Photogrammetry of the glacier recession on the Cotopaxi Volcano (Ecuador) between 1956 and 1997. Hydrol. Sci. J. 2005, 50, 949–961. [Google Scholar] [CrossRef]
- Cáceres, B.; Maisincho, L.; Taupin, J.D.; Francou, B.; Cadier, E.; Delachaux, F.; Bucher, R.; Villacis, M.; Paredes, D.; Chazarin, J.P.; et al. Glaciares del Ecuador: Antisana y Carihuayrazo. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-03/010045458.pdf (accessed on 24 June 2025).
- Rhoades, R. Desaparición del glaciar Mama Cotacachi: Investigación etnoecológica y cambio climático en los Andes de Ecuador. Pirineos 2008, 163, 37–50. [Google Scholar] [CrossRef]
- Hastenrath, S. The Glaciation of Ecuadorian Andes; A.A. Balkema: Rotterdam, The Netherlands, 1981. [Google Scholar]
- Rabatel, A.; Machaca, A.; Francou, B.; Jomelli, V. Glacier recession on Cerro Charquini (Bolivia, 16°S) since the maximum of the Little Ice Age (17th Century). J. Glaciol. 2006, 52, 110–118. [Google Scholar] [CrossRef]
- Rabatel, A. Reconstruction et Interprétation Paléoclimatique des Fluctuations Glaciaires Dans les Andes de Bolivie (16°S) Depuis le Maximum du Petit Age Glaciaire. Ph.D. Thesis, Joseph Fourier University, Grenoble, France, 2005; 192p. Available online: https://www.persee.fr/doc/bagf_0004-5322_2011_num_88_1_8200 (accessed on 5 June 2025).
- Jomelli, V.; Favier, V.; Rabatel, A.; Brunstein, D.; Hoffmann, G.; Francou, B. Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 269–282. [Google Scholar] [CrossRef]
- Farinotti, D.; Huss, M.; Fürst, J.J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A. A consensus estimates for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168–173. [Google Scholar] [CrossRef]
- Schubert, C. The Glaciation of the Ecuadorian Andes. EOS 1982, 63, 835–836. [Google Scholar] [CrossRef]
- Cáceres, B. Evolución de los glaciares del Cotopaxi. In Actualización del Inventario de Tres Casquetes Glaciares del Ecuador; Université Nice Sophia Antipolis: Nice, France, 2010; Available online: https://core.ac.uk/download/pdf/39836084.pdf (accessed on 5 June 2025).
- Cáceres, B. Upgrade of the inventory for the Glaciers of Ecuador. In Actualización del Inventario de Tres Casquetes Glaciares del Ecuador; WGMS Fog 9-2000–2005; WGMS-UNESCO-PHI; Université Nice Sophia Antipolis: Nice, France, 2010; Available online: https://core.ac.uk/download/pdf/39836084.pdf (accessed on 24 June 2025).
- Sruoga, P.; Yamin, M.; Corvalan, M.; Kaufman, J.; Elissondo, M.; Craig, V.O.; Badi, G.; García, S. Late Pleistocene subglacial fissure-related volcanism at Caviahue-Copahue Volcanic Complex (37° 51° S, 71° 05’ W), South Volcanic Zone. J. S. Am. Earth Sci. 2021, 110, 103309. [Google Scholar] [CrossRef]
- Cáceres, B.; Cauvy, S. Carihuayrazo SW a Little Ecuadorian Glacier in the Way to Extinction; C13B-0812; INAMHI: Quito, Equador, 2015. [Google Scholar] [CrossRef]
- Francou, B.; Vuille, M.; Favier, V.; Cáceres, B. New evidences of ENSO impacts on glaciers at low latitude: Antizana 15, Andes of Ecuador, 0°28′. J. Geophys. Res. 2004, 109, D18106. [Google Scholar] [CrossRef]
- Zhao, F.; Gong, W.; Bianchini, S.; Yang, Z. Linking glacier retreat with climate change on the tibetan plateau through satellite remote sensing. EGUsphere 2024, preprint. [Google Scholar] [CrossRef]
- Robbins, E.; Hlaing, T.T.; Webb, J.; Kachouie, N.N. Supervised methods for modeling spatiotemporal glacier variations by quantification of the area and terminus of mountain glaciers using remote sensing. Algorithms 2023, 16, 486. [Google Scholar] [CrossRef]
- Scherler, D.; Wulf, H.; Gorelick, N. Global assessment of supraglacial debris-cover extents. Geophys. Res. Lett. 2018, 45, 11798–11805. [Google Scholar] [CrossRef]
- Ng, K.; Yap, S.; Cheng, K. Assessment of glacier mass balance in the himalayan-karakoram region. Quantum J. Soc. Sci. Humanit. 2022, 3, 60–71. [Google Scholar] [CrossRef]
- Bris, R.; Paul, F.; Frey, H.; Bolch, T. A new satellite-derived glacier inventory for western alaska. Ann. Glaciol. 2011, 52, 135–143. [Google Scholar] [CrossRef]
- Welty, E.; Zemp, M.; Navarro, F.; Huss, M.; Fürst, J.J.; Gärtner-Roer, I.; Landmann, J.; Machguth, H.; Naegeli, K.; Andreassen, L.M.; et al. Worldwide version-controlled database of glacier thickness observations. Earth Syst. Sci. Data Discuss. 2020, 12, 3039–3055. [Google Scholar] [CrossRef]
- Rivadeneira, S. Carihuairazo la montaña de la nieve con viento macho. Montaña 2011, 100, 12–25. [Google Scholar]
- Kabutov, H.; Kayumov, A.; Saks, T.; Navruzshoyev, H.; Vosidov, F.; Nekkadamovaa, N.; Halimov, A. Mass balance of glacier №139 in the eastern pamir’s lake karakul basin. Cent. Asian J. Water Res. 2022, 8, 128–140. [Google Scholar] [CrossRef]
- MAATE. Sistema Nacional de Áreas Protegidas SNAP. 2024. Available online: http://ide.ambiente.gob.ec/mapainteractivo/ (accessed on 4 October 2024).
- Honorable Gobierno Provincial del Tungurahua. Plan de Desarrollo y Ordenamiento Territorial—Tungurahua, 2019–2023. Available online: https://www.tungurahua.gob.ec/file/2020/07/PDyOT-TUNGURAHUA-2019-2023-Version-2.pdf (accessed on 24 June 2024).
- MAE. Borrador del Plan Manejo de la Reserva de Producción de Fauna Chimborazo; Ministerio del Ambiente, Dirección Nacional de Biodiversidad: Riobamba, Ecuador, 2019. [Google Scholar]
- Vaca, P.; Moscoso, M.; Vaca-Cárdenas, M. Analysis of Spectral Indices of Images Captured from an Unmanned Aerial Vehicle at the ANA Moyocancha Altitude Station. J. Surv. Fish. Sci. 2023, 10, 2979–2990. Available online: https://www.afjbs.com/uploads/paper/d3fde83e9178ed3e51b3a4fbb6c58772.pdf (accessed on 5 June 2025).
- Chang, K. Geographic Information System. In International Encyclopedia of Geography: People, the Earth, Environment and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Ning, F. Site selection for offshore wind power farms with natural disaster risk assessment: A case study of the waters off taiwan’s west coast. Energies 2024, 17, 2711. [Google Scholar] [CrossRef]
- Gordon, S.; Sharp, M.; Hubbard, B.; Willis, I.; Smart, C.C.; Copland, L.; Ketterling, B. Borehole drainage and its implications for the investigation of glacier hydrology: Experiences from haut glacier d’arolla, switzerland. Hydrol. Process. 2001, 15, 797–813. [Google Scholar] [CrossRef]
- Mieloszyk, J.; Tarnowski, A.; Goetzendorf-Grabowski, T.; Kowalski, M.; Goliszek, B. Comparison of different fidelity mass analyses. Aircr. Eng. Aerosp. Technol. 2021, 93, 1229–1235. [Google Scholar] [CrossRef]
- Shin, D.; Park, J.; Shin, B.; Chung, M. Surface models of the male urogenital organs built from the visible korean using popular software. Anat. Cell Biol. 2011, 44, 151. [Google Scholar] [CrossRef]
- Ji, X.; Chen, Y.; Jiang, W.; Liu, C.; Yang, L. Cambios en el área de los glaciares en la cuenca del río Nu-jiang-Salween durante los últimos 45 años. J. Geogr. Sci. 2022, 32, 1177–1204. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhang, Z.; Kang, Z.; Tian, H.; Wang, T.; Chen, H. Spatial and temporal variation characteristics of glacier resources in Xinjiang over the past 50 years. Water 2022, 14, 1057. [Google Scholar] [CrossRef]
- Lépez, H.R. Técnica de extracción, transformación y carga de datos de estaciones meteorológicas. Rev. Cienc. Tecnol. 2019, 32, 28–32. [Google Scholar] [CrossRef]
- Huang, X.; Bao, A.; Guo, H.; Meng, F.; Zhang, P.; Zheng, G.; Du, W. Cambios espaciotemporales de los glaciares típicos y sus respuestas al cambio climático en Xinjiang, noroeste de China. J. Arid Land 2022, 14, 502–520. [Google Scholar] [CrossRef]
- Pincebourde, S.; Sallé, A. On the importance of getting fine-scale temperature records near any surface. Glob. Change Biol. 2020, 26, 6025–6027. [Google Scholar] [CrossRef]
- Diaz, R.D.; Machaca, A.D.; Belizario, G.; Lujano, E. Effects of Climate Change on Mountain Ecosystems in the Carabaya Mountain Range-Peru. Rev. Bras. Meteorol. 2023, 38, e38230088. [Google Scholar] [CrossRef]
- Li, H.; Lin, C.; Wan, X.; Li, Z. Feature representation and similarity measure based on covariance sequence for multivariate time series. IEEE Access 2019, 7, 67018–67026. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, M.; Chen, L. Mk-dcca-based fault diagnosis for incipient faults in nonlinear dynamic processes. Processes 2023, 11, 2927. [Google Scholar] [CrossRef]
- Guo, Y.; Schuurmans, D. Efficient global optimization for exponential family pca and low-rank matrix factorization. In Proceedings of the 2008 46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 23–26 September 2008; pp. 1100–1107. [Google Scholar] [CrossRef]
- Zhang, C.; Gai, K.; Zhang, S. Matrix normal pca for interpretable dimension reduction and graphical noise modeling. arXiv 2019, arXiv:1911.10796. [Google Scholar] [CrossRef]
- Palacio, F.X.; Apodaca, M.J.; Crisci, J.V. Análisis Multivariado Para Datos Biológicos: Teoría y su Aplicación Utilizando el Lenguaje R; Fundación de Historia Natural Félix de Azara: Buenos Aires, Argentina, 2020. [Google Scholar]
- Dağtekin, G.; Kılınç, A.; Çolak, E.; Ünsal, A.; Arslantaş, D. Classification of oecd countries in terms of medical resources and usage with hierarchical clustering analysis. Osman. J. Med. 2021, 44, 487–492. [Google Scholar] [CrossRef]
- Singh, A.; Sisley, K.; Xu, Y.; Li, J.; Faber, P.; Plummer, S.; Williams, B. Reduced expression of autotaxin predicts survival in uveal melanoma. Br. J. Ophthalmol. 2007, 91, 1385–1392. [Google Scholar] [CrossRef]
- Pandove, D.; Malhi, A. A correlation-based recommendation system for large data sets. J. Grid. Comput. 2021, 19, 42. [Google Scholar] [CrossRef]
- Stedman, M.; Lew, R.; Losina, E.; Gagnon, D.; Solomon, D.; Brookhart, M. A comparison of statistical approaches for physician-randomized trials with survival outcomes. Contemp. Clin. Trials 2012, 33, 104–115. [Google Scholar] [CrossRef]
- Tian, L.; Liu, Y.; Yi, Z.; Yan, L.; Gui, Z.; Li, H. Comparative research on the impact of correlation between clustering factors on land use zoning: A case study of linxiang, china. Appl. Mech. Mater. 2013, 295–298, 2481–2485. [Google Scholar] [CrossRef]
- Conway, J.; Abermann, J.; Andreassen, L.; Azam, M.; Cullen, N.; Fitzpatrick, N.; Sicart, J. Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments. Cryosphere 2022, 16, 3331–3356. [Google Scholar] [CrossRef]
- Andreassen, L.; Paul, F.; Kääb, A.; Hausberg, J. Landsat-derived glacier inventory for jotunheimen, norway, and deduced glacier changes since the 1930s. Cryosphere 2008, 2, 131–145. [Google Scholar] [CrossRef]
- Cielos, R.; Mata, J.; Galilea, A.; Alonso, M.; Cielos, P.; Navarro, F. Geomatic methods applied to the study of the front position changes of the front position changes of Johnsons and Hurd Glaciers, Livingston Island, Antarctica, between 1957 and 2013. Earth Syst. Sci. Data 2016, 8, 341–353. [Google Scholar] [CrossRef]
- Kääb, A.; Winsvold, S.; Altena, B.; Nuth, C.; Nägler, T.; Wuite, J. Glacier remote sensing using sentinel-2. part i: Radiometric and geometric performance, and application to ice velocity. Remote Sens. 2016, 8, 598. [Google Scholar] [CrossRef]
- Belloni, V.; Fugazza, D.; Rita, M. UAV-based glacier monitoring: GNSS kinematic track post-processing and direct georeferencing for accurate reconstructions in challenging environments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B1-2022, 367–373. [Google Scholar] [CrossRef]
- Che, Y.; Wang, S.; Yi, S.; Wei, Y.; Cai, Y. Summer mass balance and surface velocity derived by unmanned aerial vehicle on debris-covered region of baishui river glacier no. 1, yulong snow mountain. Remote Sens. 2020, 12, 3280. [Google Scholar] [CrossRef]
- John, C.; Shilling, F.; Post, E. drptoolkit: An automated workflow for aligning and analysing vegetation and ground surface time-series imagery. Methods Ecol. Evol. 2021, 13, 54–59. [Google Scholar] [CrossRef]
- Wang, J.; Sun, W.; Zhang, J. Sea surface salinity products validation based on triple match method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4361–4366. [Google Scholar] [CrossRef]
- Pozada Rengifo, R.; Bravo Toledo, L.; Iparraguirre Ayala, J.E. Retroceso glaciar y el valor de los servicios ecosistémicos asociados con el recurso hídrico en la cuenca Parón-Parque Nacional Huascarán (Cordillera Blanca), 2009–2018. Tecnol. Cienc. Agua 2023, 14, 76–121. [Google Scholar] [CrossRef]
- Campos, N. Revisión de procedimientos metodológicos para la reconstrucción glaciar y el cálculo de la altitud de la línea de equilibrio. Rev. De Geogr. Norte Gd. 2020, 76, 321–350. [Google Scholar] [CrossRef]
- Binder, D.; Brückl, E.; Roch, K.; Behm, M.; Schöner, W.; Hynek, B. Determination of total ice volume and ice-thickness distribution of two glaciers in the hohe tauern region, eastern alps, from gpr data. Ann. Glaciol. 2009, 50, 71–79. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Zhu, J.; Li, X.; Xu, B.; Wang, Q.; Hu, J. Early 21st century glacier thickness changes in the central tien shan. Remote Sens. Environ. 2017, 192, 12–29. [Google Scholar] [CrossRef]
- Pelto, M.; Kavanaugh, J.; McNeil, C. Juneau Icefield Mass Balance Program 1946–2011. Earth Syst. Sci. Data Discuss. 2013, 6, 119–151. [Google Scholar] [CrossRef]
- Gacitúa, G.; Schneider, C.; Arigony, J.; Gonzalez, I.; Jaña, R.; Casassa, G. First ice thickness measurements in Tierra del Fuego at Schiaparelli Glacier, Chile. Earth Syst. Sci. Data. 2021, 13, 231–236. [Google Scholar] [CrossRef]
- Huss, M.; Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res. Atmos. 2012, 117, F04010. [Google Scholar] [CrossRef]
- Steidl, V. Physics-aware machine learning for glacier ice thickness estimation: A case study for svalbard. EGUsphere, 2024; preprint. [Google Scholar] [CrossRef]
- Kutuzov, S.; Thompson, L.G.; Lavrentiev, I.; Tian, L. Ice thickness measurements of Guliya ice cap, western Kunlun Mountains (Tibetan Plateau), China. J. Glaciol. 2018, 64, 977–989. [Google Scholar] [CrossRef]
- Holobâcă, I.; Tielidze, L.; Ivan, K.; Elizbarashvili, M.; Alexe, M.; Germain, D.; Gaprindashvili, G. Multi-sensor remote sensing to map glacier debris cover in the greater caucasus, georgia. J. Glaciol. 2021, 67, 685–696. [Google Scholar] [CrossRef]
- Aggarwal, A.; Jain, S.; Lohani, A.; Jain, N. Glacial lake outburst flood risk assessment using combined approaches of remote sensing, gis and dam break modelling. Geomat. Nat. Hazards Risk 2013, 7, 18–36. [Google Scholar] [CrossRef]
- Thakuri, S.; Salerno, F.; Smiraglia, C.; Bolch, T.; D’Agata, C.; Viviano, G.; Tartari, G. Tracing glacier changes since the 1960s on the south slope of mt. everest (central southern himalaya) using optical satellite imagery. Cryosphere 2014, 8, 1297–1315. [Google Scholar] [CrossRef]
- Jiang, S.; Nie, Y.; Liu, Q.; Wang, J.; Liu, L.; Hassan, J.; Xia, X. Glacier change, supraglacial debris expansion and glacial lake evolution in the gyirong river basin, central himalayas, between 1988 and 2015. Remote Sens. 2018, 10, 986. [Google Scholar] [CrossRef]
- Rocha, A.S.; Caro, C.A. Análisis de señales de flujo en glaciares menores de 25 hectáreas: Propuesta de un nuevo umbral de área para glaciaretes. Rev. Geográfica Sur 2025, 11, 18–34. [Google Scholar] [CrossRef]
- Gan, R.; Luo, Y.; Zuo, Q.; Sun, L. Effects of projected climate change on the glacier and runoff generation in the naryn river basin, central asia. J. Hydrol. 2015, 523, 240–251. [Google Scholar] [CrossRef]
- Ali, S.; Shukla, A. An exigency for ice core studies to determine spatio-temporal variability in moisture sources and impact of black carbon-mineral aerosols on the himalayan glaciers. J. Atmos. Sci. Res. 2021, 4, 60–62. [Google Scholar] [CrossRef]
- Alexander, D.; Davies, T.; Shulmeister, J. Basal melting beneath a fast-flowing temperate tidewater glacier. Ann. Glaciol. 2013, 54, 265–271. [Google Scholar] [CrossRef]
- Fujita, K.; Hiyama, K.; Iida, H.; Ageta, Y. Self-regulated fluctuations in the ablation of a snow patch over four decades. Water Resour. Res. 2010, 46, W11541. [Google Scholar] [CrossRef]
- Leclercq, P.; Weidick, A.; Paul, F.; Bolch, T.; Citterio, M.; Oerlemans, J. Brief communication: Historical glacier length changes in west greenland. Cryosphere 2012, 6, 1339–1343. [Google Scholar] [CrossRef]
- Huss, M.; Funk, M.; Ohmura, A. Strong alpine glacier melts in the 1940s due to enhanced solar radiation. Geophys. Res. Lett. 2009, 36, L23501. [Google Scholar] [CrossRef]
- Tian, H.; Yang, T.; Liu, Q. Climate change and glacier area shrinkage in the qilian mountains, china, from 1956 to 2010. Ann. Glaciol. 2014, 55, 187–197. [Google Scholar] [CrossRef]
- Moon, T.; Joughin, I. Changes in ice front position on greenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res. Atmos. 2008, 113, F02022. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Guo, H.; Yi, L.; Zeng, J.; Li, B. Glacial lake area changes in high mountain asia during 1990–2020 using satellite remote sensing. Research 2022, 2022, 9821275. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Chen, J.; Yi, M. Arctic glacial lake area changes and its influencing factors under climate change: A case study of southwest greenland ice sheet. J. Phys. Conf. Ser. 2025, 2941, 012074. [Google Scholar] [CrossRef]
- Liu, K.; Yan, Q.; Guo, X.; Wang, W.; Zhang, Z.; Ji, M.; Wang, F.; Liu, Y. Glacier retreat induces contrasting shifts in bacterial biodiversity patterns in glacial lake water and sediments. Microb. Ecol. 2024, 87, 128. [Google Scholar] [CrossRef]
- Fodelianakis, S.; Washburne, A.D.; Bourquin, M.; Pramateftaki, P.; Kohler, T.J.; Styllas, M.; Tolosano, M.; De Staercke, V.; Schön, M.; Busi, S.B.; et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. Isme J. 2021, 16, 666–675. [Google Scholar] [CrossRef]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füreder, L.; Cauvy-Fraunié, S.; Gíslason, G.M.; Jacobsen, D.; Hannah, D.M. Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef] [PubMed]
- Losapio, G.; Cerabolini, B.; Maffioletti, C.; Tampucci, D.; Gobbi, M.; Caccianiga, M. The consequences of glacier retreat are uneven between plant species. Front. Ecol. Evol. 2021, 8, 616562. [Google Scholar] [CrossRef]
- Fell, S.; Carrivick, J.; Brown, L. The multitrophic effects of climate change and glacier retreat in mountain rivers. Bioscience 2017, 67, 897–911. [Google Scholar] [CrossRef]
- Stibal, M.; Bradley, J.A.; Edwards, A.; Hotaling, S.; Zawierucha, K.; Rosvold, J.; Lutz, S.; Cameron, K.A.; Mikucki, J.A.; Kohler, T.J. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat. Ecol. Evol. 2020, 4, 686–687. [Google Scholar] [CrossRef] [PubMed]
- Tu, B.N.; Khelidj, N.; Cerretti, P.; de Vere, N.L.; Ferrari, A.; Paone, F.; Polidori, C.; Schmid, J.; Sommaggio, D.; Losapio, G. Glacier retreat erodes plant–insect interaction diversity. Alp. Bot. 2023, 134, 171–182. [Google Scholar] [CrossRef]
- Bosson, J.B.; Huss, M.; Cauvy-Fraunié, S.; Clément, J.C.; Costes, G.; Fischer, M.; Poulenard, J.; Arthaud, F. Future emergence of new ecosystems caused by glacial retreat. Nature 2023, 620, 562–569. [Google Scholar] [CrossRef]
- Del Gobbo, C.; Colucci, R.R.; Monegato, G.; Žebre, M.; Giorgi, F. Atmosphere–cryosphere interactions during the last phase of the Last Glacial Maximgum (21 ka) in the European Alps. Clim. Past 2023, 19, 1805–1823. Available online: https://cp.copernicus.org/articles/19/1805/2023/cp-19-1805-2023.html (accessed on 5 June 2025). [CrossRef]
- Wei, Q.; Liu, Y.; Yan, Q.; Yao, T.; Wang, M.; Huang, H.; Hu, Y. The Glacier-Climate Interaction Over the Tibetan Plateau and Its Surroundings During the Last Glacial Maximum. Geophys. Res. Lett. 2023, 50, e2023GL103538. [Google Scholar] [CrossRef]
Glacier Monitoring of the Carihuairazo Volcano | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | Área (m2) | Snow Cover % | Depth (m) | |||||||||||
A | B | C | D | E | F | G | H | I | J | |||||
M1 | September | Glacier | 1312.5 | 100 | 1.21 | 1.18 | 1.42 | 2.50 | 1.44 | 1.05 | 0.78 | 1.39 | 2.09 | 1.14 |
Snow | 0.41 | 0.35 | 0.37 | 0.40 | 0.36 | 0.34 | 0.33 | 0.40 | 0.36 | 0.31 | ||||
M2 | January | Glacier | 101.2 | 7.8 | - | - | 0.96 | 1.32 | 0.89 | - | - | - | 0.71 | - |
Date | Stat_TA_1h | Stat_TA_1h | Stat_TA_1h | Stat_P 1 h/hPa | Stat_P 1 h/hPa | Stat_P 1 h/hPa | GenWind_1h (km/h) | GenWind_1h (km/h) | GenWind_1h (km/h) | PP | SR | WVP | GC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg/C° | Max /C° | Min /C° | Avg | Max | Min | Min | Avg | Max | (mm) | (kj m−2 day−1) | (kPa) | (m2) | ||
23 September | W1 | 1.32 | 3.23 | 1.29 | 617.15 | 607.67 | 607.01 | 7.81 | 14.7 | 18.21 | 93.71 | 9.50 | 0.43 | 1312.50 |
W2 | 0.1 | 2.93 | 1.21 | 608.36 | 608.24 | 607.72 | 7.38 | 10.90 | 15.43 | 94.29 | 12.04 | 0.51 | ||
W3 | 1.65 | 2.03 | 0.86 | 608.12 | 608.22 | 607.73 | 2.91 | 6.59 | 17.36 | 93.71 | 11.93 | 0.49 | ||
W4 | 1.23 | 2.27 | 1.15 | 607.61 | 608.01 | 607.49 | 3.89 | 8.51 | 13.34 | 94.29 | 13.26 | 0.57 | ||
W5 | 1.98 | 2.20 | 1.04 | 607.92 | 608.17 | 607.71 | 2.26 | 3.44 | 8.76 | 93.33 | 8.83 | 0.30 | ||
24 January | W1 | 2.28 | 2.35 | 1.94 | 608.19 | 608.40 | 607.88 | 0.78 | 2.46 | 6.82 | 47.14 | 10.00 | 0.43 | 101.20 |
W2 | 2.44 | 3.46 | 1.47 | 608.36 | 608.33 | 607.80 | 0.70 | 2.60 | 6.73 | 47.86 | 12.43 | 0.62 | ||
W3 | 1.58 | 3.19 | 1.66 | 607.09 | 607.48 | 606.97 | 1.25 | 4.74 | 7.89 | 47.14 | 13.14 | 0.50 | ||
W4 | 1.86 | 3.15 | 1.05 | 606.38 | 606.77 | 606.09 | 3.40 | 8.50 | 14.11 | 47.14 | 14.45 | 0.57 | ||
W5 | 2.53 | 3.43 | 2.34 | 607.14 | 607.42 | 606.90 | 1.13 | 3.29 | 6.79 | 54.33 | 9.00 | 0.67 | ||
24 February | W1 | 2.03 | 4.21 | 1.48 | 606.85 | 606.96 | 606.33 | 7.89 | 12.49 | 18.18 | 39.71 | 11.02 | 0.43 | 0 |
W2 | 3.95 | 5.71 | 3.11 | 615.31 | 606.91 | 606.28 | 6.27 | 11.34 | 16.28 | 40.29 | 13.23 | 0.52 | ||
W3 | 3.78 | 3.85 | 3.18 | 607.30 | 607.59 | 607.08 | 1.60 | 3.80 | 6.90 | 39.71 | 16.14 | 0.51 | ||
W4 | 2.45 | 3.35 | 2.21 | 608.23 | 608.34 | 607.81 | 3.96 | 8.46 | 12.40 | 40.29 | 14.58 | 0.57 | ||
W5 | 1.36 | 8.18 | 0.43 | 607.46 | 607.53 | 606.99 | 1.31 | 6.70 | 9.85 | 40.00 | 11.00 | 0.40 |
Variables | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
---|---|---|---|---|
Stat_TA_1h | 161 | 448 | 144 | 6 |
Stat_TA_1h | 396 | 160 | 82 | 2 |
Stat_TA_1h | 160 | 387 | 175 | 65 |
Stat_PA_1h/hPa | 2 | 15 | 59 | 351 |
Stat_PA_1h/hPa | 663 | 4 | 233 | 3 |
Stat_PA_1h/ hPa | 709 | 1 | 214 | 3 |
GenWind_1h | 399 | 318 | 90 | 7 |
GenWind_1h | 476 | 346 | 19 | 0 |
GenWind_1h | 284 | 365 | 25 | 21 |
Precipitation (PP) | 79 | 489 | 90 | 1 |
Solar radiation (SR) | 33 | 57 | 0 | 473 |
Water vapor pressure (WVP) | 0 | 0 | 219 | 201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaca-Cárdenas, P.V.; Muñoz-Jácome, E.A.; Vaca-Cárdenas, M.L.; Cushquicullma-Colcha, D.F.; Guerrero-Casado, J. The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques. Earth 2025, 6, 86. https://doi.org/10.3390/earth6030086
Vaca-Cárdenas PV, Muñoz-Jácome EA, Vaca-Cárdenas ML, Cushquicullma-Colcha DF, Guerrero-Casado J. The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques. Earth. 2025; 6(3):86. https://doi.org/10.3390/earth6030086
Chicago/Turabian StyleVaca-Cárdenas, Pedro Vicente, Eduardo Antonio Muñoz-Jácome, Maritza Lucia Vaca-Cárdenas, Diego Francisco Cushquicullma-Colcha, and José Guerrero-Casado. 2025. "The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques" Earth 6, no. 3: 86. https://doi.org/10.3390/earth6030086
APA StyleVaca-Cárdenas, P. V., Muñoz-Jácome, E. A., Vaca-Cárdenas, M. L., Cushquicullma-Colcha, D. F., & Guerrero-Casado, J. (2025). The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques. Earth, 6(3), 86. https://doi.org/10.3390/earth6030086