Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,214)

Search Parameters:
Keywords = surface decorating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2192 KiB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

31 pages, 3455 KiB  
Review
Recent Advances in Nanoparticle and Nanocomposite-Based Photodynamic Therapy for Cervical Cancer: A Review
by Dorota Bartusik-Aebisher, Mohammad A. Saad, Agnieszka Przygórzewska and David Aebisher
Cancers 2025, 17(15), 2572; https://doi.org/10.3390/cancers17152572 - 4 Aug 2025
Abstract
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in [...] Read more.
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in the body, hypoxia in the tumor microenvironment, and limited light penetration. Recent advances in nanoparticle and nanocomposite platforms have addressed these challenges by integrating multiple functional components into a single delivery system. By encapsulating or conjugating photosensitizers in biodegradable matrices, such as mesoporous silica, organometallic structures and core–shell construct nanocarriers increase stability in water and extend circulation time, enabling both passive and active targeting through ligand decoration. Up-conversion and dual-wavelength responsive cores facilitate deep light conversion in tissues, while simultaneous delivery of hypoxia-modulating agents alleviates oxygen deprivation to sustain reactive oxygen species generation. Controllable “motor-cargo” constructs and surface modifications improve intratumoral diffusion, while aggregation-induced emission dyes and plasmonic elements support real-time imaging and quantitative monitoring of therapeutic response. Together, these multifunctional nanosystems have demonstrated potent cytotoxicity in vitro and significant tumor suppression in vivo in mouse models of cervical cancer. Combining targeted delivery, controlled release, hypoxia mitigation, and image guidance, engineered nanoparticles provide a versatile and powerful platform to overcome the current limitations of PDT and pave the way toward more effective, patient-specific treatments for cervical malignancies. Our review of the literature summarizes studies on nanoparticles and nanocomposites used in PDT monotherapy for cervical cancer, published between 2023 and July 2025. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

27 pages, 3653 KiB  
Review
Design and Application of Atomically Dispersed Transition Metal–Carbon Cathodes for Triggering Cascade Oxygen Reduction in Wastewater Treatment
by Shengnan Huang, Guangshuo Lyu, Chuhui Zhang, Chunye Lin and Hefa Cheng
Molecules 2025, 30(15), 3258; https://doi.org/10.3390/molecules30153258 - 4 Aug 2025
Viewed by 54
Abstract
The precise synthesis of non-precious metal single-atom electrocatalysts is crucial for enhancing the yield of highly active reactive oxygen species (ROSs). Conventional oxidation methods, such as Fenton or NaClO processes, suffer from poor efficiency, high energy demand, and secondary pollution. In contrast, heterogeneous [...] Read more.
The precise synthesis of non-precious metal single-atom electrocatalysts is crucial for enhancing the yield of highly active reactive oxygen species (ROSs). Conventional oxidation methods, such as Fenton or NaClO processes, suffer from poor efficiency, high energy demand, and secondary pollution. In contrast, heterogeneous electro-Fenton systems based on cascade oxygen reduction reactions (ORRs), which require low operational voltage and cause pollutant degradation through both direct electron transfer and ROS generation, have emerged as a promising alternative. Recent studies showed that carbon cathodes decorated with atomically dispersed transition metals can effectively integrate the excellent conductivity of carbon supports with the tunable surface chemistry of metal centers. However, the electronic structure of active sites intrinsically hinders the simultaneous achievement of high activity and selectivity in cascade ORRs. This review summarizes the advances, specifically from 2020 to 2025, in understanding the mechanism of cascade ORRs and the synthesis of transition metal-based single-atom catalysts in cathode electrocatalysis for efficient wastewater treatment, and discusses the key factors affecting treatment performance. While employing atomically engineered cathodes is a promising approach for energy-efficient wastewater treatment, future efforts should overcome the barriers in active site control and long-term stability of the catalysts to fully exploit their potential in addressing water pollution challenges. Full article
Show Figures

Graphical abstract

28 pages, 14491 KiB  
Article
Catalytically Active Oxidized PtOx Species on SnO2 Supports Synthesized via Anion Exchange Reaction for 4-Nitrophenol Reduction
by Izabela Ðurasović, Robert Peter, Goran Dražić, Fabio Faraguna, Rafael Anelić, Marijan Marciuš, Tanja Jurkin, Vlasta Mohaček Grošev, Maria Gracheva, Zoltán Klencsár, Mile Ivanda, Goran Štefanić and Marijan Gotić
Nanomaterials 2025, 15(15), 1159; https://doi.org/10.3390/nano15151159 - 28 Jul 2025
Viewed by 313
Abstract
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room [...] Read more.
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room temperature), SnB (hydrothermally treated at 180 °C), and SnC (annealed at 600 °C), are systematically investigated, all loaded with 1 mol% Pt from H2PtCl6 under identical mild conditions. The chloride ions from the SnCl4 precursors were efficiently removed via a strong-base anion exchange reaction, resulting in highly dispersed, crystalline ~5 nm cassiterite SnO2 particles. All Pt/SnO2 composites displayed mesoporous structures with type IVa isotherms and H2-type hysteresis, with SP1a (Pt on SnA) exhibiting the largest surface area (122.6 m2/g) and the smallest pores (~3.5 nm). STEM-HAADF imaging revealed well-dispersed PtOx domains (~0.85 nm), while XPS confirmed the dominant Pt4+ and Pt2+ species, with ~25% Pt0 likely resulting from photoreduction and/or interactions with Sn–OH surface groups. Raman spectroscopy revealed three new bands (260–360 cm−1) that were clearly visible in the sample with 10 mol% Pt and were due to the vibrational modes of the PtOx species and Pt-Cl bonds introduced due the addition and hydrolysis of H2PtCl6 precursor. TGA/DSC analysis revealed the highest mass loss for SP1a (~7.3%), confirming the strong hydration of the PtOx domains. Despite the predominance of oxidized PtOx species, SP1a exhibited the highest catalytic activity (kapp = 1.27 × 10−2 s−1) and retained 84.5% activity for the reduction of 4-NP to 4-AP after 10 cycles. This chloride-free low-temperature synthesis route offers a promising and generalizable strategy for the preparation of noble metal-based nanocatalysts on oxide supports with high catalytic activity and reusability. Full article
Show Figures

Figure 1

20 pages, 7039 KiB  
Article
Development of a Rapid and Sensitive Visual Pesticide Detection Card Using Crosslinked and Surface-Decorated Electrospun Nanofiber Mat
by Yunshan Wei, Huange Zhou, Jingxuan Kang, Yongmei Wu and Kun Feng
Foods 2025, 14(15), 2628; https://doi.org/10.3390/foods14152628 - 26 Jul 2025
Viewed by 446
Abstract
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and [...] Read more.
Increased consumer awareness on food safety has spurred the development of detection techniques for pesticide residues. In this study, a rapid detection card on the basis of enzyme action was developed for the visual detection of pesticides, in which the thermally crosslinked and surface-decorated polyvinyl alcohol/citric acid nanofiber mat (PCNM) was employed as a novel immobilization matrix for acetylcholinesterase (AChE). The PCNM, crosslinked at 130 °C for 50 min, exhibited appropriate microstructure and water stability, making it suitable for AChE immobilization. The activation of carboxyl groups by surface decoration resulted in a 2.5-fold increase in enzyme loading capacity. Through parameter optimization, the detection limits for phoxim and methomyl were determined to be 0.007 mg/L and 0.10 mg/L, respectively. The detection card exhibited superior sensitivity and a reduced detection time (11 min) when compared to a commercially available pesticide detection card. Furthermore, the detection results of pesticide residues in fruit and vegetable samples confirmed its feasibility and superiority over commercial alternatives, suggesting its great potential for practical application in the on-site detection of pesticide residues. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 345
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

13 pages, 6838 KiB  
Article
Preparation and Bonding Properties of Fabric Veneer Plywood
by Ziyi Yuan, Limei Cheng, Chengsheng Gui and Lu Fang
Coatings 2025, 15(8), 864; https://doi.org/10.3390/coatings15080864 - 23 Jul 2025
Viewed by 304
Abstract
Fabric veneer panels were prepared using ethylene-vinyl acetate copolymer film (EVA) as the intermediate layer and poplar plywood as the substrate. Eight fabrics with different compositions were selected for evaluation to screen out fabric materials suitable for poplar plywood veneer. The fabrics were [...] Read more.
Fabric veneer panels were prepared using ethylene-vinyl acetate copolymer film (EVA) as the intermediate layer and poplar plywood as the substrate. Eight fabrics with different compositions were selected for evaluation to screen out fabric materials suitable for poplar plywood veneer. The fabrics were objectively analyzed by bending and draping, compression, and surface roughness, and subjectively evaluated by establishing seven levels of semantic differences. ESEM, surface adhesive properties, and peel resistance tests were used to characterize the microstructure and physical–mechanical properties of the composites. The results show that cotton and linen fabrics and corduroy fabrics are superior to other fabrics in performance, and they are suitable for decorative materials. Because the fibers of the doupioni silk fabric are too thin, and the fibers of felt fabric are randomly staggered, they are not suitable for the surface decoration materials of man-made panels. The acetate veneer surface gluing performance was 1.31 MPa, and the longitudinal peel resistance was 20.98 N, significantly exceeding that of other fabric veneers. Through the subjective and objective analysis of fabrics and gluing performance tests, it was concluded that, compared with fabrics made of natural fibers, man-made fiber fabrics are more suitable for use as surface finishing materials for wood-based panels. The results of this study provide a theoretical basis and process reference for the development of environmentally friendly decorative panels, which can be expanded and applied to furniture, interior decoration, and other fields. Full article
(This article belongs to the Special Issue Innovations in Functional Coatings for Wood Processing)
Show Figures

Graphical abstract

81 pages, 10454 KiB  
Review
Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances
by Shivam Singh, Kenneth Christopher Stiwinter, Jitendra Pratap Singh and Yiping Zhao
Nanomaterials 2025, 15(14), 1136; https://doi.org/10.3390/nano15141136 - 21 Jul 2025
Viewed by 373
Abstract
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic [...] Read more.
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core–shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO2, CO, H2S, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies. Full article
Show Figures

Graphical abstract

16 pages, 2901 KiB  
Article
SiO2-Al2O3-ZrO2-Ag Composite and Its Signal Enhancement Capacity on Raman Spectroscopy
by Jesús Alberto Garibay-Alvarado, Pedro Pizá-Ruiz, Armando Erasto Zaragoza-Contreras, Francisco Espinosa-Magaña and Simón Yobanny Reyes-López
Chemosensors 2025, 13(7), 266; https://doi.org/10.3390/chemosensors13070266 - 21 Jul 2025
Viewed by 307
Abstract
A ceramic–metal composite was synthesized using sol–gel and electrospinning methods to serve as a SERS substrate. The precursors used were tetraethyl orthosilicate, aluminum nitrate, and zirconium, and polyvinylpyrrolidone was added to electrospun nonwoven fibrous membranes. The membranes were sintered, decorated with silver nanoparticles. [...] Read more.
A ceramic–metal composite was synthesized using sol–gel and electrospinning methods to serve as a SERS substrate. The precursors used were tetraethyl orthosilicate, aluminum nitrate, and zirconium, and polyvinylpyrrolidone was added to electrospun nonwoven fibrous membranes. The membranes were sintered, decorated with silver nanoparticles. The enhancement substrates were made of fibers of cylindric morphology with an average diameter of approximately 190 nm, a smooth surface, and 9 nm spherical particles decorating the surface of the fibers. The enhancement capacity of the substrates was tested using pyridine, methyl orange, methylene blue, crystal violet, and Eriochrome black T at different concentrations with Raman spectroscopy to determine whether the size and complexity of the analyte has an impact on the enhancement capacity. Enhancement factors of 2.53 × 102, 3.06 × 101, 2.97 × 103, 4.66 × 103, and 1.45 × 103 times were obtained for the signal of pyridine, methyl orange, methylene blue, crystal violet, and Eriochrome black T at concentrations of 1 nM. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Graphical abstract

15 pages, 3554 KiB  
Article
A Composite Substrate of Ag Nanoparticle-Decorated Inverse Opal Polydimethylsiloxane for Surface Raman Fluorescence Dual Enhancement
by Zilun Tang, Hongping Liang, Zhangyang Chen, Jianpeng Li, Jianyu Wu, Xianfeng Li and Dingshu Xiao
Polymers 2025, 17(14), 1995; https://doi.org/10.3390/polym17141995 - 21 Jul 2025
Viewed by 340
Abstract
It is difficult to simultaneously achieve surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) for noble metals. Herein, a composite substrate is demonstrated based on the rational construction of Ag nanoparticles (Ag NPs) and inverse opal polydimethylsiloxane (PDMS) for surface Raman fluorescence dual [...] Read more.
It is difficult to simultaneously achieve surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) for noble metals. Herein, a composite substrate is demonstrated based on the rational construction of Ag nanoparticles (Ag NPs) and inverse opal polydimethylsiloxane (PDMS) for surface Raman fluorescence dual enhancement. The well-designed Ag nanoparticle (Ag NP)-decorated inverse opal PDMS (AIOP) composite substrate is fabricated using the polystyrene (PS) photonic crystal method and the sensitization reduction technique. The inverse opal PDMS enhances the electromagnetic (EM) field by increasing the loading of Ag NPs and plasmonic coupling of Ag NPs, leading to SERS activity. The thin shell layer of polyvinyl pyrrolidone (PVP) in core–shell Ag NPs isolates the detected molecule from the Ag core to prevent the fluorescence resonance energy transfer and charge transfer to eliminate fluorescence quenching and enable SEF performance. Based on the blockage of the core–shell structure and the enhanced EM field originating from the inverse opal structure, the as-fabricated AIOP composite substrate shows dual enhancement in surface Raman fluorescence. The AIOP composite substrate in this work, which combines improved SERS activity and SEF performance, not only promotes the development of surface-enhanced spectroscopy but also shows promise for applications in flexible sensors. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

24 pages, 10648 KiB  
Article
Green-Synthesized Silver Nanoparticle-Loaded Antimicrobial Films: Preparation, Characterization, and Food Preservation
by Wenxi Yu, Qin Lei, Jingxian Jiang, Jianwei Yan, Xijian Yi, Juan Cheng, Siyu Ou, Wenjia Yin, Ziyan Li and Yuru Liao
Foods 2025, 14(14), 2509; https://doi.org/10.3390/foods14142509 - 17 Jul 2025
Viewed by 397
Abstract
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and [...] Read more.
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and concentration of AgNO3 were considered using a central composite design coupled with response surface methodology to obtain the optimum AgNPs (2 h, 75 °C, 2 mM). Analysis of substance concentration changes confirmed that the higher phenolic and flavonoid content in MRLE acted as reducing agents and stabilizers in AgNP synthesis, participating in the reaction rather than adsorbing to nanoparticles. TEM, XRD, and FTIR images revealed a spherical shape of the prepared AgNPs, with an average diameter of 8.23 ± 4.27 nm. The incorporation of AgNPs@MMT significantly enhanced the mechanical properties of the films, with the elongation at break and shear strength increasing by 65.19% and 52.10%, respectively, for the PAM2 sample. The films exhibited strong antimicrobial activity against both Escherichia coli (18.56 mm) and Staphylococcus aureus (20.73 mm). The films demonstrated effective food preservation capabilities, significantly reducing weight loss and extending the shelf life of packaged grapes and bananas. Molecular dynamics simulations reveal the diffusion behavior of AgNPs in different matrices, while the measured silver migration (0.25 ± 0.03 mg/kg) complied with EFSA regulations (10 mg/kg), confirming its food safety. These results demonstrate the film’s potential as an active packaging material for fruit preservation. Full article
Show Figures

Figure 1

18 pages, 4009 KiB  
Article
Impact of Thermo-Oxidative Aging on Flame Retardancy of Melamine Formaldehyde Particle Boards: Processes and Performance Degradation Analysis
by Shiyue Ling, Yanni Zhang, Dan Yang, Luoxin Huang and Yuchen Zhang
Fire 2025, 8(7), 274; https://doi.org/10.3390/fire8070274 - 11 Jul 2025
Viewed by 424
Abstract
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the [...] Read more.
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the impact of thermo-oxidative aging on the flame retardancy of MFPBs. The morphological evolution, surface composition, and flame-retardant characteristics of aged MFPBs were examined via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), limiting oxygen index (LOI), and cone calorimeter (CCT). The results indicate that thermo-oxidative aging (60 °C, 1440 h) markedly reduces the activation energy (E, by 17.05%), pre-exponential factor (A, by 68.52%), LOI value (by 4%, from 27.5 to 26.4), and time to ignition (TTI, by 17.1%, from 41 s to 34 s) while augmenting the peak mass loss rate (MHRR, by 4.7%) and peak heat release rate (pHRR, by 20.1%). Subsequent investigation indicates that aging impairs the char layer structure on MFPB surfaces, hastens the migration and degradation of melamine formaldehyde resin (MFR), and alters the dynamic equilibrium between “MFR surface enrichment” and “thermal decomposition”. The identified degradation thresholds and failure mechanisms provide essential parameters for developing aging-resistant fireproof composites, meeting the pressing demands of building safety requirements and sustainable material design. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

12 pages, 2279 KiB  
Article
Electrostatic Self-Assembly of Heterostructured In2O3/Ti3C2Tx Nanocomposite for High-Selectivity NO2 Gas Sensing at Room Temperature
by Yongjing Guo, Zhengxin Zhang, Hangshuo Feng, Qingfu Dai, Qiuni Zhao, Zaihua Duan, Shenghui Guo, Li Yang, Ming Hou and Yi Xia
Chemosensors 2025, 13(7), 249; https://doi.org/10.3390/chemosensors13070249 - 10 Jul 2025
Viewed by 373
Abstract
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O [...] Read more.
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O3) decorated on titanium carbide (Ti3C2Tx) nanosheets by electrostatic self-assembly and develop it for high-selectivity NO2 gas sensing at room temperature. Self-assembly formation of multiple heterojunctions in the In2O3/Ti3C2Tx composite provide abundant NO2 gas adsorption sites and high electron transfer activity, which is conducive to improving the gas-sensing response of the In2O3/Ti3C2Tx gas sensor. Assisted by rich adsorption sites and hetero interface, the as-fabricated In2O3/Ti3C2Tx gas sensor exhibits the highest response to NO2 among various interference gases. Meanwhile, a detection limit of 0.3 ppm, and response/recovery time (197.62/93.84 s) is displayed at room temperature. Finally, a NO2 sensing mechanism of In2O3/Ti3C2Tx gas sensor is constructed based on PN heterojunction enhancement and molecular adsorption. This work not only expands the gas-sensing application of MXenes, but also demonstrates an avenue for the rational design and construction of NO2-sensing materials. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

20 pages, 3506 KiB  
Article
AuNP/Magnetic Bead-Enhanced Electrochemical Sensor Toward Dual Saliva Alzheimer’s Biomarkers Detection
by Pengcheng Zhao, Jieyu Wang, Hongju Mao, Lin Zhou, Zhenhua Wu, Yunxing Lu, Teng Sun, Jianan Hui and Guowu Ma
Sensors 2025, 25(13), 4088; https://doi.org/10.3390/s25134088 - 30 Jun 2025
Viewed by 641
Abstract
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42 [...] Read more.
Alzheimer’s disease (AD) early screening requires non-invasive, high-sensitivity detection of low-abundance biomarkers in complex biofluids like saliva. In this study, we present a miniaturized, silicon-based electrochemical sensor for sequential detection of two AD salivary biomarkers, lactoferrin (Lf) and amyloid β-protein 1-42 (Aβ1-42), on a single reusable electrode. The sensor features a three-electrode system fabricated by sputter-coating a quartz substrate with gold (Au) sensing electrodes, which are further modified with gold nanoparticles (AuNPs) to form 3D dendritic structures that enhance surface area and electron transfer. To improve specificity, immunomagnetic beads (MBs) are employed to selectively capture and isolate target biomarkers from saliva samples. These MB–biomarker complexes are introduced into a polydimethylsiloxane chamber aligned with Au sensing electrodes, where a detachable magnet localizes the complexes onto the electrode surface to amplify redox signals. The AuNPs/MBs sensor achieves detection limits of 2 μg/mL for Lf and 0.1 pg/mL for Aβ1-42, outperforming commercial ELISA kits (37.5 pg/mL for Aβ1-42) and covering physiological salivary concentrations. After the MBs capture the biomarkers, the sensor can output the result within one minute. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements confirm enhanced electron transfer kinetics on AuNP-decorated surfaces, while linear correlations (R2 > 0.95) validate quantitative accuracy across biomarker ranges. The compact and integrated design eliminates reliance on bulky instrumentation and enables user-friendly operation, establishing a promising platform for portable, cost-effective AD screening and monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

15 pages, 3993 KiB  
Article
Silver Nanoparticles-Decorated Porous Silicon Microcavity as a High-Performance SERS Substrate for Ultrasensitive Detection of Trace-Level Molecules
by Manh Trung Hoang, Huy Bui, Thi Hong Cam Hoang, Van Hai Pham, Nguyen Thu Loan, Long Van Le, Thanh Binh Pham, Chinh Vu Duc, Thuy Chi Do, Tae Jung Kim, Van Hoi Pham and Thuy Van Nguyen
Nanomaterials 2025, 15(13), 1007; https://doi.org/10.3390/nano15131007 - 30 Jun 2025
Viewed by 493
Abstract
In this study, we present a novel surface-enhanced Raman scattering (SERS) substrate based on porous silicon microcavities (PSiMCs) decorated with silver nanoparticles (AgNPs) for ultra-sensitive molecule detection. This substrate utilizes a dual enhancement mechanism: the localized surface plasmon resonance (LSPR) of AgNPs and [...] Read more.
In this study, we present a novel surface-enhanced Raman scattering (SERS) substrate based on porous silicon microcavities (PSiMCs) decorated with silver nanoparticles (AgNPs) for ultra-sensitive molecule detection. This substrate utilizes a dual enhancement mechanism: the localized surface plasmon resonance (LSPR) of AgNPs and the optical resonance of the PSiMC structure, which together create intense electromagnetic hot spots and prolong photon–molecule interactions. The porous architecture provides a large surface area for uniform nanoparticle distribution and efficient analyte adsorption. The AgNP/PSiMC substrate demonstrates an impressive detection limit of 1.0 × 10−13 M for rhodamine101 and 1.0 × 10−10 M for methyl parathion, outperforming many previously reported SERS platforms. Furthermore, the substrate exhibits excellent signal uniformity (RSD ≈ 6.14%) and long-term stability, retaining over 50% signal intensity after 28 days. These results underscore the potential of AgNP/PSiMCs as highly efficient, reproducible, and scalable SERS platforms for trace-level chemical and environmental sensing applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Back to TopTop