Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (365)

Search Parameters:
Keywords = subculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1554 KiB  
Article
Cytokinin Potentials on In Vitro Shoot Proliferation and Subsequent Rooting of Agave sisalana Perr. Syn
by Mayada K. Seliem, Neama Abdalla and Mohammed E. El-Mahrouk
Horticulturae 2025, 11(8), 929; https://doi.org/10.3390/horticulturae11080929 - 6 Aug 2025
Abstract
Agave species are plants with great economic value and multiple possibilities of use as ornamentals, medicinal plants, and fibers, as well as being significant sources of bioethanol. However, their long life cycles hinder their conventional breeding. Therefore, biotechnology tools are the most effective [...] Read more.
Agave species are plants with great economic value and multiple possibilities of use as ornamentals, medicinal plants, and fibers, as well as being significant sources of bioethanol. However, their long life cycles hinder their conventional breeding. Therefore, biotechnology tools are the most effective means for clonal propagation and genetic improvement. In vitro micropropagation of A. sisalana via axillary shoot proliferation from bulbil explants was attained using Murashige and Skoog medium (MS) supplemented with cytokinins (CKs), such as 6-benzyladenine (BA), kinetin (KIN), or thidiazuron (TDZ). The optimum significant shoot proliferation (14.67 shoots/explant) was achieved on 1.0 mg L−1 TDZ. The carry-over effect of CKs on subsequent rooting could be detected. Control and KIN treatments could enhance the rooting of shoots on shoot proliferation media. The regenerated plantlets were acclimatized directly with 100% survival. To mitigate this carry-over effect, that causes hindering further root growth and development, and promote healthy growth of roots, subculturing shoots onto a CK-free medium is a recommended practice. The shoots induced on all BA treatments, and TDZ at 0.5 and 1.0 mg L−1 could be rooted after two subcultures on CK-free medium, then they were acclimatized with 100% survival. However, the higher concentrations of TDZ inhibited in vitro rooting even after two subcultures on CK-free medium, and the acclimatization percentage was reduced by increasing the TDZ concentration recorded from 10 to 0%. Full article
Show Figures

Figure 1

16 pages, 1591 KiB  
Article
Molecular and Drug Resistance Characteristics of Haemophilus influenzae Carried by Pediatric Patients with Adenoid Hypertrophy
by Nan Xiao, Jia-Hao Qin, Xiu-Ying Zhao and Lin Liu
Microorganisms 2025, 13(8), 1764; https://doi.org/10.3390/microorganisms13081764 - 29 Jul 2025
Viewed by 235
Abstract
Purpose: The adenoid microbiota plays a key role in adenoid hypertrophy (AH). This study explored the molecular epidemiology and antimicrobial resistance of Haemophilus. Influenzae (H. influenzae) strains in pediatric AH patients. Methods: Retrospective analysis of pediatric AH patients undergoing endoscopic adenoidectomy. [...] Read more.
Purpose: The adenoid microbiota plays a key role in adenoid hypertrophy (AH). This study explored the molecular epidemiology and antimicrobial resistance of Haemophilus. Influenzae (H. influenzae) strains in pediatric AH patients. Methods: Retrospective analysis of pediatric AH patients undergoing endoscopic adenoidectomy. Adenoid tissue samples were cultured to screen for pathogens. H. influenzae strains were identified by 16S rRNA sequencing and serotyped via q-PCR. Multilocus sequence typing (MLST) and ftsI gene analysis were conducted using PubMLST. β-lactamase genes (blaTEM-1, blaROB-1) were detected by PCR, and antibiotic susceptibility testing (AST) was performed using the Etest method. For imipenem-resistant strains, the acrRAB efflux pump gene cluster and ompP2 porin gene were sequenced and compared with those of the wild-type strain Rd KW20. Results: Over 8 months, 56 non-duplicate H. influenzae strains were isolated from 386 patients. The detection rate was highest in children under 5 years (30.5%) compared to those aged 5–10 years (13.4%) and 10–15 years (8.7%). Of 49 sub-cultured strains, all were non-typeable H. influenzae (NTHi). MLST identified 22 sequence types (STs) and 13 clonal complexes (CCs), with CC11 (26.5%), CC3 (14.3%), and CC107 (14.3%) being predominant. Common STs included ST103 (22.4%), ST57 (10.2%), and ST107 (10.2%). Most strains belonged to the ftsI group III-like+ (57.1%). β-lactamase positivity was 98.0% (48/49), with blaTEM-1 (95.9%) and blaROB-1 (18.4%) detected. AST showed low susceptibility to ampicillin (10.2%), amoxicillin–clavulanate (34.7%), azithromycin (12.2%), and trimethoprim–sulfamethoxazole (14.3%). Among the β-lactamase-positive strains, 44/48 were β-lactamase-positive ampicillin-resistant (BLPAR); none were β-lactamase-negative ampicillin-resistant (BLNAR). Imipenem susceptibility was 91.8% (45/49). No carbapenemases were found in the imipenem-resistant strains, but mutations in acrRAB (88.12–94.94% identity) and ompP2 (77.10–82.94% identity) were observed. Conclusions: BLPAR NTHi strains of CC11 are major epidemic strains in pediatric AH. Imipenem resistance in H. influenzae likely results from porin mutations rather than carbapenemase activity. Enhanced surveillance of H. influenzae’s role in AH and its resistance patterns is warranted. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

15 pages, 2591 KiB  
Article
Adding Ethanol to the Batch and Continuous Transplantation Co-Culture of Maize Straw Fermented by Rumen Fluid for the Production of Caproic Acid
by Zhiqiang Cheng, Zitong Meng, Yue Shen, Wengboyang Liu, Li Liu, Guoqi Zhao, Lin Wang and Miao Lin
Fermentation 2025, 11(7), 413; https://doi.org/10.3390/fermentation11070413 - 18 Jul 2025
Viewed by 352
Abstract
In this study, to enhance the concentration of caproic acid generated from maize straw fermentation and clarify the structures of bacterial and fungal communities within the serially subcultured rumen microbial fermentation system, maize straw was used as the substrate. In a continuous subculture [...] Read more.
In this study, to enhance the concentration of caproic acid generated from maize straw fermentation and clarify the structures of bacterial and fungal communities within the serially subcultured rumen microbial fermentation system, maize straw was used as the substrate. In a continuous subculture system, the impacts of ethanol addition on pH and gas production were explored, with a focus on the caproic acid yield in the final (eighth generation) generation and alterations in bacterial and fungal communities. The results showed that the relative abundances of unidentified_Clostridiales, Shuttleworthia, and Syntrophococcus in ethanol-driven caproic acid production were enriched by 5.36-fold, 2.61-fold, and 2.25-fold, respectively. This consequently increased the concentration of caproic acid in the fermentation broth to 1492 mg/L, representing a 3.7-fold increase. These findings are highly significant for the high-value utilization of maize straw waste to produce caproic acid via the carboxylic acid platform using rumen microorganisms in industrial processing. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

22 pages, 9507 KiB  
Article
Essential Oils as an Antifungal Alternative to Control Several Species of Fungi Isolated from Musa paradisiaca: Part III
by Maritza D. Ruiz Medina and Jenny Ruales
Microorganisms 2025, 13(7), 1663; https://doi.org/10.3390/microorganisms13071663 - 15 Jul 2025
Viewed by 363
Abstract
Essential oils (EOs) are widely recognized for their antifungal properties, but their efficacy against specific phytopathogenic fungi associated with banana (Musa paradisiaca) rot remains underexplored. This study aimed to evaluate the antifungal potential of EOs from Origanum vulgare, Salvia rosmarinus [...] Read more.
Essential oils (EOs) are widely recognized for their antifungal properties, but their efficacy against specific phytopathogenic fungi associated with banana (Musa paradisiaca) rot remains underexplored. This study aimed to evaluate the antifungal potential of EOs from Origanum vulgare, Salvia rosmarinus, Syzygium aromaticum, Thymus vulgaris, Cinnamomum verum, and Ocimum basilicum against five fungal species isolated from infected banana peels. Fungal isolates were obtained using PDA medium supplemented with chloramphenicol and were purified by weekly subculturing. Morphological and microscopic characterization was complemented by molecular identification based on ITS sequencing and phylogenetic reconstruction using Neighbor-Joining and UPGMA methods in MEGA v11. In vitro and ex vivo antifungal assays were performed at EO concentrations ranging from 200 to 1000 ppm. Thyme oil exhibited the strongest inhibitory effect, with complete growth suppression at 1000 ppm. Cinnamon and oregano also demonstrated effective inhibition at 600 ppm, while clove, rosemary, and basil were markedly less effective. Statistical analysis confirmed significant effects of EO type and concentration on fungal growth (p < 0.001). Molecular results showed strong phylogenetic support for isolate identification, with bootstrap values above 93% in most clades. These findings support the selective use of specific EOs as sustainable alternatives to synthetic fungicides in the postharvest management of banana diseases and provide a molecularly supported basis for their targeted application in integrated control strategies. Full article
(This article belongs to the Special Issue Current Pattern in Epidemiology and Antifungal Resistance)
Show Figures

Figure 1

21 pages, 4028 KiB  
Article
The Response Characteristics of One Saccharomyces cerevisiae Strain Under Continuous Passage in Artificial Culture Medium
by Tengyu Ma, Hongguang Zhu, Jiajia Yin, Yu Tian, Wenjing Yan and Haixin Sun
J. Fungi 2025, 11(7), 513; https://doi.org/10.3390/jof11070513 - 9 Jul 2025
Viewed by 521
Abstract
Saccharomyces cerevisiae often undergoes strain degeneration during industrial serial subculturing, though this phenomenon remains understudied. This study first conducted strain screening and biological characterization through TTC (2,3,5-triphenyltetrazolium chloride) colorimetric assays, Durham tube fermentation gas production tests, and WL medium (Wallerstein Laboratory medium) cultivation. [...] Read more.
Saccharomyces cerevisiae often undergoes strain degeneration during industrial serial subculturing, though this phenomenon remains understudied. This study first conducted strain screening and biological characterization through TTC (2,3,5-triphenyltetrazolium chloride) colorimetric assays, Durham tube fermentation gas production tests, and WL medium (Wallerstein Laboratory medium) cultivation. Subsequently, the changes in intergenerational biological traits after serial subculturing were investigated. Finally, transcriptomic analysis was employed to examine differential gene expression under high-glucose stress during continuous subculturing. The experimental results demonstrated that: (1) The S. cerevisiae QDSK310-Z-07 (GenBank: PP663884), isolated from farm soil, exhibited robust growth within a temperature range of 24–36 °C, with optimal growth observed at 28 °C. It thrived in a pH range of 4–5.5 and efficiently utilized various carbon and nitrogen sources; (2) After serial subculturing, the strain’s ethanol production capacity and fermentation rate partially declined and then stabilized, while maintaining strong tolerance to high ethanol concentrations and hyperosmotic stress; (3) Transcriptomic analysis revealed significant differential expression of genes related to lipid metabolism, amino acid metabolism, and other pathways under high-glucose stress following continuous subculturing. These findings elucidate the biological trait variations in S. cerevisiae during serial subculturing and provide key metabolic regulation candidate targets for its long-term adaptive evolution under high-glucose stress. Full article
Show Figures

Figure 1

15 pages, 784 KiB  
Review
Changes in Sports Participation Trends: A Comparative Theoretical Analysis of the Case of the Municipality of Zaragoza
by Celia Marcen, Irela Arbones-Arque and Dominic Malcolm
Soc. Sci. 2025, 14(7), 418; https://doi.org/10.3390/socsci14070418 - 4 Jul 2025
Viewed by 662
Abstract
This paper seeks to test the explanatory potential of different sociological perspectives in relation to the development of new sport models that reflect the growth of leisure sport participation in urban outdoor places and the decline in traditional practices in associations and clubs. [...] Read more.
This paper seeks to test the explanatory potential of different sociological perspectives in relation to the development of new sport models that reflect the growth of leisure sport participation in urban outdoor places and the decline in traditional practices in associations and clubs. In this regard, this study employs an analytical framework to examine global trends, with a particular focus on the specific context of the municipality of Zaragoza (Spain). With a multi-method approach, a 10-year-period dataset (2009–2019) incorporating sport participation surveys, observational data, and a focus group study is analysed. Three theories are tested: Maffesoli’s neo-tribes; neo-Bourdieuian ideas about urban subcultures; and Elias’s theory of civilizing processes. The results show a congruence between the three theories regarding identity negotiation, commodification, and community sense. However, disparities were found between the three theories, with one or more of them exhibiting an absence of class consciousness that supports subcultural interpretation and distinct notions of change versus continuity of the analyzed phenomena. This paper concludes that recent sports participation trends are best explained with reference to the quest of excitement and using healthism as a dominant ideology or social imperative. Full article
Show Figures

Graphical abstract

12 pages, 3419 KiB  
Article
Graphene Oxide-Enriched Polymer: Impact on Dental Pulp Cell Viability and Differentiation
by Magdalena Vega-Quiroz, Agustin Reyes-Maciel, Christian Andrea Lopez-Ayuso, Carlos A. Jurado, Hector Guzman-Juarez, Carlos Andres Alvarez-Gayosso, Benjamin Aranda-Herrera, Abdulrahman Alshabib and Rene Garcia-Contreras
Polymers 2025, 17(13), 1768; https://doi.org/10.3390/polym17131768 - 26 Jun 2025
Viewed by 493
Abstract
Background: Reconstructing maxillofacial defects is important in dentistry, so efforts are being made to develop materials that promote cell migration and repair. Graphene oxide (GO) is used to enhance the biocompatibility of polymethylmethacrylate (PMMA) due to its nanostructure. Objective: to assess cytotoxicity, cell [...] Read more.
Background: Reconstructing maxillofacial defects is important in dentistry, so efforts are being made to develop materials that promote cell migration and repair. Graphene oxide (GO) is used to enhance the biocompatibility of polymethylmethacrylate (PMMA) due to its nanostructure. Objective: to assess cytotoxicity, cell proliferation, and differentiation of human dental pulp stem cells (hDPSC) in response to a conventional PMMA (PMMA) and polymer enriched with GO (PMMA+GO). Methods: Experiments were carried out with primary hDPSC subcultures. The PMMA and PMMA+GO were tested in direct and indirect contact. Cytotoxicity (1 day) and proliferation (3, 7, and 14 days) were evaluated with an MTT bioassay. The osteogenic, adipogenic, and chondrogenic aspects were determinate with alizarin red, oil red, and safranine. Mean values, standard deviation, and percentages were calculated; data were analyzed with Shapiro–Wilks normality and Student’s t-test. Results: The cell viability of PMMA and PMMA+GO in direct contact correspond to 90.8 ± 6.2, 149.6 ± 14.5 (1 day); 99.9 ± 7.0, 95.7 ± 6.1 (3 days); 120.2 ± 14.6, 172.9 ± 16.2 (7 days); and 102.9 ± 17.3, 95.4 ± 22.8 (14 days). For indirect contact, 77.2 ± 8.4, 99 ± 21.4 (1 day); 64.8 ± 21.6, 67.0 ± 9.6 (3 days); 91.4 ± 16.5, 142 ± 18.7 (7 days); and 63 ± 15.8, 79.1 ± 3.1 (14 days). PMMA+GO samples showed enhanced adipogenic, chondrogenic, and osteogenic aspects. Conclusions: The integration of GO into PMMA biopolymers stimulates cell proliferation and differentiation, holding great promise for future applications in the field of biomedicine. Full article
(This article belongs to the Special Issue Challenges and Opportunities of Polymer Materials in Dentistry)
Show Figures

Figure 1

14 pages, 1394 KiB  
Article
Aeration and Chemical Additives Prevent Hyperhydration and Allow the Production of High-Quality In Vitro Potato Plantlets
by Pál Szarvas and Judit Dobránszki
Agronomy 2025, 15(6), 1470; https://doi.org/10.3390/agronomy15061470 - 16 Jun 2025
Viewed by 351
Abstract
The production of healthy propagating material of the potato (Solanum tuberosum L.) is based on in vitro micropropagation. In vitro conditions, however, can cause stress leading to reduced quality, growth and development of in vitro plantlets. The effects of aeration and chemical [...] Read more.
The production of healthy propagating material of the potato (Solanum tuberosum L.) is based on in vitro micropropagation. In vitro conditions, however, can cause stress leading to reduced quality, growth and development of in vitro plantlets. The effects of aeration and chemical additives on the in vitro growth and development and quality of potato plantlets were investigated. Four different jar closure types were tested, i.e., an intact metal cap (control), two layers of semi-permeable plastic foil, a metal cap with a single hole, or a metal cap with three holes. Under tightly sealed conditions (intact metal cap) the effects of silver nitrate (2.0 mg L−1) and 1-naphtylacetic acid (0.1 mg L−1) alone or in combination with each other, meta-topoline (0.1 mg L−1), ascorbic acid (10.0 mg L−1), salicylic acid (0.1 mg L−1), jasmonic acid (0.1 mg L−1) and glutamic acid (0.3 mg L−1) were studied. Morpho-physiological parameters were measured at the end of the subculture. Leaf development was a good indicator of the presumed ethylene effect. The development and quality of the plantlets were best in cultures sealed with three-holed caps. Of the chemicals applied, only the presence of silver nitrate resulted in high-quality plantlets. The combined application of silver nitrate and 1-naphthaleneacetic acid promoted root growth and development. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Somatic Embryogenesis–2nd Edition)
Show Figures

Figure 1

22 pages, 6379 KiB  
Article
Inorganic Arsenite [As (III)] Represses Human Renal Progenitor Cell Characteristics and Induces Neoplastic-like Transformation
by Md Ehsanul Haque, Swojani Shrestha, Donald A. Sens and Scott H. Garrett
Cells 2025, 14(12), 877; https://doi.org/10.3390/cells14120877 - 10 Jun 2025
Viewed by 625
Abstract
Arsenic, in the form of inorganic arsenite, is toxic to the kidney and can cause acute kidney injury, manifesting as destruction of proximal tubule cells. Nephron repair is possible through the proliferation of resident tubular progenitor cells expressing CD133 and CD24 surface markers. [...] Read more.
Arsenic, in the form of inorganic arsenite, is toxic to the kidney and can cause acute kidney injury, manifesting as destruction of proximal tubule cells. Nephron repair is possible through the proliferation of resident tubular progenitor cells expressing CD133 and CD24 surface markers. We simulated regenerative repair in the continued presence of i-As (III) using a cell culture model of a renal progenitor cell line expressing CD133 (PROM1) and CD24. Continued exposure and subculturing of progenitor cells to i-As (III) led to a reduction in the expression of PROM1 and CD24, as well as a decrease in the ability to differentiate into tubule-like structures. Cessation of i-As (III) and recovery for up to three passages resulted in continued repression of PROM1 and reduced ability to differentiate. Chronically exposed cells exhibited an ability to form colonies in soft agar, suggesting neoplastic transformation. Chronically exposed cells also exhibited an induction of CD44, a cell surface marker commonly found in renal cell carcinoma, as well as in tubular repair in chronic renal injury such as chronic kidney disease. These results demonstrate potential adverse outcomes of renal progenitor cells chronically exposed to a nephrotoxicant, as well as in environmental exposure to arsenic. Full article
(This article belongs to the Special Issue Cellular and Molecular Basis in Chronic Kidney Disease)
Show Figures

Figure 1

14 pages, 1709 KiB  
Article
In Vitro Conditions Research of Sophora koreensis Nakai for Shoot Elongation
by Hwa Lee, Gyu Il Han, Kyeong-Seong Cheon and Eun Ju Cheong
Plants 2025, 14(11), 1692; https://doi.org/10.3390/plants14111692 - 31 May 2025
Viewed by 538
Abstract
Sophora koreensis Nakai, listed as endangered on the IUCN Red List, is a species native to Korea, specifically found in parts of Gangwon-do. Recent research highlights its potential in hangover relief and as an antioxidant source, sparking interest in enhancing its components through [...] Read more.
Sophora koreensis Nakai, listed as endangered on the IUCN Red List, is a species native to Korea, specifically found in parts of Gangwon-do. Recent research highlights its potential in hangover relief and as an antioxidant source, sparking interest in enhancing its components through mutation for commercial purposes. Given its limited distribution, micropropagation of S. koreensis is essential for its economic exploitation. This study focuses on in vitro culture to develop an elongation system for micropropagation. The hormonal combination of 6-benzylaminopurine (2 μM), thidiazuron (2 μM), and indole-3-butyric acid (0.5 μM) produced the highest number of shoots (14) with an average length of 0.7 cm compared to the control. Additionally, adjusting photoperiod conditions under specific culture media further increased shoot length to 0.6 cm, which was also higher than that of the corresponding control group under standard light conditions. However, survival rates were generally low across all treatments during subculture. Isolating and individually culturing induced explants resulted in shorter shoots and lower survival rates. Improvements were noted when explants with 10 shoots were subcultured, achieving an 83% survival rate, with an average of 4.93 shoots at 0.95 cm in length. Rooting was most successful with 10 μM IBA, also showing the highest root number, indicating a potential pathway for enhancing micropropagation efficiency. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration)
Show Figures

Figure 1

16 pages, 5768 KiB  
Article
Integrated Transcriptomics and Metabolomics Provide Insight into Degeneration-Related Molecular Mechanisms of Morchella importuna During Repeated Subculturing
by Wenyan Huo, Xuelian He, Yu Liu, Liguang Zhang, Lu Dai, Peng Qi, Ting Qiao, Suying Hu, Pengpeng Lu and Junzhi Li
J. Fungi 2025, 11(6), 420; https://doi.org/10.3390/jof11060420 - 30 May 2025
Viewed by 756
Abstract
This study investigated Morchella importuna strain degeneration during repeated subculturing and employed metabolomics, transcriptomics, and other techniques to explore its molecular mechanisms. Significant metabolic and transcriptional differences were observed between normal mycelia (NM) and degenerated mycelia (DG). Metabolomic analysis revealed 699 differentially expressed [...] Read more.
This study investigated Morchella importuna strain degeneration during repeated subculturing and employed metabolomics, transcriptomics, and other techniques to explore its molecular mechanisms. Significant metabolic and transcriptional differences were observed between normal mycelia (NM) and degenerated mycelia (DG). Metabolomic analysis revealed 699 differentially expressed metabolites (DEMs) that were predominantly enriched in secondary metabolite biosynthesis pathways, particularly flavonoids and indole alkaloids. Total flavonoid content was markedly higher in NM than in DG, with most flavonoid compounds showing reduced levels in degenerated strains. Transcriptomic profiling revealed 2691 differentially expressed genes (DEGs), primarily associated with metabolic pathways and genetic information processing. Integrated analysis showed that metabolic dynamics were regulated by DEGs, with pyruvate metabolism being significantly enriched. The FunBGCeX tool identified biosynthetic gene clusters (BGCs) in the M. importuna genome, highlighting the critical role of the non-reducing polyketide synthase (NR-PKS) gene in flavonoid biosynthesis. This gene exhibited significantly downregulated expression in DG strains. These findings indicate that M. importuna degeneration resulted from systemic dysregulation of gene expression networks and metabolic pathway reorganization. The results presented herein also provide theoretical insights into degeneration mechanisms and potential prevention strategies for this edible fungus. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

10 pages, 1135 KiB  
Article
Establishment and Partial Characterization of Three Novel Permanent Cell Lines Originating from European Freshwater Fish Species
by Andor Doszpoly
Pathogens 2025, 14(6), 531; https://doi.org/10.3390/pathogens14060531 - 26 May 2025
Viewed by 606
Abstract
The establishment and partial characterization of three continuous cell lines from European freshwater fish species are provided. The three new cell lines, designated NPL-3, AF-1, and PF-1, were created from larvae of northern pike (Esox lucius) and fin tissues of asp ( [...] Read more.
The establishment and partial characterization of three continuous cell lines from European freshwater fish species are provided. The three new cell lines, designated NPL-3, AF-1, and PF-1, were created from larvae of northern pike (Esox lucius) and fin tissues of asp (Leuciscus aspius) and European perch (Perca fluviatilis) fin tissues, respectively. All three cell lines have been subcultured more than 90 times since their establishment. Cells were optimally maintained at 25 °C in M199 medium supplemented with 10% fetal bovine serum. The NPL-3 and AF-1 cells are susceptible to spring viraemia of carp virus, pike fry rhabdovirus, ictalurid herpesvirus 2, and European catfish virus, while in the PF-1 cells, only the latter two viruses were successfully propagated. These newly established cell lines could serve as diagnostic tools for the aforementioned economically important viral diseases. They might be effective appliances for isolating novel viruses from northern pike, asp, European perch, and other closely related fish species. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

15 pages, 5139 KiB  
Article
Cryopreservation and Maturation Media Optimization for Enhanced Somatic Embryogenesis in Masson Pine (Pinus massoniana)
by Qian Yang, Ying Lin, You-Mei Chen, Qi Fei, Jian-Ren Ye and Li-Hua Zhu
Plants 2025, 14(11), 1569; https://doi.org/10.3390/plants14111569 - 22 May 2025
Viewed by 404
Abstract
Pinus massoniana Lamb. (masson pine) is a critical species for afforestation in southern China but faces severe threats from pine wilt disease (PWD) caused by Bursaphelenchus xylophilus. To accelerate disease-resistant breeding, this study investigated the effects of cryopreservation on the embryonic capacity [...] Read more.
Pinus massoniana Lamb. (masson pine) is a critical species for afforestation in southern China but faces severe threats from pine wilt disease (PWD) caused by Bursaphelenchus xylophilus. To accelerate disease-resistant breeding, this study investigated the effects of cryopreservation on the embryonic capacity of the embryogenic callus as well as the effects of abscisic acid (ABA), polyethylene glycol 8000 (PEG 8000) and phytagel concentration on the somatic embryo’s maturation and germination. Furthermore, the impact of transplanting substrates on the survival and growth of regenerated plantlets were evaluated. The results showed that cryopreservation at −196 °C effectively maintained the embryogenic potential of the callus, with post-thaw tissues exhibiting superior somatic embryo maturation capacity compared to the long-term subcultured callus (38.4 vs. 13.2 embryos/mL). Key maturation parameters were systematically optimized: ABA concentration at 6 mg/L in the suspension culture maximized embryo yield of 24.1 somatic embryos/mL, while PEG 8000 at 130 g/L in solid medium achieved peak embryo production of 38.4 somatic embryos/mL, and the maximum of 26.6 somatic embryos/mL when the concentration of phytagel was 3.5 g/L. The highest germination rate of 29.8% was observed with 130 g/L PEG in the maturation medium. The highest survival rate (56.5%) and maximum plant height (22.3 cm) after 12 months of transplantation were achieved in substrates consisting of soil and vermiculite, which outperformed those containing varying proportions of mushroom residue. This study establishes a scalable protocol for the mass propagation of PWD-resistant P. massoniana, integrating cryopreservation and maturation media optimization, which offers dual benefits for disease-resistant breeding and sustainable germplasm conservation. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

19 pages, 282 KiB  
Article
The Greek Manosphere: The Case of the “No, You Are Not a Misogynist” Facebook Page
by Angeliki Alipranti
Journal. Media 2025, 6(2), 76; https://doi.org/10.3390/journalmedia6020076 - 21 May 2025
Viewed by 625
Abstract
This research is driven by the expansion and popularity of the Manosphere network in the last decade, causing online and offline harassment of women. The study examines the phenomenon of the Manosphere in the Greek digital space and, more specifically, it researches the [...] Read more.
This research is driven by the expansion and popularity of the Manosphere network in the last decade, causing online and offline harassment of women. The study examines the phenomenon of the Manosphere in the Greek digital space and, more specifically, it researches the case of the popular, anonymous, and public accessed Facebook page of “Όχι, Δεν Είσαι Μισογύνης” (No, you are not a misogynist). The study’s research questions are whether the Greek Manosphere follows the same patterns of the international Manosphere groups and how gendered identities and roles are represented in its discourse. In order to answer the research questions, the study combines the method of thematic analysis and the approach of critical discourse analysis. The “Όχι, Δεν Είσαι Μισογύνης” (OΔΕΜ) page is found to be a case of the Men’s Rights Activists subculture of the Manosphere, with the main topic of interest being the online activism against feminism. Although the Facebook page reproduces traditional gender stereotypes and representations, a crucial difference from “classic” patriarchal perceptions is that the OΔΕΜ discourse portrays women as privileged, socially dominant and violent, while men are depicted as victims, discriminated by women and the social system. This inversion of reality is executed by the misinterpretation and falsification of data, along with the appropriation of activist and feminist discourse, which could lead to latent, or overt, misogynist perception and stereotypes (re)gaining popularity. Full article
21 pages, 5503 KiB  
Article
Comparative Genomic Analysis of Two Vibrio harveyi Strains from Larimichthys crocea with Divergent Virulence Profiles
by Kequan Wang, Chaozheng Zhang, Hetron Mweemba Munang’andu, Cheng Xu, Wenlong Cai, Xiaojun Yan and Zhen Tao
Microorganisms 2025, 13(5), 1129; https://doi.org/10.3390/microorganisms13051129 - 14 May 2025
Viewed by 540
Abstract
Vibrio harveyi is a significant pathogen in marine aquaculture, causing vibriosis in various marine species. This study presents a comparative genomic analysis of two V. harveyi strains, N8T11 and 45T2, which exhibit differing virulence profiles. Virulence assays revealed that N8T11 caused 92% mortality [...] Read more.
Vibrio harveyi is a significant pathogen in marine aquaculture, causing vibriosis in various marine species. This study presents a comparative genomic analysis of two V. harveyi strains, N8T11 and 45T2, which exhibit differing virulence profiles. Virulence assays revealed that N8T11 caused 92% mortality in infected fish, while 45T2 resulted in 0% mortality. Whole-genome sequencing revealed that strain N8T11 harbors five plasmids (pN8T11a, pN8T11b, pN8T11c, pN8T11d and pN8T11e) absent in 45T2, encoding genes potentially linked to virulence, such as siderophore-mediated iron acquisition and stress response mechanisms. Pan-genome analysis highlighted substantial genomic plasticity within V. harveyi, with mobile genetic elements, including plasmids and prophages, contributing to horizontal gene transfer. Conjugation experiments demonstrated that all five N8T11 plasmids can transfer to 45T2 with efficiencies up to 87%, with pN8T11b remaining stable across multiple subcultures, enabling the dissemination of virulence-associated genes. These findings suggest that plasmid-mediated gene transfer plays a role in the virulence variability observed between V. harveyi strains. This study contributes to understanding the genomic factors underlying pathogenicity in V. harveyi and provides insights for future research aimed at controlling vibriosis in aquaculture. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

Back to TopTop