Cytokinin Potentials on In Vitro Shoot Proliferation and Subsequent Rooting of Agave sisalana Perr. Syn
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Establishment of Aseptic Cultures and Induction of Axillary Shoots
2.3. Shoot Proliferation from Axillary Buds of Bulbils Explants
2.4. Shoot Growth, Development, Elongation, and In Vitro Rooting
2.5. Ex Vitro Acclimatization
2.6. Experimental Design and Statistical Analyses
3. Results
3.1. Effect of Cytokinins on Shoot Proliferation from Axillary Buds of Bulbils
3.2. Effect of CK-Free Medium on Shoot Growth, Elongation, and In Vitro Rooting
3.3. Ex Vitro Acclimatization of Agave Sisalana In Vitro Plantlets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ávila-Reyes, S.V.; Jiménez-Aparicio, A.R.; Melgar-Lalanne, G.; Fajardo-Espinoza, F.S.; Hernández-Sánchez, H. Mezcal: A Review of Chemistry, Processing, and Potential Health Benefits. Foods 2025, 14, 1408. [Google Scholar] [CrossRef]
- Santiago-Martínez, A.; Pérez-Herrera, A.; Martínez-Gutiérrez, G.A.; Meneses, M.E. Contributions of agaves to human health and nutrition. Food Biosci. 2023, 53, 102753. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Hu, F.; Yang, H.; Yue, L.; Trigiano, R.N.; Cheng, Z.M. Micropropagation of Agave americana. HortScience 2014, 49, 320–327. [Google Scholar] [CrossRef]
- Rawat, M.; Varshney, A.; Kandpal, R.; Choudhary, A.; Gupta, A.K.; Pratiksha; Naik, B.; Kumar, V.; Kumar, A.; Kheto, A.; et al. Exploration of compositional, functional, nutraceutical, and metabolites of Ram kandmool (Agave sisalana Perrine) for potential application in food systems. Int. J. Biol. Macromol. 2025, 307, 142095. [Google Scholar] [CrossRef] [PubMed]
- Debnath, M.; Pandey, M.; Sharma, R.; Thakur, G.S.; Lal, P. Biotechnological intervention of Agave sisalana: A unique fiber yielding plant with medicinal property. J. Med. Plants Res. 2010, 4, 177–187. [Google Scholar]
- Costa, L.T.S.d.; Fracasso, J.A.R.; Guarnier, L.P.; Brito, G.R.d.; Fumis, D.B.; Camargo Bittencourt, R.A.d.; Guiotti, A.M.; Barros Barbosa, D.d.; Camargo, I.C.C.; Souza, E.B.d.; et al. Toxicity and Anti-Inflammatory Effects of Agave sisalana Extract Derived from Agroindustrial Residue. Plants 2023, 12, 1523. [Google Scholar] [CrossRef]
- Puente-Garza, C.A.; Gutiérrez-Mora, A.; García-Lara, S. Micropropagation of Agave salmiana: Means to Production of Antioxidant and Bioactive Principles. Front. Plant Sci. 2015, 6, 1026. [Google Scholar] [CrossRef]
- Chege, B.M.; Nyaga, N.M.; Kaur, P.S.; Misigo, W.O.; Khan, N.; Wanyonyi, W.C.; Mwangi, P.W. The significant antidyslipidemic, hypoglycemic, antihyperglycemic, and antiobesity activities of the aqueous extracts of Agave Sisalana juice are partly mediated via modulation of calcium signaling pathways. Heliyon 2023, 9, e12400. [Google Scholar] [CrossRef]
- Sari, N.H.; Suteja, S.; Hidayatullah, S.; Al-Farizi, F.H.; Lokantara, I.P. Performance evaluation of hybrid sisalana Agave fiber and carbon powder in polyester composites: A study on mechanical, thermal, and microstructural characteristics. Case Stud. Chem. Environ. Eng. 2025, 11, 101215. [Google Scholar] [CrossRef]
- Molina, A.; Kothari, A.; Odundo, A.; Prakash, M. Agave sisalana: Towards distributed manufacturing of absorbent media for menstrual pads in semi-arid regions. Commun. Eng. 2023, 2, 81. [Google Scholar] [CrossRef]
- Tewari, D.; Tripathi, Y.C.; Anjum, N. Agave sisalana: A Plant with High Chemical Diversity and Medicinal Importance. World J. Pharm. Res. 2014, 3, 238–249. [Google Scholar]
- Arizaga, S.; Ezcurra, E. Insurance against reproductive failure in a semelparous plant: Bulbil formation in Agave macroacantha flowering stalks. Oecologia 1995, 101, 329–334. [Google Scholar] [CrossRef]
- Arizaga, S.; Ezcurra, E. Propagation mechanisms in Agave macroacantha (Agavaceae), a tropical arid-land succulent rosette. Am. J. Bot. 2002, 89, 632–641. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Li, X.; Chen, Z.; Li, J.-F.; Lu, J.-Y.; Zhou, W.-Z. Shoot organogenesis and plant regeneration in Agave hybrid, No. 11648. Sci. Hortic. 2013, 161, 30–34. [Google Scholar] [CrossRef]
- Cruz García, H.; Campos Ángeles, G.V.; Enríquez del Valle, J.R.; Rodríguez Ortiz, G.; Velasco Velasco, V.A. Development of micropropagated plants of Agave americana var. Oaxacensis during greenhouse acclimatization. Rev. Mex. De Cienc. Agric. 2019, 10, 1491–1503. [Google Scholar]
- Bautista-Montes, E.; Hernández-Soriano, L.; Simpson, J. Advances in the Micropropagation and Genetic Transformation of Agave Species. Plants 2022, 11, 1757. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Aceves, L.; González-Arnao, M.T.; Santacruz-Ruvalcaba, F.; Folgado, R.; Portillo, L. Indirect Somatic Embryogenesis and Cryopreservation of Agave tequilana Weber Cultivar ‘Chato’. Plants 2021, 10, 249. [Google Scholar] [CrossRef]
- Chávez Ortiz, L.I.; Balch, P.M.E. In Vitro Propagation of Threatened Agave Species Using a Two-Stage System. Methods Mol. Biol. 2024, 2827, 165–178. [Google Scholar] [CrossRef]
- Singh, V.; Maiti, R.K. A review on in-vitro micropropagation of agave and other plants. Farm. Manag. 2020, 5, 108–114. [Google Scholar] [CrossRef]
- del Rosario, M.-H.M.; Abel, L.-B.J.; Karen, S.-F.M.; Adriana, C.-O.; Jabín, B.-B.J. Arbuscular mycorrhizal fungi improve the growth, nutrient uptake and survival of micropropagated agave (Agave marmorata Roezl) plantlets during acclimatization. J. Arid Environ. 2025, 228, 105330. [Google Scholar] [CrossRef]
- Santacruz-Ruvalcaba, F.; Castañeda-Nava, J.J.; Villanueva-Gónzalez, J.P.; García-Sahagún, M.L.; Portillo, L.; Contreras-Pacheco, M.L. Micropropagation of Agave maximiliana Baker by axillary bud proliferation. Polibotánica 2022, 54, 139–151. [Google Scholar] [CrossRef]
- Rieger, I.A. “Rewilding” the Mezcal Market: Cultural Practices and the Conservation of Agaves in Oaxaca, Mexico. Wild 2025, 2, 20. [Google Scholar] [CrossRef]
- Angeles-Vázquez, B.V.; Alvarez-Cervantes, J.; Tovar-Jiménez, X.; Rodríguez-Garay, B. Plant regeneration from indirect somatic embryogenesis of Agave salmiana 0tto ex Salm-Dyck subsp. salmiana using zygotic embryo obtained by in-casa pollination as explants. Polibotánica 2023, 56, 171–182. [Google Scholar] [CrossRef]
- Puente-Garza, C.A.; Espinosa-Leal, C.A.; García-Lara, S. Effects of saline elicitors on saponin production in Agave salmiana plants grown in vitro. Plant Physiol. Biochem. 2021, 162, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Reyna-Morales, C. Micropropagation of Agave montium-sancticaroli Shoots from Apical Buds. Master’s Thesis, University of Nuevo LeÓn, Faculty of Agronomy, San Nicolás de los Garza, Mexico, 2020. Available online: http://eprints.uanl.mx/20218/1/1080314060.pdf (accessed on 27 May 2025). (In Spanish).
- Robert, M.-L.; Herrera-Herrera, J.-L.; Castillo, E.; Ojeda, G.; Herrera-Alamillo, M.-A. An Efficient Method for the Micropropagation of Agave Species. Plant Cell Cult. Protocol. 2005, 318, 165–178. [Google Scholar]
- Wijerathna-Yapa, A.; Hiti-Bandaralage, J. Tissue Culture—A Sustainable Approach to Explore Plant Stresses. Life 2023, 13, 780. [Google Scholar] [CrossRef]
- Adu Donyina, G.; Szarvas, A.; Opoku, V.A.; Miko, E.; Tar, M.; Czóbel, S.; Monostori, T. Enhancing sweet potato production: A comprehensive analysis of the role of auxins and cytokinins in micropropagation. Planta 2025, 261, 74. [Google Scholar] [CrossRef]
- Lecona-Guzmán, C.A.; Reyes-Zambrano, S.; Barredo-Pool, F.A.; Abud-Archila, M.; Montes-Molina, J.A.; Rincón-Rosales, R.; Gutierrez-Miceli, F.A. In Vitro Propagation of Agave americana by Indirect Organogenesis. HortScience 2017, 52, 996–999. [Google Scholar] [CrossRef]
- Arzate-Fernandez, A.M.; Velasco, I.M.; Aragón, C.A.; Martinez-Martinez, S.Y.; Norman-Mondragon, T.H. Morphogenetic response of two agave species regenerated In vitro. Trop. Subtrop. Agroecosyst. 2020, 23. [Google Scholar] [CrossRef]
- Alvarez-Aragón, C.; Arzate-Fernández, A.M.; Martínez-Martínez, S.Y.; Martínez-Velasco, I. Regeneration of Agave marmorata Roezl Plants by Somatic Embryogenesis. Trop. Subtrop. Agroecosyst. 2020, 23, 36. [Google Scholar] [CrossRef]
- Correa-Hernández, L.; Baltazar-Bernal, O.; Sánchez-Páez, R.; Bello-Bello, J.J. In vitro multiplication of agave tobala (Agave potatorum Zucc.) using Ebb-and-Flow bioreactor. S. Afr. J. Bot. 2022, 147, 670–677. [Google Scholar] [CrossRef]
- Eucario, M.-Á.; Luis, S.-C.J.; Arturo, M.-M.T.R.; Francisco, P.-P.K.; Jabín, B.-B.J. Temporary immersion bioreactor as an efficient method for in vitro propagation of Agave marmorata. S. Afr. J. Bot. 2024, 169, 6–11. [Google Scholar] [CrossRef]
- Carneiro-dos Santos, F.; de Olivera, D.Q.S.R.; Rodríguez, P.A.; Neves, N.M.; Souza, S.K. Somatic embryogenesis in Agave Sisalana Perrine: Induction, anatomical characterization and regeneration. Pesqui. Agropecuária Trop. 2014, 44, 294–303. (In Spanish) [Google Scholar] [CrossRef]
- Amante, G.; Chimdessa, E. Control of browning in plant tissue culture: A review. J. Sci. Agric. 2021, 5, 67–71. [Google Scholar] [CrossRef]
- Liu, C.; Fan, H.; Zhang, J.; Wu, J.; Zhou, M.; Cao, F.; Tao, G.; Zhou, X. Combating browning: Mechanisms and management strategies in in vitro culture of economic woody plants. For. Res. (Fayettev) 2024, 4, e032. [Google Scholar] [CrossRef]
- Davis, S.D.; Ortiz-Cano, H.G. Lessons from the history of Agave: Ecological and cultural context for valuation of CAM. Ann. Bot. 2023, 132, 819–833. [Google Scholar] [CrossRef]
- Kablan, R.J.-F.; Sylvestre, M.; Onesippe-Potiron, C.; Bilba, K.; Kablan, A.L.C.; Arsène, M.-A.; Rousteau, A.; Cebrian-Torrejon, G. Agave species: A comprehensive review of taxonomy, chemistry, ethnobotany, and ethnopharmacology. In Studies in Natural Products Chemistry; Atta-Ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 80, pp. 187–225. [Google Scholar] [CrossRef]
- Ndzie Bidima, A.-M., II; Efeze, D.N.; Ebanda, F.B.; Enyegue, T.T.O.; Belinga, R.L.N.; Mbang, J.P.E. Modeling of mechanical behavior of Agave sisalana fiber’s yarn using the design of experiments method. Results Mater. 2024, 23, 100605. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Plant 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Alsanie, S.I. Insights on the Mesembryanthemum forsskalii phenotype and study of the effects of several exogenous plant growth regulators via plant tissue culture. BMC Plant Biol. 2025, 25, 15. [Google Scholar] [CrossRef]
- Nowakowska, K.; Pińkowska, A.; Siedlecka, E.; Pacholczak, A. The effect of cytokinins on shoot proliferation, biochemical changes and genetic stability of Rhododendron ‘Kazimierz Odnowiciel’ in the in vitro cultures. Plant Cell Tissue Organ Cult. 2022, 149, 675–684. [Google Scholar] [CrossRef]
- Svolacchia, N.; Sabatini, S. Cytokinins. Curr. Biol. 2023, 33, R10–R13. [Google Scholar] [CrossRef]
- da Cunha Neto, A.R.; Ambrósio, A.S.; Resende, A.J.R.; Santos, B.R.; Nadal, M.C. From Cell Division to Stress Tolerance: The Versatile Roles of Cytokinins in Plants. Phyton Int. J. Exp. Bot. 2025, 94, 539–560. [Google Scholar] [CrossRef]
- Pasternak, T.P.; Steinmacher, D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. Plants 2024, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Dobránszki, J.; Teixeira da Silva, J.A. Micropropagation of apple—A review. Biotechnol. Adv. 2010, 28, 462–488. [Google Scholar] [CrossRef] [PubMed]
- Das, T. Micropropagation of Agave sisalana. Plant Cell Tissue Organ Cult. 1992, 31, 253–255. [Google Scholar] [CrossRef]
- Hazra, S.K.; Das, S.; Das, A.K. Sisal plant regeneration via organogenesis. Plant Cell Tissue Organ Cult. 2002, 70, 235–240. [Google Scholar] [CrossRef]
- Nikam, T.D.; Bansude, G.M.; Aneesh, K. Somatic embryogenesis in sisal (Agave sisalana Perr. Ex. Englem). Plant Cell Rpt. 2003, 22, 188–194. [Google Scholar] [CrossRef]
- Martins, J.P.R.; Wawrzyniak, M.K.; Ley-López, J.M.; Kalemba, E.M.; Mendes, M.M.; Chmielarz, P. 6-Benzylaminopurine and kinetin modulations during in vitro propagation of Quercus robur (L.): An assessment of anatomical, biochemical, and physiological profiling of shoots. Plant Cell Tissue Organ Cult. 2022, 151, 149–164. [Google Scholar] [CrossRef]
- El-Mahrouk, M.E.; Dewir, Y.H.; Naidoo, Y. Micropropagation and Genetic Fidelity of the Regenerants of Aglaonema ‘Valentine’ Using Randomly Amplified Polymorphic DNA. HortScience 2016, 51, 398–402. [Google Scholar] [CrossRef]
- Peddaboina, V.; Thamidala, C.; Karampuri, S. In vitro shoot multiplication and plant regeneration in four Capsicum species using thidiazuron. Sci. Hortic. 2006, 107, 117–122. [Google Scholar] [CrossRef]
- Faisal, M.; Ahmad, N.; Anis, M. Shoot multiplication in Rauvolfia tetraphylla L. using thidiazuron. Plant Cell Tissue Organ Cult. 2005, 80, 187–190. [Google Scholar] [CrossRef]
- Parveen, S.; Shahzad, A. TDZ-induced high frequency shoot regeneration in Cassia sophera Linn. via cotyledonary node explants. Physiol. Mol. Biol. Plants 2010, 16, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Bidabadi, S.S.; Jain, S.M. Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration. Plants 2020, 9, 702. [Google Scholar] [CrossRef]
- Yang, W.; Cortijo, S.; Korsbo, N.; Roszak, P.; Schiessl, K.; Gurzadyan, A.; Wightman, R.; Jönsson, H.; Meyerowitz, E. Molecular mechanism of cytokinin-activated cell division in Arabidopsis. Science 2021, 371, 1350–1355. [Google Scholar] [CrossRef]
- van Voorthuizen, M.J.; Nisler, J.; Song, J.; Spíchal, L.; Jameson, P.E. Targeting cytokinin homeostasis in rapid cycling Brassica rapa with plant growth regulators INCYDE and TD-K. Plants 2021, 10, 39. [Google Scholar] [CrossRef]
- Wang, F.; Li, Y.; Pang, Y.; Hu, J.; Kang, X.; Qian, C. Thidiazuron Enhances Strawberry Shoot Multiplication by Regulating Hormone Signal Transduction Pathways. Int. J. Mol. Sci. 2025, 26, 4060. [Google Scholar] [CrossRef]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An Academic and Technical Overview on Plant Micropropagation Challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
- Mähönen, A.P.; Higuchi, M.; Törmäkangas, K.; Miyawaki, K.; Pischke, M.S.; Sussman, M.R.; Helariutta, Y.; Kakimoto, T. Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr. Biol. 2006, 16, 1116–1122. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Murthy, H.N.; Ammar, M.H.; Alghamdi, S.S.; Al-Suhaibani, N.A.; Alsadon, A.A.; Paek, K.Y. In vitro Rooting of Leguminous Plants: Difficulties, Alternatives, and Strategies for Improvement. Hortic. Environ. Biotechnol. 2016, 57, 311–322. [Google Scholar] [CrossRef]
- Tahir, M.M.; Fan, L.; Liu, Z.; Raza, H.; Aziz, U.; Shehzaib, A.; Li, S.; He, Y.; Lu, Y.; Ren, X.; et al. Physiological and molecular mechanisms of cytokinin involvement in nitrate-mediated adventitious root formation in apples. J. Integr. Agric. 2024, 23, 4046–4057. [Google Scholar] [CrossRef]
- El Mahrouk, M.E.; Dewir, Y.H.; Omar, A.M.K. In vitro propagation of adult strawberry tree (Arbutus unedo L.) through adventitious shoots and somatic embryogenesis. Propag. Ornam. Plants 2010, 10, 93–98. [Google Scholar]
- Magyar-Tábori, K.; Dobránszki, J.; Jámbor-Benczúr, E.; Bubán, T.; Lazányi, J.; Szalai, J.; Ferenczy, A. Post-effects of cytokinins and auxin levels of proliferation media on rooting ability of in vitro apple shoots (Malus domestica Borkh.) ‘Red Fuji’. Int. J. Hortic. Sci. 2001, 7, 26–29. [Google Scholar] [CrossRef]
- Magyar-Tábori, K.; Dobránszki, J.; Hudák, I. Effect of cytokinin content of the regeneration media on in vitro rooting ability of adventitious apple shoots. Sci. Hortic. 2011, 129, 910–913. [Google Scholar] [CrossRef]
- Luna, M.E.M.; del Valle, J.R.E.; Velasco, V.A.V.; Aparicio, Y.V.; Rodríguez, J.C.C. Benzyladenine concentration, type and dose of carbohydrates in the culture medium for shoot proliferation of Agave americana. Rev. Fac. Cienc. Agrar. Univ. Nac. Cuyo 2014, 46, 97–107. [Google Scholar]
- Van Staden, J.; Zazimalova, E.; George, E.F. Plant Growth Regulators II. Cytokinins, their analogues and antagonists. In Plant Propagation by Tissue Culture, 3rd ed.; George, E.F., Hall, M.A., de Klerk, G.-J., Eds.; The Background; Springer: Dordrecht, The Netherlands, 2008; Volume 1, pp. 205–226. [Google Scholar]
- Mehta, U.J.; Barreto, S.M.; Hazra, S. Effect of Thidiazuron in germinating tamarind seedlings. In Vitro Cell. Dev. Biol. Plant 2004, 40, 279–283. [Google Scholar] [CrossRef]
- Shaik, N.M.; Arha, M.; Nookaraju, A.; Gupta, S.K.; Shrivastava, S.; Yadav, A.K.; Kulkarni, P.S.; Abhilash, O.U.; Rishi, K.; Singh, S.; et al. Improved method of in vitro regeneration in Leucaena leucocephala—A leguminous pulpwood tree species. Physiol. Mol. Biol. Plants 2009, 15, 311–318. [Google Scholar] [CrossRef]
- Ali, H.M.; Khan, T.; Khan, M.A.; Ullah, N. The multipotent thidiazuron: A mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnol. Appl. Biochem. 2022, 69, 2624–2640. [Google Scholar] [CrossRef]
- Huetteman, C.A.; Preece, J.E. Thidiazuron: A Potent Cytokinin for Woody Plant Tissue Culture. Plant Cell Tissue Organ Cult. 1993, 33, 105–119. [Google Scholar] [CrossRef]
- Abdalla, N.; Dobránszki, J. Meta-Topolin as an Effective Benzyladenine Derivative to Improve the Multiplication Rate and Quality of In Vitro Axillary Shoots of Húsvéti Rozmaring Apple Scion. Plants 2024, 13, 1568. [Google Scholar] [CrossRef]
- Binh, L.T.; Muoi, L.T.; Oanh, H.T.K.; Thang, T.D.; Phong, D.T. Rapid propagation of agave by in vitro tissue culture. Plant Cell Tissue Organ Cult. 1990, 23, 67–70. [Google Scholar] [CrossRef]
Cytokinin (mg L−1) | No. of Shoots/Explant | No. of Leaves/Shoot | No. of Roots/Shoot | Root Length (cm) | Shoot Length (cm) | Shoot Weight (g) |
---|---|---|---|---|---|---|
Control | 2.0 i | 6.3 abc | 12 a | 3.67 ab | 12.67 abc | 3.67 a |
BA | ||||||
2.0 | 8.0 cd | 5.3 bcde | 0.0 c | 0.0 e | 10.5 cde | 0.93 defg |
4.0 | 12.0 b | 5.0 bcde | 0.0 c | 0.0 e | 11.17 bcde | 0.48 g |
6.0 | 6.3 def | 5.3 bcde | 0.0 c | 0.0 e | 12.3 abc | 1.07 cdefg |
8.0 | 2.67 hi | 4.3 cde | 0.0 c | 0.0 e | 11 bcde | 2.03 bcd |
10.0 | 1.67 i | 5.3 bcde | 0.0 c | 0.0 e | 12 abc | 1.83 bcde |
KIN | ||||||
2.0 | 2.3 hi | 4.3 cde | 10.3 a | 3.3 b | 13.3 ab | 2.17 bc |
4.0 | 3.3 ghi | 3.67 de | 12.0 a | 3.83 a | 14.3 a | 2.6 b |
6.0 | 4.67 fgh | 7.0 ab | 10.0 a | 2.5 c | 9.0 def | 1.23 cdefg |
8.0 | 10.0 bc | 7.67 a | 7.3 b | 1.0 d | 11.3 bc | 0.3 g |
10.0 | 5.3 efg | 6.67 ab | 6.0 b | 0.83 d | 13.0 ab | 0.73 efg |
TDZ | ||||||
0.5 | 5.3 efg | 5.67 abcd | 0.0 c | 0.0 e | 10.3 cde | 1.67 bcdef |
1.0 | 14.67 a | 4.3 cde | 0.0 c | 0.0 e | 7.3 fg | 0.74 efg |
1.5 | 11.67 b | 5.67 abcd | 0.0 c | 0.0 e | 8.83 ef | 1.3 cdefg |
2.0 | 7.67 de | 3.3 e | 0.0 c | 0.0 e | 6.5 g | 0.53 fg |
2.5 | 6.3 def | 6.0 abc | 0.0 c | 0.0 e | 11.3 bcd | 0.97 defg |
Significant | *** | *** | *** | *** | *** | *** |
Cytokinin (mg L−1) | No. of Shoots/Explant | No. of Leaves/Shoot | No. of Roots/Shoot | Root Length (cm) | Shoot Length (cm) | Shoot Weight (g) |
---|---|---|---|---|---|---|
BA | ||||||
2.0 | 12 c | 8.67 a | 8.3 a | 4.67 a | 17.17 a | 0.85 def |
4.0 | 19.67 a | 6.67 bc | 6.67 ab | 3.3 b | 14.3 b | 1.43 bc |
6.0 | 11 c | 6.3 bc | 5.67 bc | 2.3 c | 9.3 c | 1.0 de |
8.0 | 5.67 fg | 5.3 cd | 2.67 d | 0.67 d | 8.3 c | 0.85 def |
10.0 | 4.3 g | 4.0 d | 2.3 d | 0.5 d | 5.67 c | 1.93 a |
TDZ | ||||||
0.5 | 7.3 ef | 6.3 bc | 4 cd | 1.73 c | 8.5 c | 1.23 cd |
1.0 | 18.67 a | 5.67 cd | 5.3 bc | 0.77 d | 8.67 c | 0.73 ef |
1.5 | 15.3 b | 7.67 ab | 0.0 e | 0.0 e | 9.0 c | 1.67 ab |
2.0 | 10.67 | 4.3 d | 0.0 e | 0.0 e | 5.0 de | 0.97 de |
2.5 | 9.0 de | 5.3 cd | 0.0 e | 0.0 e | 3.0 e | 1.53 bc |
Significant | *** | *** | *** | *** | *** | *** |
Cytokinin (mg L−1) | Acclimatization Percentage (%) |
---|---|
Control | 100 a |
KIN | |
2.0 | 100 a |
4.0 | 100 a |
6.0 | 100 a |
8.0 | 100 a |
10.0 | 100 a |
BA | |
2.0 | 100 a |
4.0 | 100 a |
6.0 | 100 a |
8.0 | 100 a |
10.0 | 100 a |
TDZ | |
0.5 | 100 a |
1.0 | 100 a |
1.5 | 10.0 b |
2.0 | 0.00 c |
2.5 | 0.00 c |
Significant | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seliem, M.K.; Abdalla, N.; El-Mahrouk, M.E. Cytokinin Potentials on In Vitro Shoot Proliferation and Subsequent Rooting of Agave sisalana Perr. Syn. Horticulturae 2025, 11, 929. https://doi.org/10.3390/horticulturae11080929
Seliem MK, Abdalla N, El-Mahrouk ME. Cytokinin Potentials on In Vitro Shoot Proliferation and Subsequent Rooting of Agave sisalana Perr. Syn. Horticulturae. 2025; 11(8):929. https://doi.org/10.3390/horticulturae11080929
Chicago/Turabian StyleSeliem, Mayada K., Neama Abdalla, and Mohammed E. El-Mahrouk. 2025. "Cytokinin Potentials on In Vitro Shoot Proliferation and Subsequent Rooting of Agave sisalana Perr. Syn" Horticulturae 11, no. 8: 929. https://doi.org/10.3390/horticulturae11080929
APA StyleSeliem, M. K., Abdalla, N., & El-Mahrouk, M. E. (2025). Cytokinin Potentials on In Vitro Shoot Proliferation and Subsequent Rooting of Agave sisalana Perr. Syn. Horticulturae, 11(8), 929. https://doi.org/10.3390/horticulturae11080929