Aeration and Chemical Additives Prevent Hyperhydration and Allow the Production of High-Quality In Vitro Potato Plantlets
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design and Conditions
2.2. Data Collection and Statistical Analysis
3. Results
3.1. Effect of Culture Aeration
3.2. Effects of Additional Chemical Additives in the Medium
4. Discussion
4.1. Effect of Culture Aeration
4.2. Effects of Additional Chemical Additives in the Medium
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PTC | Plant tissue culture |
CO2 | Carbon dioxide |
ROS | Reactive oxygen species |
ETH | Ethylene |
AgNO3 | Silver nitrate |
ACC | 1-aminocyclopropane-1-carboxylic acid |
STS | Silver thiosulphate |
AVG | Aminoethoxyvinylglycin |
PGR | Plant growth regulator |
NAA | 1-Naphthaleneacetic acid |
ABA | Abscisic acid |
JA | Jasmonic acid |
SA | Salicylic acid |
MTP | Meta-topoline (6-(3-hydroxybenzylamino)purine) |
GSH | Glutathione |
VIT-C | Ascorbic acid |
References
- Jackson, M.B. Aeration stress in plant tissue cultures. In Liquid Culture Systems for In Vitro Plant Propagation; Hvoslef-Eide, A.K., Preil, W., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 459–473. [Google Scholar] [CrossRef]
- Askari, N.; Aliniaeifard, S.; Visser, R.G.F. Low CO2 levels are detrimental for in vitro plantlets through disturbance of photosynthetic functionality and accumulation of reactive oxygen species. Horticulturae 2022, 8, 44. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Kozai, T. Environmental effects on the growth of plantlets in micropropagation. Environ. Control Biol. 1998, 36, 59–75. [Google Scholar] [CrossRef]
- Chen, C. Humidity in Plant Tissue Culture Vessels. Biosyst. Eng. 2004, 88, 231–241. [Google Scholar] [CrossRef]
- Polivanova, O.B.; Bedarev, V.A. Hyperhydricity in Plant Tissue Culture. Plants 2022, 11, 3313. [Google Scholar] [CrossRef]
- Park, S.W.; Jeon, J.H.; Kim, H.S.; Park, Y.M.; Aswath, C.; Joung, H. Effect of sealed and vented gaseous microenvironments on the hyperhydricity of potato shoots in vitro. Sci. Hort. 2004, 99, 199–205. [Google Scholar] [CrossRef]
- Wolf, S.; Kalman-Rotem, N.; Yakir, D.; Zrv, M. Autotrophic and heterotrophic carbon assimilation of in vitro grown potato (Solanum tuberosum L.) plants. J. Plant Physiol. 1998, 153, 574–580. [Google Scholar] [CrossRef]
- Zobayed, S.M.A. Aeration in plant tissue culture. In Plant Tissue Culture Engineering. Focus on Biotechnology; Gupta, S.D., Ibaraki, Y., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 6, pp. 313–327. [Google Scholar] [CrossRef]
- Vinterhalter, D.; Dragićević, I.; Vinterhalter, B. Potato in vitro culture techniques and biotechnology. Fruit Veg. Cereal Sci. Biotech. 2008, 2, 16–45. [Google Scholar]
- Chanemougasoundharam, A.; Sarkar, D.; Pandey, S.K.; Al-Biski, F.; Helali, O.; Minhas, J.S. Culture tube closure-type affects potato plantlets growth and chlorophyll contents. Biol. Plant. 2004, 48, 7–11. [Google Scholar] [CrossRef]
- Kumar, V.; Parvatam, G.; Ravishankar, G.A. AgNO3—A potential regulator of ethylene activity and plant growth modulator. Electron. J. Biotech. 2009, 12, 8–9. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Ticona, S.A.; Oropeza, M. Effect of culture medium consistence and silver nitrate on micropropagation of two potato (Solanum tuberosum) cultivars. Rev. Colomb. Biotecnol. 2013, 15, 55–62. [Google Scholar] [CrossRef]
- Zobayed, S.M.A.; Armstrong, J.; Armstrong, W. Micropropagation of Potato: Evaluation of closed, diffusive and forced ventilation on growth and tuberization. Ann. Bot. 2001, 87, 53–59. [Google Scholar] [CrossRef]
- Chae, S.C.; Kim, H.H.; Park, S.U. Ethylene inhibitors enhance shoot organogenesis of gloxinia (Sinningia speciosa). Sci. World J. 2012, 2012, 859381. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, Y.; Xu, Y.; An, Y.; Hu, Z.; Xiong, A.; Wang, G. Effects of jasmonic acid on stress response and quality formation in vegetable crops and their underlying molecular mechanisms. Plants 2024, 13, 1557. [Google Scholar] [CrossRef]
- Wang, Y.; Mostafa, S.; Zeng, W.; Jin, B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. J. Mol. Sci. 2021, 22, 8568. [Google Scholar] [CrossRef]
- Kamińska, M. Role and activity of jasmonates in plants under in vitro conditions. Plant Cell Tissue Organ Cult. 2021, 146, 425–447. [Google Scholar] [CrossRef]
- Wang, J.; Song, L.; Gong, X.; Xu, J.; Li, M. Functions of jasmonic acid in plant regulation and response to abiotic stress. Int. J. Mol. Sci. 2020, 21, 1446. [Google Scholar] [CrossRef]
- Ciura, J.; Kruk, J. Phytohormones as targets for improving plant productivity and stress tolerance. J. Plant Physiol. 2018, 229, 32–40. [Google Scholar] [CrossRef]
- Zhang, Q.; Gong, M.; Xu, X.; Li, H.; Deng, W. Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells 2022, 11, 2761. [Google Scholar] [CrossRef]
- Singh, H.; Bhat, J.A.; Singh, V.P.; Corpas, F.J.; Yadav, S.R. Auxin metabolic network regulates the plant response to metalloids stress. J. Hazard. Mater. 2021, 405, 124250. [Google Scholar] [CrossRef]
- Raspor, M.; Motyka, V.; Ninković, S.; Dobrev, P.I.; Malbeck, J.; Ćosić, T.; Cingel, A.; Savić, J.; Tadić, V.; Dragićević, I.C. Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics. Sci. Rep. 2020, 10, 3437. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Shao, H.; Zheng, A.; Zhao, L.; Xu, Y. Advances in roles of salicylic acid in plant tolerance responses to biotic and abiotic stresses. Plants 2023, 12, 3475. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Sun, X.; Liu, L. Action of salicylic acid on plant growth. Front. Plant Sci. 2022, 13, 878076. [Google Scholar] [CrossRef] [PubMed]
- Vicent, M.R.S.; Plasencia, J. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef]
- Jackson, M.B.; Abbott, A.J.; Belcher, A.R.; Hall, K.C.; Butler, R.; Cameron, J. Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann. Bot. 1991, 67, 229–237. [Google Scholar] [CrossRef]
- Ievinsh, G.; Kruzmane, D.; Rusite, E.; Arente, G.; Gertnere, D. Modulation of Solanum tuberosum L. morphogenesis and antioxidative status in a stem explant culture by limitation of gas exchange: Putative effects of ethylene. J. Plant Physiol. 2000, 156, 717–723. [Google Scholar] [CrossRef]
- Ivanchenko, M.G.; Muday, G.K.; Dubrovsky, J.G. Ethylene–auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J. 2008, 55, 335–347. [Google Scholar] [CrossRef]
- Vreugdenhil, D.; Van Dijk, W. Effects of ethylene on the tuberization of potato (Solanum tuberosum) cuttings. Plant Growth Regul. 1989, 8, 31–39. [Google Scholar] [CrossRef]
- Šmeringai, J.; Schrumpfová, P.P.; Pernisová, M. Cytokinins—Regulators of de novo shoot organogenesis. Front. Plant Sci. 2023, 14, 1239133. [Google Scholar] [CrossRef]
- Singh, B.; Kajla, B.; Nain, S.; Singh, B.; Singh, N. A review on the effects of jasmonates on plants grown under in vitro conditions. Afr. J. Biomed. Res. 2024, 27, 1723–1731. [Google Scholar] [CrossRef]
- Shin, J.W.; Kim, S.; Choi, J.H.; Kim, C.K. Effect of silver nanoparticles and antioxidants on micropropagation of Rosa hybrida ‘Sahara’ via nodal culture. J. Plant Biotechnol. 2024, 51, 219–227. [Google Scholar] [CrossRef]
- McDaniel, B.K.; Binder, B.M. Ethylene receptor 1 (ETR1) Is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana. J. Biol. Chem. 2012, 287, 26094–26103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 2010, 61, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Yeung, E.C.; Belmonte, M.F.; Tu, L.T.T.; Stasolla, C. Glutathione modulation of In vitro development. In Vitr. Cell. Dev. Biol. Plant 2005, 41, 584–590. [Google Scholar] [CrossRef]
- Cardoso, J.C. Silver nitrate enhances in vitro development and quality of shoots of Anthurium andraeanum. Sci. Hort. 2019, 253, 358–363. [Google Scholar] [CrossRef]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in plants: From functions to biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef]
- Qin, H.; Huang, R. Auxin controlled by ethylene steers root development. Int. J. Mol. Sci. 2018, 19, 3656. [Google Scholar] [CrossRef]
- Xu, P.; Zhao, P.X.; Cai, X.T.; Mao, J.L.; Miao, Z.Q.; Xiang, C.B. Integration of jasmonic acid and ethylene into auxin signaling in root development. Front. Plant Sci. 2020, 11, 271. [Google Scholar] [CrossRef]
- Qin, H.; He, L.; Huang, R. The coordination of ethylene and other hormones in primary root development. Front. Plant Sci. 2019, 10, 874. [Google Scholar] [CrossRef]
- Takahashi, K.; Fujino, K.; Kikuta, Y.; Koda, Y. Expansion of potato cells in response to jasmonic acid. Plant Sci. 1994, 100, 3–8. [Google Scholar] [CrossRef]
- Delgado, H.L.; Ian, M.; Scott, I.M. Induction of In vitro tuberization of potato microplants by acetylsalicylic acid. J. Plant Physiol. 1997, 151, 74–78. [Google Scholar] [CrossRef]
- Leslie, C.A.; Romani, R.J. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol. 1988, 88, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Pelacho, A.M.; Mingo-Castel, A.M. Jasmonic acid induces tuberization of potato stolons cultured in vitro. Plant Physiol. 1991, 3, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
Type of Jar Closure | SN (pcs/Shoot) | SL (mm/Shoot) | NN (pcs/Shoot) | LS (mm2 of 4th Apical Leaf) | RN (pcs/Plantlet) | RL (mm/Plantlet) | SW (mg/Jar) | RW (mg/Jar) | TN (pcs/Jar) |
---|---|---|---|---|---|---|---|---|---|
Tightly closed (C1.) | 1.0 ± 0.02 b | 23.1 ± 1.1 c | 7.4 ± 0.4 a | 0 b | 2.8 ± 0.2 b | 9.4 ± 1.0 b | 44.2 ± 2.6 c | 7.2 ± 21.5 c | 0 b |
Plastic foil coverage (C2.) | 1.3 ± 0.08 a | 19.6 ± 1.3 c | 5.4 ± 0.4 c | 2.9 ± 0.8 b | 3.5 ± 0.4 b | 18.6 ± 3.1 b | 63.4 ± 4.5 c | 16.3 ± 3.0 c | 0.04 ± 0.06 b |
One-hole-capped coverage (C3.) | 1.0 ± 0.02 b | 42.4 ± 1.6 b | 6.5 ± 0.2 b | 90.3 ± 6 a | 7.0 ± 0.4 a | 65.4 ± 3.6 a | 206.0 ± 12.0 b | 119.0 ± 10.5 b | 0.3 ± 0.03 a |
Three-hole-capped coverage (C4.) | 1.1 ± 0.04 b | 52.4 ± 2.6 a | 6.0 ± 0.2 bc | 95.0 ± 7.8 a | 7.9 ± 0.4 a | 71.9 ± 4.7 a | 262.0 ± 18.2 a | 204.0 ± 17.0 a | 0.3 ± 0.06 a |
Chemical Additives | SN (pcs/Shoot) | SL (mm/Shoot) | NN (pcs/Shoot) | LS (mm2 of 4th Apical Leaf) | RN (pcs/Plantlet) | RL (mm/Plantlet) | SW (mg/Jar) | RW (mg/Jar) | TN (pcs/Jar) |
---|---|---|---|---|---|---|---|---|---|
no additives | 1 ± 0.2 c | 23.2 ± 1.1 b | 7.4 ± 0.4 b | 0 c | 2.8 ± 0.2 d | 9.4 ± 1.0 d,e | 44.2 ± 2.6 e | 7.2 ± 1.5 d | 0 c |
AgNO3 + NAA | 1.6 ± 0.09 a,b | 21.1 ± 0.09 b,c | 4.0 ± 0.3 d | 6.3 ± 2.2 b | 5.5 ± 0.7 b | 33.5 ± 4.9 a | 90.6 ± 9.3 b | 47.9 ± 10.2 c | 0.3 ± 0.07 a |
NAA | 1.3 ± 0.07 b,c | 28.8 ± 1.0 a | 10.4 ± 0.5 a | 0 c | 10.7 ± 0.6 a | 33.3 ± 2.0 a | 124.6 ± 7.0 a | 123.3 ± 8.0 a | 0 c |
JA | 1.6 ± 0.1 a,b | 29.2 ± 1.1 a | 11.5 ± 0.6 a | 0 c | 11.7 ± 0.7 a | 20.8 ± 1.0 b | 139.4 ± 7.7 a | 97.2 ± 7.3 b | 0 c |
SA | 1.0 ± 0.02 c | 15.0 ± 1.2 d | 5.2 ± 0.05 c | 0 c | 2.7 ± 0.5 d | 4.9 ± 0.9 e | 42.5 ± 3.3 e | 2.0 ± 0.7 d | 0.02 ± 0.02 c |
AgNO3 | 1.2 ± 0.06 b,c | 13.2 ± 0.9 d | 3.0 ± 0.2 d | 12.1 ± 3 a | 2.3 ± 0.3 d | 13.2 ± 1.7 c,d | 55.5 ± 5.8 d,e | 5.1 ± 1.0 d | 0.1 ± 0.05 b |
VIT-C | 0.9 ± 0.05 c | 20.0 ± 1.5 b,c | 5.9 ± 0.4 c | 0 c | 3.6 ± 0.4 c,d | 8.2 ± 1.0 d,e | 43.4 ± 4.0 e | 9.4 ± 1.6 d | 0 c |
MTP | 1.9 ± 0.4 a | 18.5 ± 0.7 c | 5.5 ± 0.2 c | 1.2 ± 0.2 c | 2.2 ± 0.3 d | 7.9 ± 1.4 d,e | 72.9 ± 5.2 c | 7.1 ± 1.5 d | 0 c |
GSH | 1.0 ± 0.02 c | 26.4 ± 0.8 a | 8.3 ± 0.3 b | 0 c | 4.9 ± 0.3 b,c | 16.9 ± 1.3 b,c | 70.9 ± 3.8 c,d | 17.5 ± 2.3 d | 0 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szarvas, P.; Dobránszki, J. Aeration and Chemical Additives Prevent Hyperhydration and Allow the Production of High-Quality In Vitro Potato Plantlets. Agronomy 2025, 15, 1470. https://doi.org/10.3390/agronomy15061470
Szarvas P, Dobránszki J. Aeration and Chemical Additives Prevent Hyperhydration and Allow the Production of High-Quality In Vitro Potato Plantlets. Agronomy. 2025; 15(6):1470. https://doi.org/10.3390/agronomy15061470
Chicago/Turabian StyleSzarvas, Pál, and Judit Dobránszki. 2025. "Aeration and Chemical Additives Prevent Hyperhydration and Allow the Production of High-Quality In Vitro Potato Plantlets" Agronomy 15, no. 6: 1470. https://doi.org/10.3390/agronomy15061470
APA StyleSzarvas, P., & Dobránszki, J. (2025). Aeration and Chemical Additives Prevent Hyperhydration and Allow the Production of High-Quality In Vitro Potato Plantlets. Agronomy, 15(6), 1470. https://doi.org/10.3390/agronomy15061470