Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,277)

Search Parameters:
Keywords = stored carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1806 KiB  
Article
Drought and Shrub Encroachment Accelerate Peatland Carbon Loss Under Climate Warming
by Fan Lu, Boli Yi, Jun-Xiao Ma, Si-Nan Wang, Yu-Jie Feng, Kai Qin, Qiansi Tu and Zhao-Jun Bu
Plants 2025, 14(15), 2387; https://doi.org/10.3390/plants14152387 (registering DOI) - 2 Aug 2025
Abstract
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input [...] Read more.
Peatlands store substantial amounts of carbon (C) in the form of peat, but are increasingly threatened by drought and shrub encroachment under climate warming. However, how peat decomposition and its temperature sensitivity (Q10) vary with depth and plant litter input under these stressors remains poorly understood. We incubated peat from two depths with different degrees of decomposition, either alone or incubated with Sphagnum divinum shoots or Betula ovalifolia leaves, under five temperature levels and two moisture conditions in growth chambers. We found that drought and Betula addition increased CO2 emissions in both peat layers, while Sphagnum affected only shallow peat. Deep peat alone or with Betula exhibited higher Q10 than pure shallow peat. Drought increased the Q10 of both depths’ peat, but this effect disappeared with fresh litter addition. The CO2 production rate showed a positive but marginal correlation with microbial biomass carbon, and it displayed a rather similar responsive trend to warming as the microbial metabolism quotient. These results indicate that both deep and dry peat are more sensitive to warming, highlighting the importance of keeping deep peat buried and waterlogged to conserve existing carbon storage. Additionally, they further emphasize the necessity of Sphagnum moss recovery following vascular plant encroachment in restoring carbon sink function in peatlands. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

24 pages, 2863 KiB  
Article
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
by Seckin Karagoz
Gases 2025, 5(3), 17; https://doi.org/10.3390/gases5030017 (registering DOI) - 2 Aug 2025
Abstract
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy [...] Read more.
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy carrier for storing and transporting energy, and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless, the integration of CCS technologies into power production processes is a significant challenge, requiring the enhancement of the combined power generation–CCS process. In recent years, there has been a growing interest in process intensification (PI), which aims to create smaller, cleaner, and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive, multi-scale, multi-phase, dynamic, computational fluid dynamics (CFD)-based process model is constructed, which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57%, signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR. Full article
Show Figures

Figure 1

12 pages, 1285 KiB  
Article
Investigation of Humidity Regulation and Heart Rate Variability in Indoor Environments with Larix kaempferi Wood Interiors
by Su-Yeon Lee, Yoon-Seong Chang, Chang-Deuk Eom, Oh-Won Kwon and Chun-Young Park
Appl. Sci. 2025, 15(15), 8392; https://doi.org/10.3390/app15158392 - 29 Jul 2025
Viewed by 144
Abstract
Wood, as a natural material that stores carbon, is gaining increasing attention and has potential for use in interior architectural applications. Given the long indoor stay time characteristic of modern society, it is important to scientifically understand the effects of indoor wood application [...] Read more.
Wood, as a natural material that stores carbon, is gaining increasing attention and has potential for use in interior architectural applications. Given the long indoor stay time characteristic of modern society, it is important to scientifically understand the effects of indoor wood application on the occupants. In this study, three residential buildings with an identical area and structure were constructed with different degrees of wood coverage (0%, 45%, 90%) using Larix kaempferi. Subsequently, indoor air quality (IAQ) evaluations and relative humidity measurements were conducted to assess the physical and chemical changes in each environment. The IAQ in wooden and non-wooden environments met the recommended IAQ standards established in South Korea. The results of the 8-month observation showed that, the higher the wood coverage ratio, the more the indoor humidity fluctuations were alleviated, and, in the case of the 90% wood coverage ratio condition, the humidity was maintained 5.2% lower in the summer and 10.9% higher in the winter compared to the 0% condition. To further assess the physiological responses induced by the wooden environment, the heart rate variability (HRV) was measured and compared for 26 participants exposed to each environment for two hours. In environments with a 0% and 90% degree of wood coverage, no statistically significant differences were found in the participants’ HRV indicators. But, in the group exposed to the 45% wooden environment, the results showed an increase in HRV indicators, natural logarithm of high frequency power (lnHF): 4.87 → 5.40 (p < 0.05), and standard deviation of normal-to-normal intervals (SDNN): 30.57 → 38.48 (p < 0.05), which are known indicators of parasympathetic nervous system activation. Full article
Show Figures

Figure 1

14 pages, 1849 KiB  
Article
Climate-Driven Microbial Communities Regulate Soil Organic Carbon Stocks Along the Elevational Gradient on Alpine Grassland over the Qinghai–Tibet Plateau
by Xiaomei Mo, Jinhong He, Guo Zheng, Xiangping Tan and Shuyan Cui
Agronomy 2025, 15(8), 1810; https://doi.org/10.3390/agronomy15081810 - 26 Jul 2025
Viewed by 238
Abstract
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and [...] Read more.
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and mean annual precipitation (MAP). This study integrates phospholipid fatty acid (PLFA) analysis to simultaneously resolve microbial biomass, community composition, and membrane lipid adaptations along an elevational gradient (2861–5090 m) on the Qinghai–Tibet Plateau. This study found that microbial PLFAs increased significantly with rising MAP, while the relationship with MAT was nonlinear. PLFAs of different microbial groups all had a positive effect on SOC storage. At higher altitudes (characterized by lower MAP and lower MAT), Gram-positive bacteria dominated bacterial communities, and fungi dominated the overall microbial community, highlighting microbial structural adaptations as key regulators of carbon storage. Saturated fatty acids with branches of soil microbial membrane dominated across sites, but their prevalence over unsaturated fatty acids decreased at high elevations. These findings establish a mechanistic link between climate-driven microbial community restructuring and SOC vulnerability on the QTP, providing a predictive framework for carbon–climate feedbacks in alpine systems under global warming. Full article
(This article belongs to the Special Issue Soil Carbon Sequestration for Mitigating Climate Change in Grasslands)
Show Figures

Figure 1

14 pages, 911 KiB  
Article
Physiological Response of Tribolium castaneum to CO2 Controlled Atmosphere Stress Under Trehalose Feeding
by Yuya Zhang, Shangrong Hu, Min Zhou, Xinyi Zhang, Liwen Guan, Yanfei Zhou, Jun Lv and Bin Tang
Insects 2025, 16(8), 768; https://doi.org/10.3390/insects16080768 - 26 Jul 2025
Viewed by 398
Abstract
This study investigated the physiological regulatory mechanisms by which exogenous trehalose intake enhances the adaptation of the global stored-grain pest T. castaneum to high-concentration carbon dioxide (CO2) stress. By supplementing exogenous trehalose under high-CO2 controlled atmosphere stress, we measured the [...] Read more.
This study investigated the physiological regulatory mechanisms by which exogenous trehalose intake enhances the adaptation of the global stored-grain pest T. castaneum to high-concentration carbon dioxide (CO2) stress. By supplementing exogenous trehalose under high-CO2 controlled atmosphere stress, we measured the activities of key detoxification enzymes (e.g., carboxylesterase and cytochrome P450) and the levels of carbohydrate substances (e.g., glycogen, glucose, and trehalose). The results demonstrated that trehalose feeding significantly alleviated CO2 induced mortality in T. castaneum and prolonged their survival time. In terms of detoxification metabolism, a trehalose-rich diet significantly reduced the activities of cytochrome P450 and carboxylesterase, while the glucose content in the beetles decreased markedly. These findings indicate that trehalose accumulation mitigates physiological damage caused by high-CO2 stress in T. castaneum. Furthermore, exogenous trehalose intake did not disrupt carbohydrate metabolic homeostasis in the beetles, as trehalase activity and the levels of various carbohydrates remained relatively stable. This study elucidates the role of trehalose metabolism in T. castaneum’s adaptation to high-CO2 environments, providing a theoretical foundation for optimizing controlled atmosphere grain storage technology and developing novel pest control strategies. Full article
Show Figures

Figure 1

13 pages, 6786 KiB  
Article
Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil
by Azuri Sofia Gally Koroll, Rodrigo Perdigão Gomes Bezerra, André Ferreira Rodrigues, Bruno Melo Brentan, Joaquín Izquierdo and Gustavo Meirelles
Water 2025, 17(15), 2219; https://doi.org/10.3390/w17152219 - 24 Jul 2025
Viewed by 353
Abstract
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing [...] Read more.
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing a large volume of water to be released after the peak discharge. By doing this, a large amount of energy is stored, which can be recovered via micro-hydropower. In addition, as the release flow is controlled and almost constant, Pumps as Turbines (PAT) could be a feasible and economic option in these cases. Thus, this study investigates the feasibility of micro-hydropower (MHP) in urban detention basins, using the Santa Lúcia detention basin in Belo Horizonte as a case study. The methodology involved hydrological modeling, hydraulic analysis, and economic and environmental assessment. The results demonstrated that PAT selection has a crucial role in the feasibility of the MHP, and exploiting rainfall with lower intensities but higher frequencies is more attractive. Using multiple PATs with different operating points also showed promising results in improving energy production. In addition to the economic benefits, the MHP in the detention basin produces minimal environmental impact and, as it exploits a wasted energy source, it also reduces the carbon footprint in the urban water cycle. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

22 pages, 12767 KiB  
Article
Remote Sensing Evidence of Blue Carbon Stock Increase and Attribution of Its Drivers in Coastal China
by Jie Chen, Yiming Lu, Fangyuan Liu, Guoping Gao and Mengyan Xie
Remote Sens. 2025, 17(15), 2559; https://doi.org/10.3390/rs17152559 - 23 Jul 2025
Viewed by 355
Abstract
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon [...] Read more.
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon storage potential holds immense promise for mitigating climate change. Although previous field surveys and regional assessments have improved the understanding of individual habitats, most studies remain site-specific and short-term; comprehensive, multi-decadal assessments that integrate all major coastal blue carbon systems at the national scale are still scarce for China. In this study, we integrated 30 m Landsat imagery (1992–2022), processed on Google Earth Engine with a random forest classifier; province-specific, literature-derived carbon density data with quantified uncertainty (mean ± standard deviation); and the InVEST model to track coastal China’s mangroves, salt marshes, tidal flats, and mariculture to quantify their associated carbon stocks. Then the GeoDetector was applied to distinguish the natural and anthropogenic drivers of carbon stock change. Results showed rapid and divergent land use change over the past three decades, with mariculture expanded by 44%, becoming the dominant blue carbon land use; whereas tidal flats declined by 39%, mangroves and salt marshes exhibited fluctuating upward trends. National blue carbon stock rose markedly from 74 Mt C in 1992 to 194 Mt C in 2022, with Liaoning, Shandong, and Fujian holding the largest provincial stock; Jiangsu and Guangdong showed higher increasing trends. The Normalized Difference Vegetation Index (NDVI) was the primary driver of spatial variability in carbon stock change (q = 0.63), followed by precipitation and temperature. Synergistic interactions were also detected, e.g., NDVI and precipitation, enhancing the effects beyond those of single factors, which indicates that a wetter climate may boost NDVI’s carbon sequestration. These findings highlight the urgency of strengthening ecological red lines, scaling climate-smart restoration of mangroves and salt marshes, and promoting low-impact mariculture. Our workflow and driver diagnostics provide a transferable template for blue carbon monitoring and evidence-based coastal management frameworks. Full article
Show Figures

Figure 1

11 pages, 202 KiB  
Brief Report
CalOPT: A Specialty Pharmacy–Dietitian Quality Improvement Initiative for Calcium Optimization in Patients with Osteoporosis Risk
by Jennifer Cerulli, Alisha Roberts, Ellie Wilson and Scott Guisinger
Pharmacy 2025, 13(4), 100; https://doi.org/10.3390/pharmacy13040100 - 23 Jul 2025
Viewed by 206
Abstract
A total of 38% of Americans do not meet the Recommended Dietary Allowance (RDA) for calcium including those at risk for osteoporosis. To increase the percentage of patients at risk for osteoporosis who achieve goal calcium RDA intake, a collaborative specialty pharmacy-registered dietitian-nutritionist [...] Read more.
A total of 38% of Americans do not meet the Recommended Dietary Allowance (RDA) for calcium including those at risk for osteoporosis. To increase the percentage of patients at risk for osteoporosis who achieve goal calcium RDA intake, a collaborative specialty pharmacy-registered dietitian-nutritionist (RDN) quality improvement program was developed. Patients aged 18 to 90 years old receiving osteoporosis therapy (denosumab, teriparatide, zoledronic acid) or medications that increase bone loss (elagolix, oral prednisone) were provided with a structured assessment and educational intervention. Daily calcium intake included patient self-reported dietary intake plus supplement use. Written and verbal education on increasing dietary intake based on patient preferences was provided with 5 calcium-rich food-source store coupons. Recommendations for supplement selection (citrate vs. carbonate) and/or medication-related problem resolution were provided. Follow-up occurred at 3–6 months. Fifty patients enrolled [94% female, mean age 66.6 years (SD 15.3)] were taking denosumab (36), teriparatide (1), zoledronic acid (1), elagolix (7) and prednisone (5). The mean baseline daily dietary calcium intake was 500 mg (SD 247) with none achieving goal intake with diet alone. Average calcium supplement use in 22 (44%) patients was 686 mg daily (SD 284). At baseline, 17 (34%) met goal daily calcium intake compared to 30 (60%) at post intervention follow-up (p = 0.009). Over half of the store coupons were redeemed. A specialty pharmacy-RDN customized intervention program provides a model for aiding patients to modify calcium intake. Full article
(This article belongs to the Section Pharmacy Practice and Practice-Based Research)
20 pages, 2546 KiB  
Article
Positive Relationships Between Soil Organic Carbon and Tree Physical Structure Highlights Significant Carbon Co-Benefits of Beijing’s Urban Forests
by Rentian Xie, Syed M. H. Shah, Chengyang Xu, Xianwen Li, Suyan Li and Bingqian Ma
Forests 2025, 16(8), 1206; https://doi.org/10.3390/f16081206 - 22 Jul 2025
Viewed by 303
Abstract
Increasing soil carbon storage is an important strategy for achieving sustainable development. Enhancing soil carbon sequestration capacity can effectively reduce the concentration of atmospheric carbon dioxide, which not only contributes to the carbon neutrality goal but also helps maintain ecosystem stability. Based on [...] Read more.
Increasing soil carbon storage is an important strategy for achieving sustainable development. Enhancing soil carbon sequestration capacity can effectively reduce the concentration of atmospheric carbon dioxide, which not only contributes to the carbon neutrality goal but also helps maintain ecosystem stability. Based on 146 soil samples collected at plot locations selected across Beijing, we examined relationships between soil organic carbon (SOC) and key characteristics of urban forests, including their spatial structure and species complexity. The results showed that SOC in the topsoil with a depth of 20 cm was highest over forested plots (6.384 g/kg–20.349 g/kg) and lowest in soils without any vegetation cover (5.586 g/kg–6.783 g/kg). The plots with herbaceous/shrub vegetation but no tree cover had SOC values in between (5.586 g/kg–15.162 g/kg). The plot data revealed that SOC was better correlated with the physical structure than the species diversity of Beijing’s urban trees. The correlation coefficients (r) between SOC and five physical structure indicators, including average diameter at breast height (DBH), average tree height, basal area density, and the diversity of DBH and tree height, ranged from 0.32 to 0.52, whereas the r values for four species diversity indicators ranged from 0.10 to 0.25, two of which were not statistically different from 0. Stepwise linear regression analyses revealed that the species diversity indicators were not very sensitive to SOC variations among a large portion of the plots and were about half as effective as the physical structure indicators for explaining the total variance of SOC. These results suggest that urban planning and greenspace management policies could be tailored to maximize the carbon co-benefits of urban land. Specifically, trees should be planted in urban areas wherever possible, preferably as densely as what can be allowed given other urban planning considerations. Protection of large, old trees should be encouraged, as these trees will continue to sequester and store large quantities of carbon in above- and belowground biomass as well as in soil. Such policies will enhance the contribution of urban land, especially urban forests and other greenspaces, to nature-based solutions (NBS) to climate change. Full article
(This article belongs to the Special Issue Ecosystem Services of Urban Forest)
Show Figures

Figure 1

20 pages, 6510 KiB  
Article
Research on the Operating Performance of a Combined Heat and Power System Integrated with Solar PV/T and Air-Source Heat Pump in Residential Buildings
by Haoran Ning, Fu Liang, Huaxin Wu, Zeguo Qiu, Zhipeng Fan and Bingxin Xu
Buildings 2025, 15(14), 2564; https://doi.org/10.3390/buildings15142564 - 20 Jul 2025
Viewed by 345
Abstract
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power [...] Read more.
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power generation in a real residential building. The back panel of the PV/T component featured a novel polygonal Freon circulation channel design. A prototype of the combined heating and power supply system was constructed and tested in Fuzhou City, China. The results indicate that the average coefficient of performance (COP) of the system is 4.66 when the ASHP operates independently. When the PV/T component is integrated with the ASHP, the average COP increases to 5.37. On sunny days, the daily average thermal output of 32 PV/T components reaches 24 kW, while the daily average electricity generation is 64 kW·h. On cloudy days, the average daily power generation is 15.6 kW·h; however, the residual power stored in the battery from the previous day could be utilized to ensure the energy demand in the system. Compared to conventional photovoltaic (PV) systems, the overall energy utilization efficiency improves from 5.68% to 17.76%. The hot water temperature stored in the tank can reach 46.8 °C, satisfying typical household hot water requirements. In comparison to standard PV modules, the system achieves an average cooling efficiency of 45.02%. The variation rate of the system’s thermal loss coefficient is relatively low at 5.07%. The optimal water tank capacity for the system is determined to be 450 L. This system demonstrates significant potential for providing efficient combined heat and power supply for buildings, offering considerable economic and environmental benefits, thereby serving as a reference for the future development of low-carbon and energy-saving building technologies. Full article
Show Figures

Figure 1

22 pages, 1438 KiB  
Article
The Transcription Machinery and the Driving Force of the Transcriptional Molecular Condensate: The Role of Phosphates
by Raúl Riera Aroche, Esli C. Sánchez Moreno, Yveth M. Ortiz García, Andrea C. Machado Sulbarán, Lizbeth Riera Leal, Luis R. Olivas Román and Annie Riera Leal
Curr. Issues Mol. Biol. 2025, 47(7), 571; https://doi.org/10.3390/cimb47070571 - 20 Jul 2025
Viewed by 316
Abstract
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can [...] Read more.
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can be modeled as a combination of n circuits connected in parallel. RNA Pol II accesses these circuits and, through a series of pulses, matches the resonance frequency of the DNA qubits, enabling it to extract genetic information and quantum teleport it. Negatively charged phosphates react under RNA Pol II catalysis, which increases the electron density on the deoxyribose acceptor carbon (2’C in the DNA sugar backbone). The phosphorylation effect on the stability of a carbon radical connects tyrosine to the nitrogenous base, while the subsequent pulses link the protein to molecular water through hydrogen bonds. The selective activation of inert C(sp3)–H bonds begins by reading the quantum information stored in the nitrogenous bases. The coupling of hydrogen proton transfer with electron transfer in water generates a supercurrent, which is explained by the correlation of pairs of the same type of fermions exchanging a boson. All these changes lead to the formation of a molecular protein–DNA–water transcriptional condensate. Full article
Show Figures

Figure 1

32 pages, 1661 KiB  
Review
Modelling Wood Product Service Lives and Residence Times for Biogenic Carbon in Harvested Wood Products: A Review of Half-Lives, Averages and Population Distributions
by Morwenna J. Spear and Jim Hart
Forests 2025, 16(7), 1162; https://doi.org/10.3390/f16071162 - 15 Jul 2025
Viewed by 401
Abstract
Timber and other biobased materials store carbon that has been captured from the atmosphere during photosynthesis and plant growth. The estimation of these biogenic carbon stocks in the harvested wood products (HWP) pool has received increasing attention since its inclusion in greenhouse gas [...] Read more.
Timber and other biobased materials store carbon that has been captured from the atmosphere during photosynthesis and plant growth. The estimation of these biogenic carbon stocks in the harvested wood products (HWP) pool has received increasing attention since its inclusion in greenhouse gas reporting by the IPCC. It is of particular interest for long service life products such as timber in buildings; however, some aspects require further thought—in particular the handling of service lives as opposed to half-lives. The most commonly used model for calculating changes in the HWP pool uses first order decay based on half-lives. However other approaches are based on average service lives and estimates of residence times in the product pool, enabling different mathematical functions to be used. This paper considers the evolution of the two concepts and draws together data from a wide range of sources to consider service life estimation, which can be either related to design life or practical observations such as local environmental conditions, decay risk or consumer behaviour. As an increasing number of methods emerge for calculating HWP pool dynamics, it is timely to consider how these numerical inputs from disparate sources vary in their assumptions, calculation types, accuracy and results. Two groups are considered: half-lives for first order decay models, and service life and residence time population distributions within models based on other functions. A selection of examples are drawn from the literature to highlight emerging trends and discuss numerical constraints, data availability and areas for further study. The review indicated that issues exist with inconsistent use of nomenclature for half-life, average service life and peak flow from the pool. To ensure better sharing of data between studies, greater clarity in reporting function types used is required. Full article
Show Figures

Figure 1

27 pages, 7623 KiB  
Article
A Ladder-Type Carbon Trading-Based Low-Carbon Economic Dispatch Model for Integrated Energy Systems with Flexible Load and Hybrid Energy Storage Optimization
by Liping Huang, Fanxin Zhong, Chun Sing Lai, Bang Zhong, Qijun Xiao and Weitai Hsu
Energies 2025, 18(14), 3679; https://doi.org/10.3390/en18143679 - 11 Jul 2025
Viewed by 270
Abstract
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the [...] Read more.
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the carbon trading cost increases progressively with emission levels, thereby providing stronger incentives for emission reduction. Second, flexible loads are categorized and modeled as shiftable, transferable, and reducible types, each with distinct operational constraints and compensation mechanisms. Third, both battery and thermal energy storage systems are considered to improve system flexibility by storing excess energy and supplying it when needed. Finally, a unified optimization framework is developed to coordinate the dispatch of renewable generation, gas turbines, waste heat recovery units, and multi-energy storage devices while integrating flexible load flexibility. The objective is to minimize the total system cost, which includes energy procurement, carbon trading expenditures, and demand response compensation. Three comparative case studies are conducted to evaluate system performance under different operational configurations: the proposed comprehensive model, a carbon trading-only approach, and a conventional baseline scenario. Results demonstrate that the proposed framework effectively balances economic and environmental objectives through coordinated demand-side management, hybrid storage utilization, and the ladder-type carbon trading market mechanism. It reshapes the system load profile via peak shaving and valley filling, improves renewable energy integration, and enhances overall system efficiency. Full article
(This article belongs to the Special Issue Hybrid Battery Energy Storage System)
Show Figures

Figure 1

19 pages, 3570 KiB  
Article
Modeling the Effects of Climate and Site on Soil and Forest Floor Carbon Stocks in Radiata Pine Stands at Harvesting Age
by Daniel Bozo, Rafael Rubilar, Óscar Jara, Marianne V. Asmussen, Rosa M. Alzamora, Juan Pedro Elissetche, Otávio C. Campoe and Matías Pincheira
Forests 2025, 16(7), 1137; https://doi.org/10.3390/f16071137 - 10 Jul 2025
Viewed by 310
Abstract
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors [...] Read more.
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors influence these carbon pools. Our objective was to evaluate the effects of climate and site variables on carbon stocks in adult radiata pine plantations across contrasting water and nutrient conditions. Three 1000 m2 plots were installed at 20 sites with sandy, granitic, recent ash, and metamorphic soils, which were selected along a productivity gradient. Biomass carbon stocks were estimated using allometric equations, and carbon stocks in the forest floor and mineral soil (up to 1 m deep) were assessed. SOC varied significantly, from 139.9 Mg ha−1 in sandy soils to 382.4 Mg ha−1 in metamorphic soils. Total carbon stocks (TCS) per site ranged from 331.0 Mg ha−1 in sandy soils to 552.9 Mg ha−1 in metamorphic soils. Across all soil types, the forest floor held the lowest carbon stock. Correlation analyses and linear models revealed that variables related to soil water availability, nitrogen content, precipitation, and stand productivity positively increased SOC and TCS stocks. In contrast, temperature, evapotranspiration, and sand content had a negative effect. The developed models will allow more accurate estimation estimates of C stocks at SOC and in the total stand. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

29 pages, 3253 KiB  
Article
Green Infrastructure: Opinion Mining and Construction Material Reuse Optimization Portal
by Arturas Kaklauskas, Elisabete Teixeira, Yiannis Xenidis, Anastasia Tzioutziou, Lorcan Connolly, Sarunas Skuodis, Kestutis Dauksys, Natalija Lepkova, Laura Tupenaite, Loreta Kaklauskiene, Simona Kildiene, Jurgita Zidoniene, Virginijus Milevicius and Saulius Naimavicius
Buildings 2025, 15(13), 2362; https://doi.org/10.3390/buildings15132362 - 5 Jul 2025
Viewed by 369
Abstract
More and more sustainability data are being generated from green buildings and from urban and civil infrastructures. For decades, various systems have been developed, and their data have been collected and stored. More detailed, real-time, and cost-effective data, however, are still in short [...] Read more.
More and more sustainability data are being generated from green buildings and from urban and civil infrastructures. For decades, various systems have been developed, and their data have been collected and stored. More detailed, real-time, and cost-effective data, however, are still in short supply. To address this gap, one of the main objectives of the present study is to propose the GREEN method for opinion analysis to support the development of green infrastructure. Google Search was used to gather substantial amounts of information reflecting the views of both ordinary individuals and professionals regarding the benefits, drawbacks, challenges, and limitations of green infrastructure. Previously, however, such data have not been employed to improve green infrastructure by means of opinion analytics. The GREEN method was developed for the analysis of green infrastructure (GI) and its context, enabling multiple-criteria, neural network, correlation, and regression analyses across micro-, meso-, and macro-environmental scales. A total of 788 global regression (R2 = 0.997) and neural network (R2 = 0.596) GREEN models were developed and tested. In addition, 34 regression models for 12 (R2 = 0.817) and 20 (R2 = 0.511) cities were created for the world and separate cities (Munich (R2 aver = 0.801) and London (R2 aver = 0.817)). The GREEN method is a new way to analyze stakeholder opinions on sustainable green infrastructure and its context. With the objective of making green infrastructure more efficient and reducing carbon emissions, the Construction Material Reuse Optimization (SOLUTION) Portal was created as part of this research. The portal generates multiple options and proposes optimal alternatives for reused construction products. The results show that the GREEN method and SOLUTION Portal are reliable tools for evidence-based and rational green infrastructure development. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop