Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,204)

Search Parameters:
Keywords = steel beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 8292 KB  
Article
Flexural Performance of Geopolymer-Based Composite Beams Under Different Curing Regimes
by Feyyaz Unver, Mucteba Uysal, Beyza Aygun, Turhan Bilir, Turgay Cosgun, Mehmet Safa Aydogan and Guray Arslan
Buildings 2026, 16(2), 439; https://doi.org/10.3390/buildings16020439 - 21 Jan 2026
Abstract
Electrical curing is a viable alternative to traditional thermal curing for geopolymer materials due to its capability for rapid and internal geopolymerization. In this research, reinforced geopolymer-based composite beams were successfully fabricated at a macroscale using a binary system of fly ash (FA) [...] Read more.
Electrical curing is a viable alternative to traditional thermal curing for geopolymer materials due to its capability for rapid and internal geopolymerization. In this research, reinforced geopolymer-based composite beams were successfully fabricated at a macroscale using a binary system of fly ash (FA) and granulated blast furnace slag (GBFS). The mixture was activated with a solution of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) with a fixed molar ratio of 2:1 for both, and aggregate-to-binder and activator-to-binder (A/B) ratios of 2.5 and 0.7, respectively. To ensure electrical conductivity, individual fiber systems were employed, including carbon fiber (CF), steel fiber (SF), and waste wire erosion (WWE), each incorporated at a dosage of 0.5 vol.% of the total mix volume. In addition, carbon black (CB) was introduced as a conductive filler at a constant dosage of 2.0 vol.% of the binder content in selected specimens. Each beam specimen contained only one type of conductive reinforcement or filler. A total of twelve reinforced geopolymer-based composite beams with a 150 mm square section and a span of 1300 mm, with a clear span of 1200 mm, were successfully cast and reinforced based on reinforced concrete beam designs and standards, with a dominant goal of enhancing beam behavior under flexure. The beams were cured in ambient curing conditions, or using thermal curing at 80 °C for 24 h, and using electrical curing from the fresh states with a fixed voltage of 25 V. Notwithstanding a common beam size and reinforcement pattern, distinct curing methods significantly influenced beam structure properties. Peak loads were between 20.8 and 31.5 kN, initial stiffness between 1.75 and 6.09 kN/mm, and total energy absorption between 690 and 1550 kN/mm, with a post-peak energy component of between 0.12 and 0.55. Displacement-based ductility measures spanned from 3.2 to 8.1 units with a distinct improvement in electrical curing regimes, especially in the SF-reinforced specimens; this indicates that electrical curing in reinforced geopolymer composite materials works as a governing mechanism in performance rather than simply a method for enhancing the strength of materials. Full article
Show Figures

Figure 1

23 pages, 13046 KB  
Article
Parametric Study on an Integrated Sleeve Mortise-and-Tenon Steel–Timber Composite Beam–Column Joints
by Zhanguang Wang, Weihan Yang, Zhenyu Gao and Jianhua Shao
Buildings 2026, 16(2), 435; https://doi.org/10.3390/buildings16020435 - 20 Jan 2026
Abstract
To address the limitations of traditional timber mortise-and-tenon joints, particularly their low pull-out resistance and rapid stiffness degradation under cyclic loading, this study proposes a novel integrated sleeve mortise-and-tenon steel–timber composite beam–column joint. Building upon prior experimental validation and numerical model verification, a [...] Read more.
To address the limitations of traditional timber mortise-and-tenon joints, particularly their low pull-out resistance and rapid stiffness degradation under cyclic loading, this study proposes a novel integrated sleeve mortise-and-tenon steel–timber composite beam–column joint. Building upon prior experimental validation and numerical model verification, a comprehensive parametric study was conducted to systematically investigate the influence of key geometric parameters on the seismic performance of the joint. The investigated parameters included beam sleeve thickness (1–10 mm), sleeve length (150–350 mm), bolt diameter (4–16 mm), and the dimensions and thickness of stiffeners. The results indicate that a sleeve thickness of 2–3 mm yields the optimal overall performance: sleeves thinner than 2 mm are prone to yielding, while those thicker than 3 mm induce stress concentration in the timber beam. A sleeve length of approximately 250 mm provides the highest initial stiffness and a ductility coefficient exceeding 4.0, representing the best seismic behavior. Bolt diameters within the range of 8–10 mm produce full and stable hysteresis loops, effectively balancing load-carrying capacity and energy dissipation; smaller diameters lead to pinching failure, whereas larger diameters trigger premature plastic deformation in the timber. Furthermore, stiffeners with a width of 40 mm and a thickness of 2 mm effectively enhance joint stiffness, promote a uniform stress distribution, and mitigate local damage. The optimized joint configuration demonstrates excellent ductility, stable hysteretic behavior, and a high load capacity, providing a robust technical foundation for the design and practical application of advanced steel–timber composite connections. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

17 pages, 4604 KB  
Article
Machine Learning Predictions of the Flexural Response of Low-Strength Reinforced Concrete Beams with Various Longitudinal Reinforcement Configurations
by Batuhan Cem Öğe, Muhammet Karabulut, Hakan Öztürk and Bulent Tugrul
Buildings 2026, 16(2), 433; https://doi.org/10.3390/buildings16020433 - 20 Jan 2026
Abstract
There are almost no studies that investigate the flexural behavior of existing reinforced concrete (RC) beams with insufficient concrete strength using machine learning methods. This study investigates the flexural response of low-strength concrete (LSC) RC beams reinforced exclusively with steel rebars, focusing on [...] Read more.
There are almost no studies that investigate the flexural behavior of existing reinforced concrete (RC) beams with insufficient concrete strength using machine learning methods. This study investigates the flexural response of low-strength concrete (LSC) RC beams reinforced exclusively with steel rebars, focusing on the effectiveness of three different longitudinal reinforcement configurations. Nine beams, each measuring 150 × 200 × 1100 mm and cast with C10-grade low-strength concrete, were divided into three groups according to their reinforcement layout: Group 1 (L2L) with two Ø12 mm rebars, Group 2 (L3L) with three Ø12 mm rebars, and Group 3 (F10L3L) with three Ø10 mm rebars. All specimens were tested under three-point bending to evaluate their load–deflection characteristics and failure mechanisms. The experimental findings were compared with ML approaches. To enhance predictive understanding, several ML regression models were developed and trained using the experimental datasets. Among them, the Light Gradient Boosting, K Neighbors Regressor and Adaboost Regressor exhibited the best predictive performance, estimating beam deflections with R2 values of 0.89, 0.90, 0.94, 0.74, 0.84, 0.64, 0.70, 0.82, and 0.72, respectively. The results highlight that the proposed ML models effectively capture the nonlinear flexural behavior of RC beams and that longitudinal reinforcement configuration plays a significant role in the flexural performance of low-strength concrete beams, providing valuable insights for both design and structural assessment. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

18 pages, 4995 KB  
Article
The Effect of Ultrasonic Vibration Assistance During Laser Lap Welding on the Microstructure and Properties of Galvanized Steel/Mg Joints
by Dan Wang, Chengsen Zhu, Juming Gao, Hongliang Li, Dongdong Zhuang, Nan Xu, Xinyi Zhao, Ke Han and Zeyu Wang
Metals 2026, 16(1), 120; https://doi.org/10.3390/met16010120 - 20 Jan 2026
Abstract
In this work, a laser lap-welded joint of galvanized steel/Mg and a laser lap-welded joint of galvanized steel/Mg assisted by ultrasonic vibration were compared. By adjusting the laser beam power and ultrasonic amplitude, the appropriate welding process parameters were obtained. The weld formation, [...] Read more.
In this work, a laser lap-welded joint of galvanized steel/Mg and a laser lap-welded joint of galvanized steel/Mg assisted by ultrasonic vibration were compared. By adjusting the laser beam power and ultrasonic amplitude, the appropriate welding process parameters were obtained. The weld formation, microstructure and mechanical properties were studied and analyzed. The results indicated that the addition of ultrasonic vibration generated an excitation force with a certain frequency and amplitude on the weldment, making the molten metal in the molten pool produce ultrasonic forced vibration, and producing the effects of cavitation, acoustic streaming, mechanical stirring and heat, thus reducing welding residual stress and welding-deformation, porosity and incomplete-fusion defects. In addition, it can make the fusion zone transition evenly, improve the wettability, refine the weld grain, and reduce the average grain area from 583 μm2 to 324 μm2. Moreover, the distribution of Mg-Zn reinforcing phase at the interface was more uniform and denser, and the maximum tensile shear strength increased from 179.9 N/mm to 290 N/mm, indicating that the addition of ultrasonic vibration was conducive to improving the comprehensive mechanical properties of the joint. Full article
Show Figures

Figure 1

14 pages, 3172 KB  
Article
Flexural Deformation Calculation Theory and Numerical Method for Steel-Plate–Concrete Composite Reinforcement Considering Interfacial Slip
by Kanghua Yang, Xu Xie, Aijun Zhang and Peiyun Zhu
Buildings 2026, 16(2), 416; https://doi.org/10.3390/buildings16020416 - 19 Jan 2026
Viewed by 27
Abstract
The steel-plate–concrete composite reinforcement method is derived from the bonded steel plate and increased-section techniques. It is employed to enhance the strength of concrete structures that require a substantial increase in load-bearing capacity. To develop a flexural deformation calculation theory that accounts for [...] Read more.
The steel-plate–concrete composite reinforcement method is derived from the bonded steel plate and increased-section techniques. It is employed to enhance the strength of concrete structures that require a substantial increase in load-bearing capacity. To develop a flexural deformation calculation theory that accounts for slip effects in general reinforced cross-sections with bilateral symmetry, interfacial slip and deflection equations are formulated based on the relationship between interlayer slip and the rotational angle of beams in the plane, as well as the principle of force equilibrium. A numerical method, established based on this theoretical framework, is proposed to facilitate the analytical solution and is verified to be consistent with analytical results. Furthermore, the accuracy of the calculation theory is validated through bending experiments. Finally, the influence of key parameters affecting slip on the flexural stiffness of the reinforced beam is evaluated by determining the stiffness reduction coefficient according to the theory. The results indicate that the flexural stiffness of reinforced beams is governed by three non-dimensional parameters: the boundary condition parameter (μ), composite action parameter (shear connector stiffness (βl)), and relative bending stiffness parameter (G/G0). The loading mode does not affect the flexural stiffness of the reinforced beams. As βl approaches 100 and G/G0 approaches 1, η approaches 100%. In cases where high stiffness is required, reducing interfacial slip can minimize the loss of flexural stiffness in composite structures. Conservative calculations indicate that satisfying the conditions βl ≥ 8 and G/G0 ≤ 1.6 during design can ensure that the reduction in flexural stiffness of the reinforced beam remains above 90%. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

35 pages, 7304 KB  
Article
Nonlinear Inelastic Analysis of Semi-Rigid Steel Frames with Top-and-Seat Angle Connections
by Yusuf Balaban, Zeynep Fırat Alemdar and Fatih Alemdar
Buildings 2026, 16(2), 408; https://doi.org/10.3390/buildings16020408 - 19 Jan 2026
Viewed by 39
Abstract
Top-and-seat angle connections (TSACs) exhibit inherently asymmetric and nonlinear moment–rotation behavior, which can significantly influence the global response of steel frames subjected to combined gravity and lateral loading. In this study, a three-dimensional finite element model of an unstiffened TSAC is developed and [...] Read more.
Top-and-seat angle connections (TSACs) exhibit inherently asymmetric and nonlinear moment–rotation behavior, which can significantly influence the global response of steel frames subjected to combined gravity and lateral loading. In this study, a three-dimensional finite element model of an unstiffened TSAC is developed and validated against experimental moment–rotation data from the literature under monotonic loading conditions. The validated model is then used to investigate the influence of key geometric parameters, including top angle thickness, bolt diameter, and beam depth, on the connection’s moment–rotation response in both positive and negative bending directions. Subsequently, the monotonic connection behavior is incorporated into nonlinear static analyses of steel portal frames to examine the effects of asymmetric connection response and moment reversal on frame-level stiffness degradation and capacity. A practical SAP2000 modeling workflow is proposed in which the finite element-derived monotonic moment–rotation curves are implemented using zero-length rotational link elements, allowing combined consideration of material, geometric, and connection nonlinearities at the structural level. The comparisons between Abaqus and SAP2000 results demonstrate consistent frame-level responses when identical monotonic connection characteristics are employed, highlighting the ability of the proposed workflow to reproduce detailed finite element predictions at the structural analysis level. The results indicate that increasing top angle thickness, bolt diameter, and beam depth enhances the lateral stiffness and base shear resistance of steel frames. Positive and negative bending directions are defined consistently with the applied gravity-plus-lateral loading sequence. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 5702 KB  
Article
Flexural Behaviour of Corroded RC Beams Strengthened with CFRCM: Refined Modelling, Parametric Analysis, and Design Assessment
by Chaoqun Zeng, Jing-Pu Tang, Liangliang Wei, Miaochang Zhu, Ran Feng and Panpan Liu
Buildings 2026, 16(2), 377; https://doi.org/10.3390/buildings16020377 - 16 Jan 2026
Viewed by 183
Abstract
Reinforced concrete (RC) beams strengthened with carbon-fabric-reinforced cementitious matrix (CFRCM) systems have shown potential for restoring flexural performance, yet their effectiveness under different corrosion levels remains insufficiently understood. This study presents a numerical investigation of the flexural behaviour of simply supported RC beams [...] Read more.
Reinforced concrete (RC) beams strengthened with carbon-fabric-reinforced cementitious matrix (CFRCM) systems have shown potential for restoring flexural performance, yet their effectiveness under different corrosion levels remains insufficiently understood. This study presents a numerical investigation of the flexural behaviour of simply supported RC beams externally strengthened with CFRCM plates. Refined finite element models (FEMs) were developed by explicitly incorporating the steel–concrete bond-slip behaviour, the carbon fabric (CF) mesh–cementitious matrix (CM) interface, and the CFRCM–concrete substrate interaction and were validated against experimental results in terms of failure modes, load–deflection responses, and flexural capacities. A parametric study was then conducted to examine the effects of CFRCM layer number, steel corrosion level, and longitudinal reinforcement ratio. The results indicate that the baseline flexural capacity can be fully restored only when the corrosion level remains below approximately 15%; beyond this threshold, none of the CFRCM configurations achieved full recovery. The influence of the reinforcement ratio was found to depend on corrosion severity, while increasing CFRCM layers enhanced flexural performance but exhibited saturation effects for thicker configurations. In addition, corrosion level and CFRCM thickness jointly influenced the failure mode. Comparisons with design predictions show that bilinear CFRCM constitutive models are conservative, whereas existing FRP-based design codes provide closer agreement with numerical and experimental results. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 10823 KB  
Article
Experimental Investigation of the Dynamic Behavior of Welded-Plate Lifting Lugs for Hoisting Large-Span Steel Cap Beams
by Chen Xue, Siqi Wang, Xu Wang, Peng Mao and Maojun Duan
Buildings 2026, 16(2), 370; https://doi.org/10.3390/buildings16020370 - 15 Jan 2026
Viewed by 105
Abstract
This paper systematically investigated the mechanical behavior of welded-plate lifting lugs subjected to dynamic and eccentric loadings in steel structure hoisting applications. By integrating on-site stress monitoring throughout the hoisting process with finite element numerical simulations, the dynamic response characteristics of the lugs [...] Read more.
This paper systematically investigated the mechanical behavior of welded-plate lifting lugs subjected to dynamic and eccentric loadings in steel structure hoisting applications. By integrating on-site stress monitoring throughout the hoisting process with finite element numerical simulations, the dynamic response characteristics of the lugs were comprehensively analyzed. The results indicated that the stress response followed a three-stage evolution comprising elastic growth stage, peak fluctuation stage, and gradual decay stage. Non-uniform loading significantly intensified stress concentrations at the edges of the lifting holes and in the lug–stiffener transition region, with local impact parameters ranging from 1.02 to 1.12 and exhibiting a distinctly non-uniform spatial distribution. A refined finite element model was established, and comparisons with experimental data confirmed that static and dynamic prediction errors were controlled within 5 MPa and 5%, respectively. The optimal lifting angle of 75° was identified, resulting in a significant reduction in dynamic amplification. Furthermore, a small-sample Bootstrap method was introduced to probabilistically correct the dynamic parameter, enhancing design reliability by approximately 10%. Overall, this research provided a more rigorous theoretical foundation and practical design tool for evaluating the safety of lifting lugs subjected to dynamic loading. Full article
Show Figures

Figure 1

23 pages, 4739 KB  
Article
Experimental and Analytical Assessment of Shaft Resistance and Critical Depth of Piles Subjected to Uplift Loads in Overconsolidated Sand
by Abdulnaser Alamari and Adel Hanna
Geotechnics 2026, 6(1), 7; https://doi.org/10.3390/geotechnics6010007 - 15 Jan 2026
Viewed by 107
Abstract
Pile foundations are widely used to transfer axial loads to deeper strata, where uplift resistance is critical for offshore structures, towers, and retaining systems. Uplift capacity is governed primarily by shaft resistance mobilized along the pile–soil interface, yet its behavior in sand remains [...] Read more.
Pile foundations are widely used to transfer axial loads to deeper strata, where uplift resistance is critical for offshore structures, towers, and retaining systems. Uplift capacity is governed primarily by shaft resistance mobilized along the pile–soil interface, yet its behavior in sand remains inadequately defined. This study investigates the shaft resistance of vertical model piles subjected to pure pullout loading in dry sand, using instrumented steel piles in a rigid steel tank with reaction beams and earth pressure sensors to capture lateral stress distribution. The effects of pile diameter D, embedment ratio L/D, and sand relative density Dr on uplift performance were systematically examined. The results show that higher relative density produces higher earth pressure coefficients Ks and, accordingly, higher uplift capacity. An analytical model was developed to predict the earth pressure coefficient Ks and shaft resistance, introducing a friction-based critical depth ratio linked to the sand friction angle. The critical depth ratio increases with friction angle and is greater in denser sands under uplift loading. This study contributes in the following ways: (1) developing an improved analytical framework for uplift prediction, (2) introducing a friction-based critical depth ratio concept, and (3) establishing an empirical OCR relationship for sand. Full article
Show Figures

Figure 1

8 pages, 2479 KB  
Proceeding Paper
Slip Effect on Rotational Capacity (Chord Rotation) of Corroded RC Members Due to Pull Out of Steel Reinforcement
by Konstantinos Koulouris, Maria Basdeki and Charis Apostolopoulos
Eng. Proc. 2025, 119(1), 54; https://doi.org/10.3390/engproc2025119054 - 14 Jan 2026
Viewed by 89
Abstract
Based on ongoing experimental research, the present manuscript presents the effect of the slippage of a steel reinforcing bar due to corrosion on the chord rotation and deformation of corroded Reinforced Concrete members. The experimental results recorded that the increase in the corrosion [...] Read more.
Based on ongoing experimental research, the present manuscript presents the effect of the slippage of a steel reinforcing bar due to corrosion on the chord rotation and deformation of corroded Reinforced Concrete members. The experimental results recorded that the increase in the corrosion level of the steel led to bond strength loss and relative slip between the steel and concrete, which was increased from 1.5 mm in non-corroded conditions to 3.5 mm even at low corrosion levels, up to a 5% steel mass loss. This slippage of corroded reinforcing bars from the anchorage leads to a proportional increase in terms of chord rotation due to pull out resulting in an additional increase in the displacement of the column’s top. In conclusion, the present study highlights the great importance of the contribution of the resulting slippage of a steel reinforcing bar due to corrosion in the calculation of the limit chord rotation (column–beam), a term which is of major importance in the assessment of the structural integrity of old RC structures, which was introduced as an adequacy requirement by both Eurocode 8-3 and the Greek Code of Structural Interventions (KAN.EPE). Full article
Show Figures

Figure 1

27 pages, 4079 KB  
Article
Plastic Strain Spread Study for the Optimal Design of Multistep Flexural Steel Beam Elements
by Salvatore Benfratello and Luigi Palizzolo
Sci 2026, 8(1), 15; https://doi.org/10.3390/sci8010015 - 12 Jan 2026
Viewed by 91
Abstract
The present paper concerns a new formulation of the optimal design problem of I-shaped multistep steel beam elements, based on the study of the plastic strain spread occurring in the relevant elements, with the aim of determining the length involved by the plastic [...] Read more.
The present paper concerns a new formulation of the optimal design problem of I-shaped multistep steel beam elements, based on the study of the plastic strain spread occurring in the relevant elements, with the aim of determining the length involved by the plastic deformation related to assigned load conditions and different constrained beam schemes. Material behavior is assumed as elastic–perfectly plastic, and the hypothesis of plane cross-sections is accepted. The functions defining the plastic strain spread are analytically obtained in the framework of Euler–Bernoulli beam theory. The proposed optimal design problem is a minimum volume one and the new constraint imposed on the length of the plasticized portion ensures that the minimum volume beam element also represents a maximum plastic dissipation one. Furthermore, the solution to the optimal design problem guarantees that the obtained multistep beam element ensures protection against brittle failure of the beam end sections, provides optimal cross-sections of the different portions belonging to Class 1 and ensures a suitable minimum value of the elastic flexural stiffness to respect the constraint on the deflection. Explicit reference is made to the so-called Reduced Beam Section (RBS), which characterizes the described multistep beam elements. Actually, the proposed formulation represents an innovative approach to obtaining an optimal beam element that really satisfies all the resistance, stiffness and ductility behavioral requirements. Some numerical applications conclude the paper, and their results are confirmed by appropriate FEM analyses in ABAQUS environment. Full article
Show Figures

Figure 1

20 pages, 7321 KB  
Article
Lateral Performance of Semi-Rigid Steel Frames with Precast Knee Bracing Systems: Testing and Finite Element Analysis
by Jianzhong Lin, Zhimin Yu, Yongguo Zhong, Zejia Zhou and Peng Wang
Buildings 2026, 16(2), 318; https://doi.org/10.3390/buildings16020318 - 12 Jan 2026
Viewed by 129
Abstract
In this paper, the synergistic strengthening mechanism of a new type of prefabricated knee brace to semi-rigid steel frame lateral resistance was experimentally and numerically analyzed. Five full-scale specimens with a control steel frame and four knee-braced configurations were tested under pseudo-static cyclic [...] Read more.
In this paper, the synergistic strengthening mechanism of a new type of prefabricated knee brace to semi-rigid steel frame lateral resistance was experimentally and numerically analyzed. Five full-scale specimens with a control steel frame and four knee-braced configurations were tested under pseudo-static cyclic loading in order to understand the stiffness evolution, failure mode, and energy dissipation characteristics of the specimens. Results show the following: (1) The innovative integrated knee braces increase initial lateral stiffness and yield capacity by 184–242% and 91–154% compared to conventional semi-rigid frames with acceptable ductility; (2) Three different failure modes coupled brace-joint yielding (Type I), brace dominated instability (Type II) and beam buckling brace connections (Type III) are identified; (3) Finite element simulations using ABAQUS with isotropic/kinetic hardening models show good agreement with experiments for their hysteretic responses confirming In particular the ultimate failure location is identified at the lateral screw holes of beam flanges located near brace supports where the local stress is greater than 1.8fy. The study further proposes a BIM-integrated design workflow. These results give a theoretical basis and some practical recommendations for the application of knee-braced semi-rigid systems in earthquake-resistant steel buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 5592 KB  
Article
Engineering Performance of a Novel Geopolymer-Based Aerogel Non-Intumescent Fire-Resistive Coating
by Shuai Fang, Congyue Qi, Chenke Lin, Lijun Yuan and Haiyan Zhang
Coatings 2026, 16(1), 98; https://doi.org/10.3390/coatings16010098 - 12 Jan 2026
Viewed by 166
Abstract
Conventional non-intumescent fire-resistive coatings often require excessive thickness and exhibit poor adhesion. To address these limitations, this study developed a novel geopolymer-based aerogel composite (GBAC) coating. The effects of aerogel content, water-to-binder (W/B) ratio, curing age, latex powder, basalt fibers, and an expansive [...] Read more.
Conventional non-intumescent fire-resistive coatings often require excessive thickness and exhibit poor adhesion. To address these limitations, this study developed a novel geopolymer-based aerogel composite (GBAC) coating. The effects of aerogel content, water-to-binder (W/B) ratio, curing age, latex powder, basalt fibers, and an expansive agent on the physical and mechanical properties of GBAC were systematically investigated. The results have indicated that increasing the aerogel content and W/B ratio reduces the dry density, thermal conductivity, and compressive strength. Both basalt fibers and expansive agent significantly inhibit drying shrinkage while enhancing tensile and tensile bonding strength. Although latex powder shows a negligible effect on shrinkage reduction, it effectively improves tensile and bonding strength. The incorporation of 2.5% of latex powder, 1.0% of basalt fibers, and 4.0% of expansive agent results in a remarkable reduction in shrinkage strain by 85.23%, an increase in tensile strength by 90.93%, and an enhancement in tensile bonding strength by 64.89%. GBAC coatings with thicknesses of 20 and 25 mm can extend thermal insulating efficiency of steel plates by 84 and 108 min and make steel beams satisfy the requirements of Classes II and I fire resistance, respectively. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 3rd Edition)
Show Figures

Figure 1

21 pages, 5560 KB  
Article
Extended Stiffened End-Plate Steel Joints with Octagonal Bolt Arrangement Under Column Loss Scenario
by Francesco Monte, Roberto Tartaglia and Giuseppe Maddaloni
Appl. Sci. 2026, 16(2), 735; https://doi.org/10.3390/app16020735 - 10 Jan 2026
Viewed by 203
Abstract
Extended stiffened end-plate bolted connections represent one of the most utilised steel connection types in seismic-prone regions, and several studies have been dedicated to the improvement of their performance. Recently, a new stiffened joint configuration, with a non-symmetric octagonal bolt arrangement, was proposed, [...] Read more.
Extended stiffened end-plate bolted connections represent one of the most utilised steel connection types in seismic-prone regions, and several studies have been dedicated to the improvement of their performance. Recently, a new stiffened joint configuration, with a non-symmetric octagonal bolt arrangement, was proposed, highlighting its excellent performance in seismic scenarios. Therefore, two new design procedures according to both the European and North American codes were developed. Within this framework, the present work aims to investigate the performance of this innovative joint under column loss scenarios. A total of sixteen beam-to-column steel assemblies, defined by varying the beam depth and the design procedure, were numerically investigated using advanced FE models validated against experimental results. The numerical results show that the innovative joints exhibit a ductile behaviour, even better than traditional joints designed according to the current versions of EU and US codes. Indeed, the new bolt arrangement allows us to reduce the damage in the connection thanks to a better stress distribution among the bolts. Full article
Show Figures

Figure 1

22 pages, 3974 KB  
Article
Experimental Investigation of the Flexural Performance of Continuous Self-Compacting Concrete Beams with Natural and Recycled Aggregates
by Žarko Petrović, Bojan Milošević, Marija Spasojević Šurdilović, Andrija Zorić and Dragana Turnić
Materials 2026, 19(2), 264; https://doi.org/10.3390/ma19020264 - 8 Jan 2026
Viewed by 264
Abstract
This paper presents an experimental investigation on the flexural performance of continuous two-span reinforced concrete beams made with self-compacting concrete (SCC) incorporating natural and recycled coarse aggregates. A total of nine beams were tested under static loading conditions. The beams were divided into [...] Read more.
This paper presents an experimental investigation on the flexural performance of continuous two-span reinforced concrete beams made with self-compacting concrete (SCC) incorporating natural and recycled coarse aggregates. A total of nine beams were tested under static loading conditions. The beams were divided into three groups based on different reinforcement ratios, and within each group, three aggregate replacement levels were used: 0%, 50%, and 100% recycled coarse aggregate. All beams were designed with identical cross-sections and subjected to two-point loading to simulate continuous support conditions. The study focused on evaluating cracking behavior, load–deflection response, and failure modes. The experimental results highlight that partial replacement with recycled aggregates (RAC50) can achieve comparable or even improved mechanical performance compared to natural aggregate beams, including enhanced compressive strength and ductility. Beams with 100% recycled aggregates (RAC100) showed slightly higher deflections and earlier crack initiation, particularly at lower reinforcement ratios, although overall flexural behavior remained consistent with natural aggregate concrete (NAC) beams. It was also observed that as reinforcement ratio increases, the influence of aggregate type diminishes, indicating that steel reinforcement predominantly governs the structural response at higher ratios. Crack widths and propagation patterns were systematically monitored, confirming that RAC beams maintain acceptable deformation and ductility under load. These findings emphasize the feasibility of using high-quality recycled aggregates in structural SCC elements, providing a sustainable alternative without compromising performance, and offering guidance for the design of continuous RAC beams. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop